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Abstract: To address the sparse system identification problem under noisy input and non-Gaussian
output measurement noise, two novel types of sparse bias-compensated normalized maximum
correntropy criterion algorithms are developed, which are capable of eliminating the impact
of non-Gaussian measurement noise and noisy input. The first is developed by using the
correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of
the `0 norm. The second is designed using the proportionate update scheme, which facilitates the
close tracking of system parameter change. Simulation results confirm that the proposed algorithms
can effectively improve the identification performance compared with other algorithms presented in
the literature for the sparse system identification problem.

Keywords: bias-compensated; correntropy-induced metric; maximum correntropy criterion; noisy
input; proportionate update; sparse system identification

1. Introduction

The least mean square (LMS), normalized least mean square (NLMS), least mean fourth (LMF),
and normalized least mean fourth (NLMF) algorithms have been widely used in adaptive system
identification, channel estimation, and echo cancellation [1–4] due to their low complexity and easy
implementation. However, their performance is usually degraded severely when they are subject
to output noise with non-Gaussian characteristics. Correspondingly, many robust adaptive filter
algorithms (AFAs) have been developed to reduce the impact of non-Gaussian measurement noise,
such as the maximum correntropy criterion (MCC) [5–8], least mean mixed norm (LMMN) [9], and least
mean absolute deviation (LMAD) [10] algorithms, and so on. Among them, the MCC has been utilized
to design different robust algorithms (including the diffusion MCC [11], kernel MCC [12], generalized
MCC [13], group-constrained MCC, and reweight group-constrained MCC [14] algorithms, and so
on [15,16]) to solve different engineering problems.

Although those algorithms mentioned above show robustness against non-Gaussian measurement
noise, they show weak performance for sparse system identification (SSI) problems because they do
not take advantage of prior knowledge of the system. As a result, two main technologies have been
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developed to address the SSI problem: one using the compressed sensing approach [17,18], and the
other employing the proportionate update scheme [19]. At present, the zero attracting (ZA) algorithm
and reweight zero attracting algorithm belonging to the former (such as ZANLMS [20], ZANLMF [21],
ZAMCC [22] and General ZA-Proportionate Normalized MCC [23]) have been proposed based on the
sparse penalty term (SPE). The correntropy-induced metric (CIM) [5], as an effective SPE, has been
utilized to improve the performance of the algorithm in SSI, resulting in the CIM-NLMS, CIM-NLMF,
CIM-LMMN, and CIM-MCC algorithms [22,24,25]. Correspondingly, the latter algorithms are
proportionate-type AFAs (including proportionate NLMS [19], proportionate NLMF [26], proportionate
MCC [27], and so on) which use the gain matrix to improve performance. Although those algorithms
above make full use of the sparsity of the system, they lack consideration of the noisy input problem.
As a result, more and more bias-compensated aware AFAs with the unbiasedness criterion have been
developed to eliminate the influence from noisy input signals [28–31]. These include, for example,
the bias-compensated NLMS (BCNLMS) algorithm [28–30], bias-compensated NLMF algorithm [31],
bias-compensated affine projection algorithm [32], bias-compensated NMCC (BCNMCC) [33], and so
on. However, they do not consider the sparsity of the system.

On the basis of the analysis above, we develop two novel algorithms called bias-compensated
NMCC with CIM penalty (CIM-BCNMCC) and bias-compensated proportionate NMCC (BCPNMCC)
in this work. The former introduces the CIM into the BCNMCC algorithm, while the latter combines
the unbiasedness criterion and the PNMCC algorithm. Both of them can achieve better performance
than MCC, CIM-MCC, and BCNMCC for SSI under noisy input and non-Gaussian measurement noise.

The rest of the paper is organized as follows: In Section 2, the BCNMCC algorithm is briefly
reviewed. In Section 3, the CIM-BCNMCC and BCPNMCC algorithms are developed. In Section 4,
simulation results are presented to evaluate the performance of the proposed algorithms. Finally,
conclusions are made in Section 5.

