
A Formal Algorithm for Verifying the Validity of
Clustering Results Based on Model Checking
Shaobin Huang, Yuan Cheng*, Dapeng Lang, Ronghua Chi, Guofeng Liu

College of Computer Science and Technology, Harbin Engineering University, Harbin, P. R. China

Abstract

The limitations in general methods to evaluate clustering will remain difficult to overcome if verifying the clustering validity
continues to be based on clustering results and evaluation index values. This study focuses on a clustering process to
analyze crisp clustering validity. First, we define the properties that must be satisfied by valid clustering processes and
model clustering processes based on program graphs and transition systems. We then recast the analysis of clustering
validity as the problem of verifying whether the model of clustering processes satisfies the specified properties with model
checking. That is, we try to build a bridge between clustering and model checking. Experiments on several datasets indicate
the effectiveness and suitability of our algorithms. Compared with traditional evaluation indices, our formal method can not
only indicate whether the clustering results are valid but, in the case the results are invalid, can also detect the objects that
have led to the invalidity.

Citation: Huang S, Cheng Y, Lang D, Chi R, Liu G (2014) A Formal Algorithm for Verifying the Validity of Clustering Results Based on Model Checking. PLoS
ONE 9(3): e90109. doi:10.1371/journal.pone.0090109

Editor: Michal Zochowski, University of Michigan, United States of America

Received August 19, 2013; Accepted January 30, 2014; Published March 7, 2014

Copyright: � 2014 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by National Key Project of Scientific and Technical Supporting Programs (No. 2012BAH08B02), http://kjzc.jhgl.org/. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: changuang7@sina.com

Introduction

Clustering analysis attempts to discover distribution patterns of

data objects [1]. Because only reasonable results are helpful to

effectively further decision support, we should evaluate a clustering

result before using it to judge whether it is reasonable. That is, we

should confirm whether the clustering reflects the intrinsic

character of the data. This evaluation can be called verifying the

validity of clustering results. Visualization methods can intuitively

reflect the validity of clustering results for two-dimensional data

objects. However, it is difficult to present a visual description of

high-dimensional data. In addition, although appropriate visual-

ization tools can describe the data, it is also difficult to discern the

cluster distribution in high-dimensional space. Therefore, we need

a metric to evaluate the validity of the results of clustering analysis.

Clustering analysis can be divided into crisp and fuzzy clustering

according to the boundaries between clusters. Data objects in crisp

clustering are divided into distinct clusters, where each object

belongs to exactly one cluster; while the boundaries between

objects in fuzzy clustering are un-sharp, so objects may belong to

more than one clusters. Therefore, the evaluation methods of their

validity are different. Some common evaluation indices in crisp

clustering include external, internal, and relative indices [2–5].

The validity indices in fuzzy clustering take into account the

degree to which an object belongs to one cluster, such as PC

(Partition Coefficient) and PE (Partition Entropy) [6]. We will

discuss the method of verifying the validity of crisp clustering

results in this study.

External indices are based on a priori partition information of

data. These indices evaluate the validity of clustering results by

matching the cluster structures and the priori information; the F-

Measure, Jaccard, Purity and Entropy are all external indices [7–

9]. In most research on clustering algorithms, the authors choose

these external indices to evaluate the validity because of their

intuitive nature. A comparison of some common external indices is

shown in Table 1. As seen in the comparison, although the

definitions of these indices are different, their basic ideas are all to

compare the fit between clusters and the priori partition. If we

specify a threshold for the fit, we can conclude whether a

clustering result is valid by comparing its corresponding index

value with the threshold, as explained in the Experimental Section.

Obviously, the premise of applying an external index requires a

priori partition information of the dataset. Therefore, there is no

value in using external indices without partition information. In

many practical applications, partition information for the data is

not available, and thus, external indices cannot be used to evaluate

clustering quality.

An internal evaluation index evaluates clustering results using

quantities and features inherent in the dataset, i.e., it assesses the fit

between the clusters and the data using only the data themselves,

rather than with a priori partition information [10,11], such as the

Cophenetic Correlation Coefficient and Hubert’s C statistic, etc..

Table 2 compares several internal indices. It is obvious that a

priori partition information is not necessary for internal indices.

However, the above internal indices are only appropriate for

hierarchical clustering or a single clustering scheme. In addition,

they require relatively high computational complexity due to

statistical testing.

Relative indices are different from the above validation methods

and are used to choose the best clustering scheme from a set of

defined schemes according to a pre-specified criterion [12–14],

i.e., they compare a clustering scheme with other clustering

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e90109

http://creativecommons.org/licenses/by/4.0/

schemes based on indices such as the Dunn index, the Davies-

Bouldin index or the SD validity index. Table 3 compares some

common relative indices; note that most are based on the

separation and compactness of clusters. Relative indices are used

to compare the relative performance of several clustering schemes

rather than to verify the validity of a clustering result explicitly, as

external indices do. Thus, it is difficult to infer whether a clustering

scheme is reasonable or valid directly without comparison with

other clustering schemes, such as sorting on the index values of

different clustering schemes, which will also be explained in the

Experimental Section. In addition, clustering algorithms assign

objects to clusters based on distances between the objects, while

relative indices are almost always defined based on distances. If the

relative indices are still based on distances, and the definition of

distance is itself imprecise, we can obtain only a relative evaluation

result.

Although the evaluation methods mentioned above are

generally used to assess the validity of clustering results, it is

evident that these methods all have limitations. We feel that these

limitations will remain difficult to resolve if the verification method

continues to be based on clustering results and evaluation index

values. While recent studies have proposed new evaluation

methods, some of these methods are still based on clustering

results [15,16] or distances between objects [17,18]; these methods

may continue to encounter the above limitations. Other new

methods focus on specific applications, such as clustering related to

prediction [19], wireless sensor networks [20], and natural

language processing [21].

Therefore, this study proposes a formal algorithm to verify the

validity of clustering results and to avoid the above limitations. We

focus on clustering processes, trying to verify the validity of the

clustering results by analyzing whether a clustering process satisfies

corresponding properties. First, clustering is a type of unsupervised

machine learning method. Regardless of the type of clustering

algorithm, most explore data concentration during iterative

processes based on the distances between objects. Therefore, we

can extract a model to describe the iterative processes that reflect

the essence of clustering processes even with many different

clustering algorithms. Furthermore, we use evaluation indices

reflecting cluster separation and compactness to measure the

effectiveness of every clustering iteration. As mentioned in Section

2.3, the processes yielding valid clustering results will satisfy such

Table 1. Comparison of External Indices.

Evaluation Index Implication Formula Notes

Purity Reflects the purity of objects in clusters Pk
i~1

1

N
max

j
(n

j
i)

n
j
i is the number of objects in the ith cluster belonging to

the jth category

Entropy Reflects the confounding, or impurity,
of objects in clusters

Pk
i~1

ni

N
({

1

log l

Xl

j~1

n
j
i

ni

log
n

j
i

ni

)
See Purity

Rand Measures the similarity between clustering
result C and the a priori partition P

(azd)=(azbzczd)
a, b, c and d indicate the number of object pairs in SS, SD,
DS and DD, respectively,and a+b+c+d = N(N21)/2

Jaccard Measures the similarity between C and P a=(azbzc) See Rand

FM Measures the similarity between C and P
ffi

a

azb
: a

azc

r
See Rand

D indicates the dataset containing N data objects, and its a priori partition with l categories is P~fP1,P2, . . . ,Plg. The result obtained from clustering is
C~fC1,C2, . . . ,Ckg, where k is the number of clusters. SS indicates that both objects belong to the same cluster of C and to the same group of partitions P; SD
indicates points that belong to the same cluster of C and to different groups of P; DS indicates points that belong to different clusters of C and to the same group of P;
and DD indicates points that belong to different clusters of C and to different groups of P.
doi:10.1371/journal.pone.0090109.t001

Table 2. Comparison of Internal Indices.