2. Review of the BCNMCC

2.1. NMCC

Consider an FIR model with a sample of the observed output signal d(n) defined as

d(n) = u(n)Two + v(n) (1)

where u(n) = [u(n), u(n− 1), . . . , u(n−M + 1)]T denotes the input signal; wo = [wo
1, wo

2, . . . , wo
M]T is

the estimated M-taps weight vector; and v(n) denotes the output measurement noise at time index
n, described as non-Gaussian in this work. In order to eliminate the impact of the impulsive noise,
the MCC is usually used as a cost function to design robust AFAs, and it is defined as [5]

JMCC(n) = exp(− e2(n)
2σ2 ) (2)

where e(n) = d(n)−uT(n)w(n) is the instantaneous estimation error, w(n) = [w1(n), w2(n), . . . , wM(n)]T

denotes the estimated tap coefficients vector of wo = [wo
1, wo

2, . . . , wo
M]T , and σ represents the kernel

width which can be manually set. Using Equation (2) and the gradient method, we have

w(n + 1) = w(n) + µ exp(− e2(n)
2σ2 )

e(n)u(n)
uT(n)u(n) + ε

(3)

where µ denotes the step size, and ε is a positive parameter. Equation (3) is the update equation
of NMCC.



Entropy 2018, 20, 407 3 of 15

2.2. BCNMCC

To identify the system parameter under noisy input and non-Gaussian output measurement
noise, a bias-compensated normalized maximum correntropy criterion (BCNCC) algorithm has been
previously proposed [33]. The u(n) and e(n) terms should be replaced by u(n) and e(n) in Equation (3)
due to the noisy input, and we define the noisy input vector as

u(n) = u(n) + vin(n) (4)

where vin(n) = [v(n), v(n− 1), . . . , v(n−M + 1)]T is the input noise with zero mean and variance σ2
in.

e(n) = d(n)− uT(n)w(n) (5)

To compensate the bias caused by the input noise, the BCNMCC algorithm is developed by
introducing a bias-compensation term B(n) into the weight update equation of the normalized MCC
algorithm as follows:

w(n + 1) = w(n) + µ exp(− e2(n)
2σ2 )

e(n)u(n)
uT(n)u(n) + ε

+ B(n). (6)

To compute B(n), using the weight–error vector (WEV) w̃(n) = wo−w(n) and Equation (6) yields

w̃(n + 1) = w̃(n)− µ exp(− e2(n)
2σ2 )

e(n)u(n)
uT(n)u(n) + ε

− B(n). (7)

Furthermore, the following unbiasedness criterion [28] is employed

E[w̃(n + 1)|u(n) ] = 0 whenever E[w̃(n)|u(n) ] = 0 (8)

and by some simplified calculations, we have

B(n) = µ exp(−v2(n)
2σ2 )

σ2
in

uT(n)u(n) + ε
. (9)

Now, combining Equations (6) and (9), we obtain

w(n + 1) =

(
1 + µ exp(

v2(n)
−2σ2 )

σ2
in

uT(n)u(n) + ε

)
w(n) + µ exp(− e2(n)

2σ2 )
e(n)u(n)

uT(n)u(n) + ε
(10)

which is the weight update equation of the BCNMCC algorithm.

3. Sparse-Aware BCNMCC Algorithms

3.1. CIM-BCNMCC

3.1.1. Correntropy-Induced Metric

In this subsection, we focus on developing a novel sparse BCNMCC algorithm with CIM to solve
the SSI problem. Here, we first briefly review the CIM. Given two vectors X = [x1, x2, . . . xN ]

T and
Y = [y1, y2, . . . yN ]

T in the sample space, the CIM is defined as

CIM(X, Y) = (κ(0)− V̂(X, Y))1/2 (11)
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where κ(0) = 1/(σ
√

2π), and V̂(X, Y) = 1/N
N
∑

i=1
κ(xi, yi) is the sample estimation of the correntropy.

The most popular kernel in correntropy is the Gaussian kernel κ(x, y) = 1
σ
√

2π
exp(− e2

2σ2 ), e = x− y.

The `0 norm of the vector X = [x1, x2, . . . , xN ]
T can be approximated by

||X0|| ∼ CIM2(X, 0) =
κ(0)

N

N

∑
i=1

(1− exp(−x2
i /2σ2)). (12)

In Equation (12), if |xi| > δ, ∀xi 6= 0, then as σ→ 0 , it can become close to the `0 norm, where δ

is a small positive number. Figure 1 shows the surface of the CIM(X, 0) with X = [x1, x2]
T , which is

plotted as a function of x1 and x2. Due to its relation with correntropy, this nonlinear metric is called
the correntropy-induced metric (CIM) and can provide a good approximation for the `0 norm. Hence,
it favors sparsity and can be used as a sparse principal component (SPC) to exploit the system sparsity
in SSI scenarios; a proof can be found elsewhere [5].
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As an approximation of the `0 norm, the CIM favors sparsity and can be used as a penalty
term in the SSI problem. The CIMMCC algorithm has been proposed [22] to solve sparse channel
estimation in an impulsive noise environment. The goal of this work is to develop a robust and sparse
AFA combining the BCNMCC and CIM. The CIM constraint imposes a zero attraction of the filter
coefficients according to the relative value of each coefficient among all the entries which, in turn, leads
to improved performance when the system is sparse.

3.1.2. CIM-BCNMCC

In general, the SPC-aware AFAs are designed by adding a derivative of an approximated `0 norm
with respect to the weight in the update equation of a given original AFA. Naturally, we can develop
the BCNMCC algorithm with CIM (denoted as CIM-BCNMCC) by combining Equation (10) and the
gradient of Equation (12) with a sparse controlling factor. Then, we obtain the weight update vector of
the CIM-BCNMCC algorithm as

w(n + 1) =
(

1 + µ exp( v2(n)
−2σ2 )

σ2
in

uT(n)u(n)+ε

)
w(n)

+µ exp(− e2(n)
2σ2 ) e(n)u(n)

uT(n)u(n)+ε
− ρ 1

Mσ3
1

√
2π

w(n) exp(−w(n)2

2σ2
1
)

(13)
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where ρ is a sparse controlling factor. It is worth noting that the kernel width σ1 should be selected
suitably to ensure that the CIM is closer to the `0 norm.

Remark 1. The CIM-BCNMCC takes advantage of the BCNMCC algorithm and CIM; hence, it can solve
the SSI problem under noisy input and output noise with impulsive characteristics. We can know that the
CIM-BCNMCC will reduce to the BCNMCC algorithm when ρ = 0. As a result, the extra computation
complexity is from the third term in the right-hand side of Equation (13) compared with BCNMCC, but it can
obtain a more perfect identification effect.

3.2. BCPNMCC

3.2.1. PMCC

The proportionate MCC algorithm has been proposed previously [27], and its weight update
equation is

w(n + 1) = w(n) + µG(n) exp(− e2(n)
2σ2 )e(n)u(n) (14)

where G(n) = diag(g1(n), g2(n), . . . , gM(n)) is a diagonal matrix which can update the step size of
each tap adaptively. The individual gain gl(n) governing the step size adjustment of the nth weight
coefficient is defined as
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3.2.2. BCPNMCC

In this subsection, we mainly develop a bias-compensated PNMCC algorithm to improve the
performance of the PMCC algorithm for the noisy input case; its derivation will be given carefully.
Just like the BCNMCC algorithm, we introduce a new term B(n) into Equation (14) to compensate for
the bias caused by the input noise:

w(n + 1) = w(n) + µG(n) exp(− e2(n)
2σ2 )

e(n)u(n)
uT(n)G(n)u(n) + ε

+ B(n). (17)