Evaluation
Index Implication Formula Notes

CPCC Measures the similarity between
matrix Pc and P, where Pc(i,j) is the
similarity of xi and xj when they
are assigned to the same cluster,
and P is an adjacency matrix

1=M
PN{1

i~1

PN
j~iz1

(dij cij {mPmC)ffi
1=M

PN{1

i~1

PN
j~iz1

(d2
ij
{m2

P
)

� �
1=M

PN{1

i~1

PN
j~iz1

(c2
ij
{m2

C
)

� �s , where N is the number of objects, and

M~N:(N{1)=2, mp~(1=M)
PN{1

i~1

PN
j~iz1 P(i,j),mC~(1=M)

PN{1
i~1

PN
j~iz1 PC (i,j),

dij ,cij represent the elements in P and Pc, respectively.

{1ƒCPCCƒ1.
This is appropriate
for hierarchical
clustering.

Hubert’s C Measures the similarity between a
clustering result C and the proximity
matrix P

(1=M)
PN{1

i~1

PN
j~iz1 P(i,j)C(i,j), where C(i,j)~

1, if c(xi)=c(xj)

0, otherwise

�
The larger the
value, the higher
the similarity
between P and C.

Normalized C Measures the similarity between a
clustering result C and the proximity
matrix P

(1=M)
PN{1

i~1

PN
j~iz1 (P(i,j){mP)(C(i,j){mC)

sPsC

The larger the
value, the higher
the similarity
between P and C.

doi:10.1371/journal.pone.0090109.t002

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e90109

properties: evaluation indices gradually increase (or decrease) with

each iteration in clustering processes. If a clustering process does

not satisfy predefined properties, we can conclude that its result

will fail to discover the distribution pattern of data objects, i.e., its

result will not satisfy a validity test.

As an automatic formal verification method, model checking

can describe system behaviors as a state transition system T and

the properties Q systems should obey by using LTL (Linear

Temporal Logic) [22] or CTL (Computation Tree Logic) [23]. We

can then recast the problem of verifying whether a system has

specific properties as a mathematics problem to be solved by

mechanical steps, i.e., verifying whether T satisfies Q. Based on the

correspondence of clustering to model checking, we can recast the

problem of judging the validity of a clustering result as verifying

whether the model describing a clustering process satisfies specific

properties. Therefore, we propose a general formal method of

verifying the validity of clustering results based on model checking.

The method can determine whether a clustering result is

reasonable and valid. When the result is invalid, the method can

also use counterexamples to determine which iterations cause the

invalidity when applying a clustering algorithm to a dataset. The

method can even identify the objects that affect the validity.

First, we define the abstraction method of modeling a clustering

process, explain its operational semantics and extract criteria for

judging the validity of clustering results as CTL formulas, i.e.,

properties satisfied by a valid clustering result. We then propose a

formal method to verify whether a clustering process satisfies the

specific properties based on model checking. Furthermore, if the

process does not satisfy the validity test, we will use the previous

verification results to find the objects that may generate the invalid

result.

The remainder of this paper is organized as follows. We first

discuss the abstract method of modeling clustering processes and

representing the properties to be verified. We then propose the

formal algorithm for verifying the validity of clustering results

based on model checking and present the experimental results.

Finally we conclude the study.

Methods

Model checking
Hardware and software systems are all designed and imple-

mented by humans, for whom it is impossible not to make

mistakes. These mistakes imparted to systems always disturb

humans, even after a complete testing. Therefore, even as people

are enjoying the efficiency and convenience of information

technology, they are also taking risks that the hardware or

software systems will fail. How to ensure the correctness and

dependability of the hardware and software systems has become a

serious problem. To verify the correctness and dependability of a

system, during the 1980s, Clarke and Quielle proposed model

checking techniques based on temporal logic [24]. Model checking

is an automatic, model-based method of verifying properties; its

basic idea is shown in Figure 1. The transition system T indicates

the system behaviors, and an LTL or CTL formula Q describes the

system specification. Thus, the problem of judging whether a

system has the expected specification can be recast as verifying

whether the transition system T satisfies formula Q; formally,

T|= Q?. This problem is decidable when the transition system is a

finite state transition system, i.e., the model checking algorithm

will either terminate with the answer ‘‘true’’, indicating that the

model satisfies the specification, or give a counterexample

execution that shows why the formula is not satisfied [25].

The model checking process has three phases: a modeling

phase, a checking phase and an analysis phase.

(1) Modeling phase. We should describe the two necessary

inputs of model checking, i.e., the system model and its properties,

precisely and unambiguously. A finite state automaton is always

used to model systems. The automaton consists of a set of states

and a set of transitions. States are used to compare the current

variable value with the prior value, while the transition set

Table 3. Comparison of Relative Indices.

Evaluation
Index Implication Formula Notes

Dunn Measures the compactness
of clusters and separation
between clusters

min
i~1,:::,nc

min
j~iz1,:::,nc

d(ci ,cj)

max
k~1,:::,nc

diam(ck)

0
@

1
A

8<
:

9=
;

The larger the
value, the better
the clustering
effect

DB Measures the compactness
of clusters and separation
between clusters

DB~
1

nc

Xnc

i~1

Ri , (Ri~ max
i~1,...,nc ,i=j

Rij ,i~1, . . . ,nc ; Rij~(sizsj)
�

dij)
The smaller the
value, the better
the clustering
effect

RMSSDT Measures the differences
between clusters

P
i~1,...,nc

j~1,...,d

Pnij

k~1

(xk{�xxk)2

P
i~1,...,nc

j~1,...,d

(nij{1)

The smaller the
value, the better
the clustering
effect

SD Measures the compactness
of clusters and separation
between clusters

SD(nc)~a:scatt(nc)zdis(nc), scatt(nc)~
1

nc

Xnc

i~1

s(vi)k k= s(X)k k, dis(nc)~
dmax

dmin

Xnc

k~1

Xnc

z~1

vk{vzk k
 !{1 The larger the

value, the better
the clustering
effect

S_Dbw Measures the intra-cluster
variance and inter-cluster
density

S Dbw(nc)~scat(nc)zdbw(nc), dbw(nc)~
1

nc(nc{1)

Xnc

i~1

Xnc

j~1
i=j

d(uij)

maxfd(vi),d(vj)g
The smaller the
value, the better
the clustering
effect

doi:10.1371/journal.pone.0090109.t003

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90109

describes how the system moves from one state to another. Modal

logic is always used to formalize system properties. Because

temporal logic is an extension of propositional logic, it incorpo-

rates operators describing the temporal characteristics of system

behaviors and can describe system properties such as correctness

(whether a system completes prospective functions), accessibility

(whether a system terminates at the deadlock state), security

(unexpected behaviors will never happen), activity (expected

behaviors will eventually happen) and fairness (whether an event

will continue to recur in certain conditions).

(2) Checking phase. Checking involves first initializing every

variable, setting and instruction, then verifying the specific

properties with model checking procedures. The verification

process explores all of the states in the system model to detect

states that violate specific properties.

(3) Analysis phase. The two possible results of verification

are that the model satisfies the properties or that it violates them.

There are two reasons for not satisfying properties. One is model

error, in which case we should refine the model and properties and

then repeat the entire process; the other is design error, in which

case the verifying results can be considered as a counterexample

and used to revise the design of the system.

Because of its automation and the ability to localize the causes of

errors, model checking has been used to verify the design of some

hardware and software, such as to verify the IEEE Futurebus+
cache coherence protocol and to find a number of previously

undetected errors in the design of the protocol [26]; to debug a

hardware laboratory failure in the PowerPC 620 microprocessor

during the booting of an operating system and to find a BIU

deadlock causing this failure [27]; and to check the properties of

the AT-&-T High-level Data Link Controller design and to find a

bug that would have reduced throughput or caused lost

transmissions [28], among other problems.