Considering the input noise, the output error is then denoted as

e(n) = d(n)− uT(n)w(n) = d(n)− (u(n) + vT
in(n)w(n))

= uT(n)w̃(n) + v(n)− vT
in(n)w(n) = ew(n) + v(n)− vT

in(n)w(n)
(18)

where ew(n) = uT(n)w̃(n) stands for the a priori error. Then, combining Equation (17) and WEV yields

w̃(n + 1) = w̃(n)− µG(n) exp(− e2(n)
2σ2 )

e(n)u(n)
uT(n)G(n)u(n) + ε

− B(n). (19)

In order to obtain B(n), taking the expectation on both sides of Equation (19) for the given u(n),
we have

E[w̃(n + 1)|u(n)] = E[w̃(n)|u(n)]− µE
[

f (e(n))
G(n)e(n)u(n)

uT(n)G(n)u(n) + ε
|u(n)

]
+ E[B(n)|u(n)]. (20)
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By using the unbiasedness criterion given by Equation (8) in Equation (20), we obtain

E[B(n)|u(n)] = µE
[

f (e(n))
G(n)e(n)u(n)

uT(n)G(n)u(n) + ε
|u(n)

]
(21)

where f (e(n)) denotes a nonlinear function of the estimation error defined by

f (e(n)) = exp(− e2(n)
2σ2 ) = exp(− (ew(n) + v(n)− vin

T(n)w(n))2

2σ2 ). (22)

To derive the BCPNMCC algorithm reliably, the following commonly used assumptions [29,30,34]
should be given firstly.

Assumption 1. The signals v(n), vin(n), u(n), and w̃(n) are statistically independent.

Assumption 2. The nonlinear function of the estimation error f (v(n)), vin(n), G(n), and e(n) are
statistically independent.

Assumption 3. The successive increments of tap weights are independent of one another, and the error and
input vector sequences are statistically independent to one another.

In order to facilitate the nonlinear function f (e(n)) and simplify the mathematical derivation,
we take the Taylor expansion of f (e(n)) with respect to ew(n) − vT

in(n)w̃(n) around v(n) and use
Equation (22) to yield

f (e(n)) ≈ f (v(n)) + f ′(v(n))[ew(n)− vin
T(n)w(n)] + o

[
[ew(n)− vin

T(n)w(n)]
2]

. (23)

Using Equation (23), we obtain the following approximation of Equation (21):

E
[

f (e(n)) G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

|u(n)
]
≈ E

[
f (v(n)) G(n)e(n)u(i)

uT(n)G(n)u(n)+ε
|u(n)

]
+E
[

f ′(v(n))[ew(n)− vin
T(n)w(n)] G(n)e(n)u(n)

uT(n)G(n)u(n)+ε
|u(n)

]
+E
[
o
[
[ew(n)− vin

T(n)w(n)]2
]

G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

|u(n)
] . (24)

In general, the a priori error ew(n) converges to a small value when the algorithm is close to
its steady state, and it can be ignored with respect to the environmental noise when the step size is
small [6]. Under Assumptions 1, 2, and 3 and considering the fact aforementioned, the second part of
Equation (24) becomes

E
[

f ′(v(n))[ew(n)− vin
T(n)w(n)] G(n)e(n)u(n)

uT(n)G(n)u(n)+ε
|u(n)

]
≈ −E

[
f ′(v(n))vin

T(n)w(n) G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

|u(n)
]
≈ 0

. (25)

Furthermore, the third part of Equation (24) becomes

E
[

o
[
[ew(n)− vin

T(n)w(n)]
2] G(n)e(n)u(n)

uT(n)G(n)u(n) + ε
|u(n)

]
≈ 0. (26)

Combining Equations (24)–(26), and applying Assumption 3, we have

E
[

f (e(n)) G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

|u(n)
]

≈ E
[

f (v(n)) G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

|u(n)
]
= E[ f (v(n)|u(n))]E

[
G(n)e(n)u(n)

uT(n)G(n)u(n)+ε
|u(n)

] (27)
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Considering the fact that e(n) = e(n)− vT
in(n)w(n), we have

E
[

G(n)e(n)u(n)
uT(n)G(n)u(n) + ε

|u(n)
]
=

E[G(n)e(n)u(n)|u(n)]
uT(n)G(n)u(n) + ε

=
E[G(n)|u(n)]E[e(n)u(n)|u(n)]

uT(n)G(n)u(n) + ε
(28)

where

E[e(n)u(n)|u(n)] = E
[
[e(n) + vT

in(n)w(n)][u(n) + v(n)]|u(n)
]

= E[e(n)u(n)|u(n)] + E[e(n)v(n)|u(n)] + E
[
vT

in(n)w(n)u(n)|u(n)
]
+ E

[
vT

in(n)w(n)vin(n)|u(n)
] (29)

Under Assumptions (1)–(3), we have

E[e(n)u(n)|u(n)] = E
[
[v(n) + uT(n)w̃(n)][u(n) + vin(n)]|u(n)

]
= E[v(n)u(n)|u(n)] + E[v(n)vin(n)|u(n)] + E

[
uT(n)w̃(n)u(n)|u(n)

]
+ E

[
uT(n)w̃(n)vin(n)|u(n)

]
= 0

(30)

and
E[vin

T(n)w(n)u(n)|u(n)] = 0 (31)

E[vin
T(n)w(n)vin(n)|u(n)] = σ2

inE[w(n)|u(n)]. (32)

Combining Equations (28) and (29)–(32), we get

E
[

e(n)u(n)
uT(n)G(n)u(n) + ε

|u(n)
]
= E

[
σ2

inw(n)
uT(n)G(n)u(n) + ε

|u(n)
]

. (33)

Then, substituting Equations (28) and (33) into Equation (21) yields

E[B(n)|u(n)] = µE
[

exp(
v2(n)
2σ2 )|u(n)

]
E[G(n)|u(n)]E

[
σ2

inw(n)
uT(n)G(n)u(n) + ε

|u(n)
]

. (34)

Now, using the stochastic approximation, we have

B(n) = µ exp(−v2(n)
2σ2 )

G(n)σ2
in

uT(n)G(n)u(n) + ε
. (35)

Substituting Equation (35) into Equation (17), we obtain

w(n + 1) =
(

1 + µ exp(− v2(n)
2σ2 )

G(n)σ2
in

uT(n)G(n)u(n)+ε

)
w(n) + µ exp(− e2(n)

2σ2 ) G(n)e(n)u(n)
uT(n)G(n)u(n)+ε

. (36)

As a result, the update equation of the proposed BCPNMCC algorithm is derived in Equation (36).

Remark 2. The structure of Equation (36) is similar to that of Equation (10), and the proposed BCPNMCC
algorithm will reduce to the BCNMCC algorithm when the gain matrix is the unity matrix. In addition, we know
that Equation (36) will be equivalent to Equation (15) when the input noise variance is zero. Hence, the proposed
BCPNMCC algorithm shows advantages of both the BCNMCC and PMCC algorithms. Furthermore,
the variance of the input noise is usually unknown and it should be estimated effectively; we employ the
method proposed in [35] to estimate σ2

in in this work.