As mentioned in the Introduction, we will use model checking to

verify the clustering results based on the correspondence of

clustering to model checking. Therefore, we will follow the three

phases of model checking and begin by formally describing the

clustering processes and the properties satisfied by valid clustering

results in the subsequent sections.

Abstract modeling of clustering processes
Crisp clustering algorithms can be divided into categories such

as partitioning methods, hierarchical methods, density-based

methods, model-based methods, and SVM-based methods etc.

As noted in the Introduction, clustering is an unsupervised

machine learning method. Therefore, to ensure clustering quality,

most of these algorithms need multiple iterations, although the

clustering processes of these algorithm categories different from

one another. The differences are the ways in which they group

data. For example, K-Means adjusts the clusters of data objects in

each iteration, DBSCAN grows clusters by gathering density-

reachable objects directly from a core object in each iteration, a

hierarchical clustering algorithm may merge or divide clusters in

each iteration, while a neural network-based clustering method

[29] adjusts the model vector to match objects in each iteration.

We can then abstract and model such algorithms of different types

based on the iterations of their clustering processes. In addition,

employing different algorithms on the same dataset and the same

algorithm on different datasets may result in different levels of

clustering effectiveness. Therefore, we will formally describe the

clustering process of any clustering algorithm applied to a dataset.

In model checking, transition systems are often used as models

to describe the behavior of various systems, such as sequential

hardware circuits, serial software programs, and parallel systems

[30]. They are directed graphs whose nodes represent states and

whose edges denote the state transitions. A state describes

information of the system behaviors at a given moment. For

example, the state of a program indicates the current values of its

variables. The transitions between states are caused by actions and

indicate the changes of variable values. For a data-dependent

system, the state transitions may be caused by the action together

with the characteristics of the system variables. For instance, the

clusters will continue to adjust if the clustering is not convergent,

and the clusters will not change once the clustering is convergent.

To make the transitions deterministic without conditions in

transition systems, we will first formalize them by means of a

program graph over a set of variables, which is also a directed

graph whose edges are labeled with conditions on these variables

and actions [30]. Then, a transition system can be obtained by

unfolding the program graph and can be used for the model in

model checking.

Therefore, we build the program graph of a clustering process

first to describe the changes of variable values with a clustering

process, as described in Definition 1:

Definition 1. The program graph (PG) for a clustering process is

a six-tuple (Loc, Act, Effect, R, Loc0, g0), where:

(1) Loc is a set of locations in which every location l[Loc
corresponds to a variable evaluation set g(Var)[Eval(Var),
and Eval(Var) denotes the set of evaluations assigning values

to every variable in Var.

(2) Act is a set of actions in clustering.

(3) Effect : Act|Eval(Var)?Eval(Var) is the effect function

and indicates how the evaluation of variables is changed after

performing an action.

(4) ?(Loc|Cond(Var)|Act|Loc is the set of conditional

transition relations. In a conditional transition (l,g,a,l0)[?, g

is the guard of the conditional transition, e.g., the Boolean

variable indicating whether it is true that the clustering is

convergent. Then, the behavior of location l[Loc depends on

the current variable value g. That is, when g satisfies condition

g, the execution of action a will change the evaluation of

variables according to Effect(a, g); subsequently, the system

changes to location l9.

(5) Loc0(Loc is a set of initial locations.

(6) g0[Cond(Var) is the initial condition.

Based on the essentials of the clustering algorithms mentioned

above, we note that there are two core operations in clustering

processes: comparing distances between objects (compare) and

assigning objects into clusters (allocate). If these are the actions in a

program graph, a clustering process can be regarded as multiple

iterations consisting of these two actions and the evaluations of

variables. Obviously, the program graph is not appropriate for
Figure 1. Workflow of model checking.
doi:10.1371/journal.pone.0090109.g001

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90109

clustering algorithms that generate clusters without iterations. For

example, an SVM-based clustering method [31] performs

clustering by using constrained nonlinear programming methods,

which can solve problems by KKT conditions and do not need

multiple iterations; consequently, we cannot obtain its program

graph based on the above idea. The program graph is also not

appropriate for the algorithms with probability due to the

restriction of the domains of the variables and the effect of actions

in the program graph. The probability will cause states to be

infinite, which will affect the decidability of model checking. For

example, although the EM (Expectation Maximization) method

needs multiple iterations to ensure the clustering accuracy, we also

cannot obtain its program graph because of its probabilistic

nature.

Then, we will use the executive process of K-Means as an

example to illustrate its corresponding program graph. Figure 2

describes its graphical representation.

(1) Variable set Var~frs½�,convg, in which array rs registers

whether the objects in each cluster have changed. The

domain of rs½i� (1ƒiƒk) is f0,1g, where k is the number of

clusters; 0 indicates the objects in the ith cluster have not

changed, while 1 indicates they have changed. conv indicates

whether the clustering converges and, hence, terminates. In

K-Means, for example, conv is the difference of the criterion

function between any two iterations, and its domain is {0,1},

where 0 is not convergent, and 1 is convergent.

(2) Act = { compare, allocate }.

(3) g is the effect on variable evaluation induced by the action in

Act, which is defined based on the semantics of clustering

processes:

Effect(compare, g) = g, indicates that none of the variable values

will change after the ‘‘compare’’ action.

Effect(allocate,g(conv = 0)) = g(rs[i] = 1), where 1ƒiƒk. In K-

Means, if the clustering is not convergent, the objects in a

cluster will change after the ‘‘allocate’’ operation.

Effect(allocate,g(conv = 1)) = g(rs[i] = 0), where 1ƒiƒk. Here,

once the clustering is convergent, the clusters will not change.

(4) The initial condition of clustering is that none of the objects

have been disposed of, and there is no object in any cluster,

i.e., g0 = (rs[i] = 0; conv = 0), where 1ƒiƒk.

(5) The conditional transitions indicate the transitions of locations

that meet the conditions. In K-Means, they include the

following transitions, the action ‘allocate’ will cause the location

meeting the initial condition to transfer a new location; if conv

is 0, the ‘compare’ action will not cause the change of a location

because the clusters do not change and the ‘allocate’ action will

make the change of locations; and if conv is 1, the locations will

not change after either the ‘compare’ or ‘allocate’ action.

Furthermore, different categories of clustering processes have

different program graphs due to their different ways of grouping

clusters, and the differences are mainly reflected in the variables

and their evaluations of variables implicated by an action along

with the conditional transition relations. As a comparison, the

program graph of DBSCAN is shown in Figure 3. This program

graph is different from K-Means, whose objects are all disposed of

after allocating in each iteration. In Figure 3, a new core object is

disposed of to find its density-reachable objects in each iteration.

Therefore, the variables have been Var~frs½�,conv,dealg, where

conv indicates whether all of the density-reachable objects of one

core object has been found, deal indicates whether the objects are

all allocated, and their domains are {0,1} with the same meaning

as the above. If deal is 0, ‘allocate’ will make the change of locations;

if conv is 1 and deal is 0, it will start a new iteration to dispose of a

new core object; once all objects have been allocated, i.e. conv is 1

and deal is 1, the locations will not change after either the ‘compare’

or ‘allocate’ action.

The program graph describes the changes of variable values

that are impacted by action and the conditions over variables in a

clustering process. Subsequently, we will interpret the semantics of

a program graph using a transition system. The transition system

represents the behaviors of a clustering as a state transition

diagram, and can be obtained by unfolding the program graph

then defined as the abstract model of a clustering process, i.e., as

the verification system model of model checking.

Definition 2. The transition system of a program graph

describing a clustering process is a six-tuple with a Kripke frame,

TS(C) = (S, Act, d, I, AP, L), where:

(1) S~Loc|Eval(Var) is the finite set of system states. Every

state consists of a location l of the program graph and the

evaluation g of all variables. The initial state is the location

satisfying initial condition g0.

(2) Act is the finite set of actions that are the operations in

clustering.

(3) d(S|Act|S is the set of state transition relations.

(4) I~f(l,g) l[Loc0,gj D~g0g is the set of initial states.

(5) AP = Loc<Cond (Var) is the set of atomic propositions. The

atomic propositions formally express the characteristics of a

clustering.

(6) L : S?2AP is the label function, i.e., L(s)[2AP, and it maps a

set of atomic propositions to any state s[S. For a given logical

formula Q, if the atomic propositions in L(s) hold the formula

Q, it can be said that state s satisfies Q, formally,

sD~Q iff L(s)D~Q.

Each state in a transition system corresponds to a set of

evaluations of variables. The variables also include some Boolean

variables as atomic propositions, such as maxDunn, which will

constitute the property formulas to be satisfied by a valid clustering

process.

We then take K-Means applied to the bankdata dataset as an

example. Its transition system is presented in Figure 4. We ignore

the atomic propositions and set the number of clusters as two, then

a state consists of three variables and their evaluations, such as

‘r01,r10,c0’ in state S1 indicates that the objects in cluster 0 have

changed while those in cluster 1 have not changed, and the

Figure 2. Program graph for the execution of K-Means.
doi:10.1371/journal.pone.0090109.g002

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e90109

clustering is not convergent. The transition system depicts the

changes of variable evaluation with the execution of an action, and

the state transitions reflect the idea of clustering algorithms. The

actual clustering process is one path in this transition system. In

addition, the atomic propositions can be used to formulate the

relevant clustering properties. Therefore, a transition system can

be used as the verification system model of model checking.

If we want to verify the clustering validity with model checking

methods, we should also formally describe the properties that valid

clustering processes should satisfy. These property formulas consist

of atomic propositions in Definition 2. In the next section, we will

discuss the method of describing the properties with CTL formulas

and their semantics in a transition system model as the basis of

subsequent verification algorithms.

Property formulas of validity
Model checking requires that the formal description of the

system model and the properties be verified. The formal modeling

methods of clustering processes are described above. This section

will discuss the methods of representing property formulas satisfied

by a valid clustering process.

As the expansion of classical logic, LTL and CTL both include

temporal operators and both can be used to represent the

properties to be verified. The former quantifies universally over

paths in the model, while the latter includes the quantifiers A and

E to respectively express the ‘‘all paths’’ and ‘‘existing one path’’ as

well as the temporal operators in LTL. For example, CTL can

express the semantic describing that there is a reachable state

satisfying the property p or that whenever a state satisfying

property p is reached the system can satisfy the property q

continuously forever. A process of applying a clustering algorithm

over specific parameters on a dataset is a path in a state transition

diagram. Accordingly, we will describe the property specifications

that a valid clustering process should satisfy based on CTL

formulas along with a consideration of the balance of its expressive

power and moderate decision procedure complexity [30].

The CTL formulas are presented in Appendix S1, whose

detailed explanations can be found in [23]. In addition, there is

redundancy between the connectives in CTL formulas in

Appendix S1, and we can reduce the number of categories of

verification algorithms by analyzing the equivalence relations with

each other. As in [32], an adequate set of CTL is a subset of

temporal connectives in CTL that is sufficient to express the

equivalent formulas in CTL. An adequate set of temporal

connectives in CTL contains at least one of {AX, EX} and one

of {EG, AF, AU}, as well as EU. A common adequate set of CTL

is {AF, EU, EX}. Then, the CTL formulas can be described as

Appendix S2. The CTL model checking algorithms can be

designed based on the connectives in an adequate set.

After the clustering processes, the clusters should be widely

spaced, i.e., the separation between clusters should be maximized,

while the members of each cluster should be as close to each other

as possible, i.e., the compactness in clusters should be minimized.

Therefore, a valid clustering result indicates that the result fits the

inherent characteristics of the data better based on evaluation

indices, i.e., for an external index, its value should be beyond the

threshold; and for a relative index, its corresponding separation

should be larger and compactness should be smaller as much as

possible. A clustering process yielding a valid result can be seen as

valid. In the other words, a valid clustering process can produce a

valid clustering result. We will exploit these ideas to depict the

properties satisfied by a clustering process that produces valid

clustering results. Therefore, we develop the relationship between

evaluation indices and valid clustering processes as described in

Property 1 first.

Property 1. The values of evaluation indices will gradually

increase (or decrease) with every iteration in a valid clustering

process.

Consider an evaluation index denoting the comparison of

separation between clusters and compactness in clusters. We

suppose that the larger its value is, the better the clustering effect

is. If the value decreases with an iteration of a clustering process, it

is obvious that the algorithm to be verified fails to discover the

distribution pattern of the dataset effectively. That is, the data do

not tend to generate valid clusters with that clustering process. The

decreasing index value indicates that the objects within a cluster do

not have high similarity to one another and are not very dissimilar

to objects in other clusters. Similarly, the indices in which a smaller

value indicates a better clustering effect also satisfy this property.

We can now write Definition 3 to define the formula set

described by CTL based on Property 1, whose formulas indicate

the properties satisfied by valid clustering processes.

Definition 3. If indices Dunn~ min
i~1,...,nc

min
j~iz1,...,nc

d(ci ,cj)

max
k~1,...,nc

diam(ck)

� �� 	
and diam~

P
i~1,...,k

P
op ,oq[C d(op,oq)

.
k are used to define valid

properties, the CTL formula set of properties that valid clustering

processes should satisfy is as follows:

(1) EF [converge ‘ handledRmaxDunn ‘ minDiam],

(2) E[(DunnUp U maxDunn)]‘ E[(diamDown U minDiam)],

where converge is the atomic formula to judge whether the clustering

converges, the atomic formula handled judges whether all objects

Figure 3. Program graph for the execution of DBSCAN.
doi:10.1371/journal.pone.0090109.g003

Figure 4. State transition diagram for the execution of K-Means
on bankdata dataset.
doi:10.1371/journal.pone.0090109.g004

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90109

are disposed of by the algorithm, maxDunn is used to judge whether

the dunn index reaches a maximum value, DunnUp is the atomic

formula to judge whether the dunn index value increases, diamDown

is used to judge whether the diam index value decreases, and the

atomic formula minDiam judges whether the diam index reaches a

minimum value.

We choose two indices, ‘‘Dunn’’ and ‘‘diam’’, to define the

property formulas in Definition 3. First, based on Property 1, these

formulas include both the index increasing with the clustering

process and the index decreasing with the clustering process to well

reflect the relationship between evaluation indices and valid

clustering processes. Secondly, we should choose indices based on

lower computational complexity to facilitate the formal verification

rather than on partition information. Next, because relative

indices can be used to compare different clustering results, they

can also be used to compare different iterations in a clustering

process. Therefore, the common relative indices ‘‘Dunn’’ and

‘‘diam’’ are more appropriate and sufficient to describe the

properties satisfied by a valid clustering process.

We will then analyze these formula semantics in the transition

system model that will be used for verifying whether the model

satisfies the properties described by CTL formulas with model

checking. If the model satisfies the formulas, we can conclude that

the corresponding clustering process is valid and, thus, that its

clustering result is also valid. The transition system model consists

of states and state transition relations that describe a clustering

process. The semantics of the formulas in Definition 3 in the

transition system model are as follows:

(1) M, s|= EF [converge ‘ handledRmaxDunn ‘ minDiam] holds iff.

there exists a trace started from state s in M and in some state

in the future. When converge and handled are true, maxDunn and

minDiam are also true, i.e., when the clustering algorithm

converges and all objects are disposed of, the evaluation index

Dunn reaches a maximum value, and the compactness in

clusters diam reaches a minimum value.