4. Simulation Results

In this section, we present computer simulations to evaluate the performance of the proposed
CIM-BCNMCC and BCPNMCC algorithms, and we select the MCC, CIM-MCC, and BCNMCC
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algorithms as comparison objects. In the following simulations, we set the parameter vector of an
unknown time-varying system as shown in Figure 2.
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In Figure 2, the memory size M is set at 32, 64, or 128 during different iterations. Here, we define
the sparsity rate (SR) as

SR =
Nnon−zeros

M
(37)

where Nnon−zero is the number of nonzero taps in wo. We assume that the background noise v(n)
has an α-stable distribution and that the input noise vin(n) is zero-mean white Gaussian noise.
The characteristic function of the α-stable distribution is defined as

f (t) = exp
{

jθt− γ|t|α[1 + jβsgn(t)S(t, α)]
}

(38)

in which

S(t, α) =

{
tan απ

2
2
π log |t|

i f α 6= 1
i f α = 1

(39)

where α ∈ (0, 2] is the characteristic factor, −∞ < θ < +∞ is the location parameter, β ∈ [−1, 1] is the
symmetry parameter, and γ > 0 is the dispersion parameter. We define the parameter vector of the
characteristic function as Vα−stable(α, β, γ, θ).

All results in the following simulations are obtained by averaging over 100 independent Monte
Carlo runs to obtain the mean square deviation (MSD), defined as

MSD = 10 log10

(
E
(
||wo −w(n)||2
||wo||2

))
. (40)

In order to verify the performance of the new algorithms, we choose the optimal weight vector for
different sparsities. The other parameters are set to achieve the best performance for each algorithm.

The kernel width σ of MCC is 20, and σ1 is 0.02 for CIM; the input noise signal has a mean of 1
and variance σ2

in of 1, and the output measurement noise is set as Vα−stable(1.2, 0, 0.4, 0). The positive
parameter ρ is 1 × 10−5, and ε = 0.001.

4.1. Sparse System Identification

In the first example, we investigate the convergence performance of all algorithms mentioned
above in terms of MSD under different sparsity rates. The step sizes are selected so that the same
initial convergence speeds are obtained for all algorithms. The convergence curves are given in
Figure 3a,b under different SRs (5/64 and 9/64). The results indicate that (1) the bias-compensated
aware AFAs can achieve lower steady-state misadjustment than other algorithms because the bias



Entropy 2018, 20, 407 9 of 15

caused by the noisy input can be effectively compensated by the bias compensation term; and (2)
the noisy input has a remarkable influence on the identification performance of the AFAs for SSI.
Consequently, it is meaningful to study the sparse-aware bias-compensated AFAs. In addition, we give
the convergence curves of the BCNMCC, CIM-BCNMCC, and BCPNMCC algorithms with sparsity
levels Nnon−zeros = 5 and Nnon−zeros = 9 in Figure 4. One can see that the proposed algorithms show
better steady-state accuracy than the BCNMCC algorithm, which illustrates the advantages of the
proposed methods for SSI. In particular, no matter how sparse it is, the BCPNMCC algorithm performs
better than the CIM-BCNMCC algorithm, which is consistent with the results in [24]. Hence, we mainly
perform simulations to investigate the performance of the proposed BCPNMCC algorithm in the
following examples.
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(b) SR = 9/64.

In the second example, we present the convergence performance of the proposed and conventional
algorithms obtained with different memory sizes represented by SR (a, SR = 5/32; b, SR = 5/64;
and c, SR = 5/128). The results are shown in Figure 5; we conclude that the proportionate-type
algorithms show the best performance, regardless of the length of the weight vector, compared with
other algorithms. In addition, Figure 6 gives the results of a time-varying system identification case
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represented by SR, i.e., we set SR = 5/64 and SR = 9/64 in the first and second stages, respectively,
to exhibit the tracking ability of the proposed algorithm. One can observe that the proposed algorithm
can obtain the best performance no matter how sparse it is.
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In the third example, we compare the convergence speed of the proposed algorithm with
those of other algorithms. The step sizes are selected to obtain the same MSD for each algorithm.
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The convergence curves are shown in Figure 7; one can observe that the proposed BCPNMCC algorithm
shows outstanding convergence speed compared with BCNMCC algorithm because of the adaptive
step size adjustments by the gain matrix. Compared with the MCC algorithm, the BCPNMCC
algorithm shows a better steady-state MSD because of the proportionate update scheme and bias
compensating term.
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In the fourth example, we perform a simulation to further evaluate the robustness of the proposed
algorithm with different values of σ2