(2) M, s|= E[(DunnUp U maxDunn)]‘ E[(diamDown U minDiam)]

holds iff. there exists a trace from state s in M satisfying that

DunnUp stays true until maxDunn is true and diamDown stays

true until minDiam is true, i.e., the value of index Dunn

increases gradually until it reaches a maximum value, and the

value of diam decreases until it reaches a minimum value.

We then take the same example as Figure 4 to explain these

above formulas. Figure 5 presents the specific path of the

clustering process in its transition system model, ignoring the

‘‘compare’’ operation because the variable values will not change

after this operation. Simultaneously, Figure 5 also indicates atomic

proposition DunnUp and diamDown with their truth-values in every

state. In this figure, DunnUp starts to be false from state S5, so we

can say that the model does not satisfy the property formula (2)

based on its semantic in the transition system. In the next section,

we will discuss the method of verifying properties to evaluate the

validity of the clustering results and localizing the causes of the

unsatisfiability automatically using model checking.

Validity Verification Algorithms with Model Checking
It is expected that a clustering result is valid after the verification

algorithm is run. If the result is not valid, we should investigate the

causes of the invalid results. We divide these causes into two

categories: 1) the allocation makes initial mistakes that go

uncorrected until clustering terminates, and 2) the clusters of

objects change with the clustering process. We will discuss

methods of detecting the latter cause. This section discusses the

formal method of verifying the clustering validity such that it can

not only detect the validity of a clustering result but can also find

and localize the objects causing the invalidity if the clustering

process does not satisfy the properties to be verified.

As discussed above, for a valid clustering result, the transition

system model describing the behaviors of its clustering process

satisfies the properties in the CTL formula set lf defined above.

We then propose the formal verification method as follows. In a

model describing a clustering process, using the idea of [33], we

check whether there are traces in which formulas describing the

properties to be verified are false, i.e., we check by trying to find a

counterexample. We can conclude that the model satisfies these

properties if there are no such traces, i.e., the corresponding

Figure 5. A simplified transition system of Figure S4 with
atomic propositions.
doi:10.1371/journal.pone.0090109.g005

Figure 6. The procedure of the formal verifying method.
doi:10.1371/journal.pone.0090109.g006

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e90109

clustering result is valid. If there exist traces T violating the verified

properties, the clustering result is invalid. We can further localize

the real causes of the violation of the properties by checking the

traces C in which the verified properties are true. The causes of the

violation of properties can be found by computing T\C, i.e., the

causes lie along edges that belong to the error traces T but do not

belong to any correct traces C.

Figure 6 shows the procedure of our formal verifying method. If

the model does not satisfy the properties to be verified, the cause of

the invalidity can be obtained by subtracting the satisfied traces C

from the initial detected traces T, as the invalidity may stem from

only the iterations corresponding to violated vertices. The above

processes are described by Algorithms 1 and 2. We can then use

Algorithm 3 to obtain the objects that may influence invalid results

from iterations violating properties. Therefore, the formal

verifying method can analyze the validity of clustering results

and can even localize the causes of invalidity.

The process of verifying clustering validity in the overall

structure of our verifying method as shown in Figure 6 is described

in Algorithm 1, and the algorithm for obtaining satisfied traces is

presented in Algorithm 2. Method modelCheck(G, p) is used to check

whether a model G satisfies the property p to be verified, and

modelCheck() returns the traces satisfying the property p. We will

perform modelCheck() with the model checking idea in [34], which is

oriented toward CTL formulas. As mentioned above, an adequate

set of temporal connectives in CTL is {AF, EU, EX}, and the

corresponding CTL model checking labeling algorithm is based on

connectives in this set.

Algorithm 1: validate(G, lf)

Input: G: state transition diagram of transition system;

lf: set of property formulas satisfied by system model;

Output: real_causes

1) real_causes =W;

2) for i: 1 to lf :length do

3) check : = modelcheck(G , lf.get(i));

4) if(there is no trace) then

5) continue;

6) else

7) for j: 1 to check:length do

8) T : = check.get(j);

9) C : = T.getSatisfyTrace(T, lf.get(i), T.V);

10) cause : = T – C;

11) if(cause =W) then

12) continue;

13) real_causes + = cause;

return real_causes;

Based on Algorithm 1, we can conclude that the clustering result

is valid only when the model satisfies every formula in the set

describing the properties, i.e., the real_cause that is returned from

the function is null. Otherwise, traces T can be found by checking

formulas describing that the verified properties are false in the

model. However, not all of the vertexes in the traces violate the

properties, and only the iterations corresponding to violating

vertexes (states) may result in the invalidity. Algorithm 2 can

localize traces C satisfying the verified properties. Then, the real

reason for the violation will be detected by subtracting the traces C

from the initial trace T.

Algorithm 2. getSatisfyTrace (G, lfe, V)

Input: G: state transition diagram of transition system;

lfe: property formula should be satisfied by system model;

V: set of vertexes in state transition diagram;

Output: transition traces

1) vtList : = {v9 | v9[V ‘ v9. lfe = true};

2) visited : =W;

3) transition : =W;

4) while (vtList?W) then

5) vtList : = vtList – vj;

6) if(vj6[visited) then

7) visited : = visited <{vj};

8) for each (vi,vj)[G.E do

9) vtList : = vtList <{vi};

10) transition : = transition <{(vi, vj)};

return transition;

Algorithm 2 examines the vertexes vtList in vertex set V

satisfying the properties in the state space. While the variable vtList

is not empty, an element vj is removed. If it has not been visited

before, each vertex vi such that (vi,vj)[G.E is added to the vtList.

The transition (vi,vj) is a correct transition and will be added to the

set transition, which is returned from the function.

The complexity of Algorithm 1 largely depends on the

complexity of the CTL model checking, whose complexity is

linear in both the size of the transition system M and the size of

property formulas W [35], i.e. O (|M|?|W|), in which |M| is

depended on the transitions and states in the transition system.

Table 4. Experiment datasets.

No Dataset Number of objects Number of attributes(Time points)

1 Iris 150 5

2 bankdata 600 11

3 Abalone 4177 8

4 Pima Indians Diabetes 768 8

5 Letter 20000 16

6 Cardiotocography 2126 23

7 Bozdech-3D7 strain data 4596 53

8 Bozdech-Hb3 strain data 4313 48

‘‘Number of objects’’ indicates how many objects are in the dataset. ‘‘Number of attributes’’ indicates how many attributes constitute an object. The first six datasets are
from machine learning datasets [40], while the rest are normalized microarray expression data from [41].
doi:10.1371/journal.pone.0090109.t004

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e90109

The transition system represents the behaviors of a clustering and

the clustering process will definitely terminate, thus, the transitions

in M will not be excessive. In addition, the states in our transition

system correspond to a set of evaluations of variables, so the

number of the states is based on the number of variables and their

domains. As discussed above, the variable domains are all {0, 1}.

Thus, the number of the states will not exceed 2t?2k, where t and k

is number of the atomic propositions and the number of the

clusters respectively. Usually t is very small, so 2t can be seen as a

constant. When k is small, the exponential factor of the number

will be tolerable. Therefore, the formal method of verifying the

validity of clustering results based on model checking will be

practical. Once the number of clusters is large enough to make the

states grow exponentially, there have been some methods to

reduce the states, such as symbolic model checking which can

handle more than 1020 states, and its various refinement have

pushed the state count up to more than 10120 [36], so its

implication could not be evident.

We then take the example in Figure 5 to illustrate the operation

of Algorithms 1 and 2. As mentioned above, a valid clustering

process should satisfy the following properties: EF[converge ‘

handledRmaxDunn ‘ minDiam], E[(DunnUp U maxDunn) ‘ (diam-

Down U minDiam)]. According to Algorithm 1, there are vertices

whose corresponding formulas are false in the model, and we can

obtain the initial trace T = (S1, S2, S3, S4, S5, S6, S7, S8). We then

obtain a sub-trace C that satisfies properties based on Algorithm 2,

i.e., C = (S1, S2, S3, S4). Therefore, an error trace not satisfying

these properties can be obtained by subtracting trace C from the

initial trace T: (S5, S6, S7, S8). Obviously, the index Dunn value

does not increase gradually until it reaches a maximum value, and

it starts to decrease from vertex S5. Therefore, it fails to discover

the distribution pattern of this dataset effectively starting from this

iteration. We conclude that this clustering process is invalid;

accordingly, the corresponding clustering result is not valid.

Algorithms 1 and 2 check whether the model describing a

clustering process satisfies the verified properties to analyze the

validity of clustering. Furthermore, they can detect the iterations

that may cause the invalidity by analyzing counterexamples.

However, if we want to detect which specific objects in some

iteration caused this invalidity, we should further analyze the

iterations detected by the above algorithms. As mentioned in

section 2, the steps in each iteration consist of comparing distances

between objects and assigning objects to proper clusters. In

addition, clustering is an unsupervised machine learning method,

so we can analyze the correctness of the distance metric only by

comparing any two adjacent assignment iterations. Furthermore,

there are objects whose clusters have changed with the iterations of

the clustering process, and the change is not favorable to

discovering the distribution pattern of the dataset. Thus, the trend

of the index value between iterations is abnormal.

Figure 7. Comparison of Clustering Results for evaluation indices. K-Means results are shown in Line 1, DBSCAN results are shown in Line 2,
Line 3 indicates the results of BIRCH and Line 4 indicates the results of SOM. The dataset labels are the same as Table 1.
doi:10.1371/journal.pone.0090109.g007

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90109

Therefore, Algorithm 3 compares the iterations violating the

predefined properties with their next iteration and finally returns

the objects in some iteration most likely resulting in invalid

clustering. First, the algorithm obtains objects whose clusters

change compared with the assignment of the previous iteration as

objectSet. If the trend of index values is normal in the next iteration

(i.e., the properties to be verified in the next vertex are true),

objects remaining in their clusters in the next iteration can be

removed from the objectSet because the cluster changes of these

objects are beneficial to discovering the distribution pattern of the

data. Once the trend of index values is abnormal in the next

iteration (i.e., the properties to be verified in the next vertex are

false) and the next iteration is not the last one, objects obtained by

the recursive invocation of Algorithm 3 are added to the objectSet; if

the next iteration is the last one, new objects whose clusters will be

changed when checked by the next iteration are added to the

objectSet.

Algorithm 3. checkIteration(successor, descend)

Input: successor: set of subsequent iterations;

descend: the trend of index value is normal or not;

Output: objectSet: set of objects leading to the invalidity;

1) objectSet : = getChangeObj();

2) if (descend = = true) then // trend of index values is normal

in subsequent iteration;

3) nextSuccessor : = getNextIteration();

4) while (objectSet is not null) do

5) if(object of objectSet is not changed in nextSuccessor) then

6) objectSet : = objectSet – object;

7) else then // trend of index values is abnormal in subsequent

iteration;

8) nextSuccessor : = getNextIteration();

9) if(nextSuccessor ,.W) then // next iteration is not the last

iteration

10) trend : = getNextTrend();

11) nextobjSet: = checkIteration(nextSuccessor, trend);

12) objectSet : = objectSet+nextObjSet;

13) else then // next iteration is the last iteration

14) if(object in nextSuccessor not in objectSet) then

15) objectSet : = objectSet+object;

return objectSet;

Table 5. Evaluation results of external indices.

Dataset

Algorithms Indices 1 2 3 4 5 6 7 8

K-Means n 3 2 20 2 26 4 20 20

Purity 0.887 0.578 0.693 0.80 0.774 0.865 0.782 0.679

Entropy 0.204 0.979 0.522 0.447 0.461 0.493 0.389 0.572

Rand 0.874 0.567 0.690 0.778 0.739 0.852 0.771 0.648

Jaccard 0.683 0.559 0.588 0.692 0.658 0.834 0.747 0.609

DBSCAN n 3 2 21 2 26 3 20 19

Purity 0.801 0.707 0.593 0.759 0.663 0.786 0.683 0.712

Entropy 0.249 0.402 0.608 0.442 0.544 0.479 0.512 0.469

Rand 0.782 0.685 0.589 0.732 0.631 0.771 0.659 0.697

Jaccard 0.734 0.629 0.544 0.678 0.607 0.768 0.647 0.658

BIRCH n 3 3 10 3 12 3 18 15

Purity 0.836 0.632 0.570 0.586 0.753 0.665 0.708 0.592

Entropy 0.228 0.545 0.865 0.635 0.417 0.534 0.488 0.603

Rand 0.803 0.628 0.544 0.579 0.743 0.637 0.700 0.576

Jaccard 0.751 0.537 0.541 0.512 0.698 0.602 0.653 0.514

SOM n 4 2 20 2 27 4 20 19

Purity 0.874 0.581 0.69 0.785 0.759 0.844 0.78 0.693

Entropy 0.219 0.83 0.542 0.506 0.482 0.461 0.355 0.424

Rand 0.8 0.579 0.667 0.719 0.723 0.815 0.762 0.691

Jaccard 0.705 0.572 0.608 0.714 0.695 0.793 0.729 0.685

n is the number of clusters generated by a clustering algorithm on a dataset. A bold value indicates a valid result evaluated by the corresponding index.
doi:10.1371/journal.pone.0090109.t005

Table 6. Confusion matrix of K-Means clustering results on
dataset 6.

Clusters

Pre-Partition 0 1 2 Total

0 1118 100 76 1294

1 429 70 64 563

2 1 3 16 20

3 27 122 20 169

Total 1655 295 144 2126

doi:10.1371/journal.pone.0090109.t006

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e90109

The getChangeObj() method obtains objects whose clusters have

changed compared with the previous iteration (corresponding to

the vertex), while the getNextIteration() method obtains the assign-

ment of the next iteration. This algorithm compares the

assignment difference of objects between iterations, so its time

complexity is O(r:n), where r is the number of iterations checked

from the current one, and n is the number of objects.

Experiments

To verify the validity and applicability of the our proposed

method, we will choose the following clustering algorithms, K-

Means [37], DBSCAN [38], and BIRCH [39], SOM [29] which

are, respectively, the most common or classic algorithms for

partition clustering, density-based clustering, hierarchical cluster-

ing and neural network-based clustering. In addition, because

internal indices are appropriate only for hierarchical clustering or

a single clustering scheme, we will use several external indices and

relative indices as the contrast methods. We choose seven common

evaluation indices, Purity, Entropy, Rand, Jaccard, Dunn, DB,

and RMSSTD, among which the first four are the most common

external evaluation indices and the other three are commonly used

relative evaluation indices. As the basis of our comparison

experiments, we will conduct the experiments on eight datasets.

The detailed parameters of the datasets are shown in Table 4.

We compare our formal verification algorithm with these seven

evaluation indices on the experimental datasets. First, we present

the evaluation results of external indices, relative indices and our

formal verification algorithm. These results are used to illustrate

that our method can analyze the validity of clustering results more

accurately than external indices and relative indices. We then

Table 7. Evaluation results of relative indices.