in (0.3, 0.5, 0.65, 0.8, and 1). The other parameters are set the
same as for the third example. The steady-state MSD is illustrated in Figure 8; we see that no matter
how big σ2

in is, the bias-compensated aware algorithms (including BCNMCC and BCPNMCC) show
better performance than their original versions (i.e., MCC and PMCC). Furthermore, the PMCC and
BCPNMCC algorithms show higher steady-state accuracy than do the MCC and BCNMCC algorithms.
Furthermore, the effect of the kernel width for the proposed algorithm is examined. We set σ at 5,
10, 20, 30, 40, and 50, respectively. Figure 9 gives the steady-state MSD result of each σ. It is obvious
that (1) the proposed BCPNMCC algorithm outperforms the MCC, PMCC, and BCNMCC algorithms;
and (2) the BCPNMCC algorithm achieves optimal performance when σ is 20, and a linear relationship
does not exist between the performance and the value of σ, which means that the kernel width should
be selected in different applications to achieve the desired performance.
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Finally, the joint effect of the performance on the free parameters is quantitatively investigated,
with a curved surface for the relationship of steady-state MSD and parameter pairs (σ and σ2

in, µ and σ2
in)

presented. The steady-state MSD results are given in Figures 10 and 11. One can observe in Figure 10
that the steady-state accuracy will decrease with the input noise’s variance increasing; this result
is most pronounced when the input noise’s variance and output noise’s variance are in the ranges
of (0.2–1) and (10–40). A similar conclusion can be obtained in Figure 11: as the step size increases,
the steady-state accuracy of the proposed algorithm decreases obviously, and it is most pronounced
when the step size’s and input noise’s variance are in the ranges of (0.08–0.16) and (0.2–0.1). In addition,
one can also see that the proposed algorithm outperforms the BCNMCC algorithm in this case.
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4.2. Sparse Echo Channel Estimation

In this subsection, we consider a computer simulation of the scenario of sparse echo channel
estimation to evaluate the performance of the proposed BCPNMCC. The echo channel path is given in
Figure 12, and it commutes to a channel with length M = 1024 only and 56 nonzero coefficients. We use
a fragment of 2 s of real speech as the input signal, sampled at 8 kHz. The measurement impulsive
noise is Vα−stable(1.2, 0, 0.2, 0), and the input noise variance is σ2

in = 0.25. The other parameters are
set in order to obtain the optimal performance for all algorithms. The convergence curves are shown
in Figure 13. Compared with other algorithms, the proposed BCPNMCC algorithm works well in
this practical scenario, again demonstrating the practical character of the proposed algorithm for
engineering applications.
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5. Conclusions

Sparse-aware BCNMCC algorithms for sparse system identification under noisy input and output
noise with non-Gaussian characteristics have been developed in this paper, namely, the CIM-BCNMCC
and BCPNMCC algorithms. They can achieve a higher identification accuracy of system parameters
due to the introduction of the CIM penalty and the proportionate update scheme. In particular,
the proposed BCPNMCC algorithm can also provide a faster convergence speed than the BCNMCC
algorithm because of the adaptive step size adjustment by the gain matrix. More importantly,
the BCPNMCC algorithm can lead to considerable improvements in the noisy input case for the SSI
problem because it takes advantage of the bias-compensated term derived by the unbiasedness criterion.
The simulation results demonstrate that (1) the CIM-BCNMCC and BCPNMCC algorithms perform
better than other conventional algorithms; (2) the BCPNMCC algorithm outperforms CIM-BCNMCC
when they are used for sparse system identification; and (3) no matter the step size, input noise’s
variance, and kernel width, the BCPNMCC algorithm can always achieve the best performance.
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