Relative Indices

Dataset Dunn DB RMSSTD

1 K-Means.SOM.BIRCH.DBSCAN K-Means.SOM.BIRCH.DBSCAN SOM.K-Means.BIRCH.DBSCAN

2 BIRCH.DBSCAN.K-Means.SOM BIRCH .DBSCAN.K-Means.SOM BIRCH.DBSCAN.K-Means.SOM

3 BIRCH.DBSCAN.K-Means.SOM BIRCH.K-Means.DBSCAN.SOM BIRCH.DBSCAN.K-Means.SOM

4 K-Means.SOM.BIRCH.DBSCAN K-Means.SOM.BIRCH.DBSCAN K-Means..SOM.BIRCH.DBSCAN

5 BIRCH.K-Means.SOM.DBSCAN BIRCH.SOM.K-Means.DBSCAN K-Means.SOM.BIRCH.DBSCAN

6 K-Means.SOM.DBSCAN.BIRCH SOM.K-Means.DBSCAN.BIRCH K-Means.SOM.DBSCAN.BIRCH

7 K-Means.SOM.BIRCH.DBSCAN K-Means.SOM.BIRCH.DBSCAN K-Means.SOM.BIRCH.DBSCAN

8 DBSCAN.SOM.K-Means.BIRCH DBSCAN.SOM.K-Means.BIRCH DBSCAN.SOM.K-Means.BIRCH

doi:10.1371/journal.pone.0090109.t007

Figure 8. Changes of index values with iterations in executions of clustering algorithms. Every sub graph indicates one dataset. The
dataset labels are also the same as Table 1.
doi:10.1371/journal.pone.0090109.g008

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90109

explain that the formal verification algorithm can also check

objects for invalidity if the clustering result is invalid.

Figure 7 presents the clustering results of eight datasets

evaluated by seven common evaluation indices. For external

indices, they always measure the fit between clustering and

partition information. If a threshold for this fit is specified, we can

determine whether a clustering result is valid by comparing its

corresponding index value with the threshold, and the threshold

value may affect the evaluation result. To preserve a more

accurate clustering result, here we define the thresholds of Purity,

Rand, Jaccard and Entropy as 0.8, 0.7, 0.7 and 0.25, respectively.

Thus, Purity values larger than 0.8, Rand values larger than 0.7,

Jaccard values larger than 0.7, or Entropy values smaller than 0.25

may indicate a more valid clustering result. The evaluation results

of external indices are presented in Table 5. For example, the

Purity and Entropy of K-Means clustering results from dataset 1

are larger than 0.8 and smaller than 0.25, respectively, and its

Rand and Jaccard are both larger than 0.7, so we conclude that

this result is valid. For the clustering result of K-Means on dataset

6, its Purity is larger than 0.8, its Rand and Jaccard are both larger

than 0.7, so the clustering result can be seen as valid based on

these indices. However, its Entropy is larger than 0.25, so the

result will be regarded as invalid. With its confusion matrix of the

generated clusters and pre-partition information in Table 6, we

can find that there are impurities in the clusters. For example,

cluster 0 is the combination of objects belonging to classes 0, 1 and

2. Therefore, we may obtain a relatively inaccurate evaluation

result of K-Means on dataset 6 based only on the Purity, Rand or

Jaccard index. Moreover, according to the definition of external

indices, if there is no pre-partition information in the dataset, the

validity of clustering results cannot be obtained based on external

indices, which is the limitation of external indices.

Relative indices can be used to generate a clustering validity

sequence of different clustering schemes, including the same

clustering algorithm on different datasets and different clustering

algorithms on the same dataset, by comparing relative index

values. The comparison results are shown in Table 7, which

presents the clustering validity sequence of different clustering

algorithms on the same dataset for every index value. We will

examine a comparison result in Table 7. For example, the validity

sequence K-Means.SOM.BIRCH.DBSCAN can be obtained

with index Dunn values on dataset 1. Its corresponding index

values in Figure 7 ranks: K-Means.SOM.BIRCH.DBSCAN,

and the larger the index Dunn, the better the clustering validity. In

addition, although the value Dunn of K-Means on dataset 6 is

approaching that of K-Means on dataset 1 in Figure 7, its result is

still concluded to be invalid based on the Entropy value. It is

obvious that we can obtain a relative evaluation result through

comparing relative index values. The result can be used to analyze

which algorithm has a more reasonable and valid result. However,

it is difficult to analyze the validity of a clustering result directly

based only on its corresponding relative index value because they

are always defined by compactness in clusters or separation

between clusters, which are based on the distances between

objects, and they can hardly analyze the clustering validity by

setting a threshold, as with external indices. Once there is only a

clustering algorithm to be verified, it is also difficult to judge its

validity based only on relative index values.

Our method is different from the above methods based on

clustering results. It focuses on a clustering process and finds

properties that are satisfied by a valid clustering result. It checks

whether the transition system model of a clustering process satisfies

the following property formulas: EF[converge‘handledRmaxDunn ‘

minDiam], E[(DunnUp U maxDunn)‘(diamDown U minDiam)]. If

there are no traces violating these properties, we can say that the

clustering result to be verified is valid. First, the trends of change in

index values with the iterations in execution of these four

clustering algorithms are shown in Figure 8, in which the indices

are those in Definition 3. Based on these trends, we can build the

abstract model and measure the truth values of the property

formulas of our formal verification algorithms. In Table 8, we

present the verification results based on the formal verification

algorithm. Using the same example as the above external

experiment, the verification result of K-Means on dataset 1 is

‘valid’, while the verification result of K-Means on dataset 6 is

‘invalid’. Obviously, in contrast to relative indices, this method can

directly determine the validity of a clustering result; in particular,

Figure 9. Evaluation accuracy comparison of external indices
and our method.
doi:10.1371/journal.pone.0090109.g009

Table 8. Evaluation results of the formal verification
algorithm.

Clustering Algorithms

Dataset K-Means DBSCAN BIRCH SOM

1 valid valid valid valid

2 invalid invalid invalid invalid

3 invalid invalid invalid invalid

4 invalid invalid invalid invalid

5 invalid invalid invalid invalid

6 invalid invalid invalid invalid

7 invalid invalid invalid invalid

8 invalid invalid invalid invalid

doi:10.1371/journal.pone.0090109.t008

Figure 10. Distribution of checked objects.
doi:10.1371/journal.pone.0090109.g010

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e90109

compared with the evaluation results of external indices in Table 5,

the formal algorithm can obtain a more accurate verification

result, and the comparison is shown in Figure 9. The accuracy in

this figure is the proportion of the evaluation results of an external

index in accordance with the actual evaluations, which can be

indicated by Entropy. It is obvious that our formal verification

method can obtain consistent evaluation results with Entropy and

more accurate evaluations than other external indices. The result

reveals the accuracy of our formal verification method without

pre-partition information for the dataset because it focuses on the

clustering processes.

An additional advantage mentioned above is that our method

can detect specific objects that may lead to the invalid result

among the iterations in the traces violating the specific properties

checked by Algorithm 1. To measure the accuracy of detecting

objects, we will use an example. Figure 10 indicates the

distribution of detected objects affecting the clustering validity of

K-Means on dataset 6. As seen, the detected objects account for

56.25% of objects inconsistent with the pre-partition; i.e., we

detect 56.25% of all misclassified objects. The remaining 43.75%

of misclassified objects are those that are initially misallocated and

that retain this error until clustering terminates, which is beyond

the scope of this study. The percentage of correctly detected

objects of all objects detected by Algorithm 3 that may affect

clustering validity is 81.82%. We define the detection accuracy as

the percentage of correct objects out of all objects detected by

Algorithm 3. Figure 11 shows the verification with this definition,

corresponding to the invalid results of every clustering algorithm

on the experimental datasets. Because the evaluation results of

dataset 1 are all valid, the verification accuracies of this dataset in

Figure 11 were not computed. Most verification accuracies were

larger than 60%. This finding indicates that our algorithms can

detect most objects affecting the validity of clustering results.

These results show that the formal verification method we

propose can not only verify the validity of clustering results but can

also find and localize the causes of invalidity. Furthermore, this

method is more reliable than the existing evaluation indices.

However, our method still has some aspects to be improved: it

should contrast different clustering results like relative indices, and

it needs to detect misclassified objects caused by an initial

allocation error that is retained until clustering terminates.

Conclusion

To solve the problems in existing crisp clustering evaluation

indices, we focused on the clustering processes and proposed a

formal algorithm to verify the validity of clustering results based on

model checking. This method can not only verify the clustering

validity but, by analyzing counterexamples, can also find and

localize the causes of invalidity, determine which iterations in the

clustering process lead to the invalidity, and detect objects that

may affect the validity of clustering algorithms. Experiments on

eight datasets indicate the effectiveness and suitability of our

algorithms. However, the method needs improvement: it needs to

detect misclassified objects caused by an initial allocating error that

is retained until the clustering terminates, and it needs to compare

the effectiveness of clustering results.

Supporting Information

Appendix S1 CTL formulas formed by the Backus-Naur
paradigm.
(DOC)

Appendix S2 CTL formulas with an adequate set.
(DOC)

Acknowledgments

The authors are thankful to the experts for their theories used in this study.

In addition we express our gratitude to the anonymous reviewers who

carefully reviewed our manuscript and put forth many valuable

suggestions. This work is supported by National Key Project of Scientific

and Technical Supporting Programs under grant number

2012BAH08B02.

Author Contributions

Conceived and designed the experiments: YC. Performed the experiments:

RC. Analyzed the data: YC GL. Contributed reagents/materials/analysis

tools: SH DL. Wrote the paper: YC.

Figure 11. Detected accuracy of our method. The dataset labels are also the same as Table 1.
doi:10.1371/journal.pone.0090109.g011

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e90109

References

1. Han J, Kamber M (2006) Data mining: concepts and techniques (second

edition). Morgan Kaufmann.
2. Theodoridis S, Koutroubas K (1999) Pattern recognition. Academic Press.

3. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation
techniques. Journal of Intelligent Information Systems 17(2–3): 107–145.

4. Žalik KR, Žalik B (2011) Validity index for clusters of different sizes and

densities. Pattern Recognition Letters 32(2): 221–234.
5. Achtert E, Goldhofer S, Kriegel H (2012) Evaluation of clusterings–metrics and

visual support. IEEE 28th International Conference on. Data Engineering
(ICDE): 1285–1288.

6. Zahid N, Limouri M, Essaid A (1999) A new cluster-validity for fuzzy clustering.

Pattern Recognition, 32(7): 1089–1097.
7. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Cluster validity methods: part I.

ACM SIGMOD Record 31(2): 40–45.
8. De Souto M, Coelho A, Faceli K, Sakata T, Bonadia V, et al (2012) A

comparison of external clustering evaluation indices in the context of imbalanced
data sets. Brazilian Symposium on Neural Networks: 49–54.

9. Halkidi M, Batistakis Y, Vazirgiannis M (2001) Clustering algorithms and

validity measures. Scientific and Statistical Database Management. Proceedings.
Thirteenth International Conference on: 3–22.

10. Liu Y (2010) Understanding of internal clustering validation measures. IEEE
10th International Conference on Conference Data Mining: 13–17.

11. Deborah L, Baskaran R, Kannan A (2010) A survey on internal validity measure

for cluster validation. International Journal of Computer Science & Engineering
Survey 1(2): 85–102.

12. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Cluster validity checking
methods: part II. ACM SIGMOD Record 31(3): 19–27.

13. Vendramin L, Campello R, Hruschka E (2010) Relative clustering validity
criteria: a comparative overview. Statistical Analysis and Data Mining 3(4): 209–

235.

14. Lv Z, Wang J, Li Y, Zai Y (2008) An index of cluster validity based on modal
logic. Journal of Computer Research and Development 45(9): 1477–1485.

15. Shtern M, Tzerpos V (2009) Refining clustering evaluation using structure
indicators. IEEE International Conference on Software Maintenance ICSM:

297–305.

16. Lamirel J, Cuxac P, Mall R, Safi G(2012) A new efficient and unbiased approach
for clustering quality evaluation. New Frontiers in Applied Data Mining.

Springer Berlin Heidelberg: 209–220.
17. Cardoso M, de Carvalho A (2009) Quality indices for (practical) clustering

evaluation. Intelligent Data Analysis 13(5): 725–740.
18. Amigó E, Gonzalo J, Artiles J, Verdejo F (2009) A comparison of extrinsic

clustering evaluation metrics based on formal constraints. Information Retrieval

12(4): 461–486.
19. Banerjee A, Langford J (2004) An objective evaluation criterion for clustering.

Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining: 515–520.

20. Kashyap C, Lade S (2013) Performance evaluation of threshold constrained

member clustering algorithm. Performance Evaluation 2(7): 210–214.
21. Reichart R, Rappoport A (2009) The NVI clustering evaluation measure.

Proceedings of the Thirteenth Conference on Computational Natural Language
Learning. Association for Computational Linguistics: 165–173.

22. Vardi M, Wolper P (1986) Automata-theoretic techniques for modal logics of

programs. Journal of Computer and System Sciences 32(2): 183–221.

23. Clarke E, Emerson E (1982) Design and synthesis of synchronization skeletons

using branching time temporal logic. Logics of Programs: 52–71.

24. Huth M, Ryan M (2007) Logic in computer science modeling and reasoning

about systems. China Machine Press: 115–169.

25. Clake E, Grumberg O, Long D (1994) Verification tools for finite-state

concurrent system. A Decade of Concurrency Reflections and Perspectives.

Springer Berlin Heidelberg: 124–175.

26. Clarke E, Grumberg O, Hiraishi H, Jha S, Long D, et al. (1995) Verification of

the Futurebus+ cache coherence protocol. Formal Methods in System Design

6(2): 217–232.

27. Raimi R, Lear J (1997) Analyzing a PowerPC 620 microprocessor silicon failure

using model checking. In Proceeding of International Test Conference: 964–

973.

28. Clarke E, Biere A, Raimi R, Zhu Y (2001) Bounded model checking using

satisfiability solving. Formal Methods in System Design 19(1): 7–34.

29. Kohonen T, Kaski S, Lagus K, Salojarvi J, Honkela J, et al (2000) Self

organization of a massive document collection. IEEE Transactions on Neural

Networks, 11(3): 574–585.

30. Clarke E, Grumberg O, Peled D (1999) Model checking. The MIT Press: 3–5.

31. Ben-Hur A, Hom D, Siegelmann H (2002) Support vector clustering. The

Journal of Machine Learning Research, (2): 125–137.

32. Martin A (2001) Adequate sets of temporal connectives in CTL. Electronic

Notes in Theoretical Computer Science 52(1): 21–31.

33. Ball T, Naik M, Rajamani S (2003) From symptom to cause: localizing errors in

counterexample traces. Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages 38(1): 97–105.

34. Emerson E, Clarke E (1982) Using branching time temporal logic to Synthesize

synchronization skeleton. Science of Computer Programming 2(3): 241–266.

35. Clarke E, Emerson E, Sistla A (1986) Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on

Programming Language and Systems, 8(2): 244–263.

36. Clarke E, Emerson E, Sifakis J (2009) Model checking: algorithmic verification

and debugging. Communications of the ACM, 52(11): 74–84.

37. MacQueen J (1967) Some methods for classification and analysis of multivariate

observations. Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability (1): 281–297.

38. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for

discovering clusters in large spatial databases with noise. Proceedings of 2nd

International Conference on Knowledge Discovery and Data Mining: 226–231.

39. Zhang T, Ramakrishnan F, Livny M (1996) BIRCH: An efficient data clustering

method for very large database. ACM SIGMOD Record (25): 103–114.

40. UCI machine learning repository. Available: http://archive.ics.uci.edu/ml/

datasets.html. Accessed 2014 Jan 3.

41. Bozdech Z, Llinas M, Pulliam B, Wong E, Zhu J, et al. (2003) The transcriptome

of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLOS

Biology 1(1): 85–100.

Algorithm of Verifying Clustering Validity

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e90109

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

