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Ruminants have the ability to digest human-inedible plant materials, due to the symbiotic relationship 
with the rumen microbiota. Rumen microbes supply short chain fatty acids, amino acids, and vitamins 
to dairy cows that are used for maintenance, growth, and lactation functions. The main goal of this 
study was to investigate gene-microbiome networks underlying feed efficiency traits by integrating 
genotypic, microbial, and phenotypic data from lactating dairy cows. Data consisted of dry matter 
intake (DMI), net energy secreted in milk, and residual feed intake (RFI) records, SNP genotype, 
and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows. We first assessed 
marginal associations between genotypes and phenotypic and microbial traits through genomic scans, 
and then, in regions with multiple significant hits, we assessed gene-microbiome-phenotype networks 
using causal structural learning algorithms. We found significant regions co-localizing the rumen 
microbiome and feed efficiency traits. Interestingly, we found three types of network relationships: (1) 
the cow genome directly affects both rumen microbial abundances and feed efficiency traits; (2) the 
cow genome (Chr3: 116.5 Mb) indirectly affects RFI, mediated by the abundance of Syntrophococcus, 
Prevotella, and an unknown genus of Class Bacilli; and (3) the cow genome (Chr7: 52.8 Mb and Chr11: 
6.1–6.2 Mb) affects the abundance of Rikenellaceae RC9 gut group mediated by DMI. Our findings 
shed light on how the host genome acts directly and indirectly on the rumen microbiome and feed 
efficiency traits and the potential benefits of the inclusion of specific microbes in selection indexes or 
as correlated traits in breeding programs. Overall, the multistep approach described here, combining 
whole-genome scans and causal network reconstruction, allows us to reveal the relationship between 
genome and microbiome underlying dairy cow feed efficiency.
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Like all ruminants, dairy cows have a symbiotic relationship with their rumen microbiota. The cow provides a 
favorable environment (i.e., the rumen) for microbial growth and survival. In turn, the rumen microbes digest 
and transform feedstuffs into volatile fatty acids and synthesize amino acids and vitamins that are absorbed 
to support maintenance, growth, and lactation1. The effectiveness of the process to convert feed into milk and 
body tissue is what we know as feed efficiency, which greatly impacts the profitability and sustainability of the 
dairy industry. Feed efficiency is commonly measured using residual feed intake (RFI), defined as the difference 
between the actual dry matter intake (DMI) and predictions from regression on known energy sinks, including 
metabolic body weight, change in body weight, and milk energy2,3. There are multiple benefits to improving 
dairy cow feed efficiency, including reducing the environmental impact of dairy farming and improving dairy 
farm profitability4.

The cow genome exerts moderate control over feed efficiency and low to moderate control over rumen 
microbial abundances. Indeed, feed efficiency traits in Holstein cows show heritability estimates that range from 
0.16 for RFI to 0.20 for DMI5. Similarly, rumen microbial abundances have heritability estimates that range 
from 0.10 to 0.406,7, and these differences in microbial populations also contribute to feed efficiency at the whole 

1Department of Animal and Dairy Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI 53706, USA. 
2Department of Population Health and Reproduction, University of California, Davis 95616, USA. 3Department of 
Veterinary Clinical Sciences, Washington State University, Pullman 99163, USA. 4Department of Large Animal 
Clinical Sciences, University of Florida, Gainesville 32610, USA. 5Department of Animal Sciences, University of 
Florida, Gainesville 32611, USA. 6Department of Animal Biosciences, University of Guelph, Guelph N1G-2W1, 
Canada. email: guillermo.martinezboggio@wisc.edu

OPEN

Scientific Reports |        (2024) 14:26060 1| https://doi.org/10.1038/s41598-024-77782-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


animal level8. It was recently shown that the rumen microbiome could change the total heritability (i.e., direct 
and indirect additive genetic effects) of feed efficiency traits through a mediated genetic effect. The change in 
total heritability depends on the phenotypic effect of microbes on feed efficiency and the genetic correlations 
between microbes and observed traits7. The major causes of genetic correlations due to direct host effects on 
traits are the linkage disequilibrium between close genomic regions and the presence of pleiotropic genes in the 
host genome that influence more than one trait9.

Whole-genomic scans have successfully identified genomic regions associated with many traits in US Holstein 
cows10. Genomic scans for feed efficiency traits, such as RFI and DMI, showed no large peaks or significant 
quantitative trait loci (QTL)11,12, suggesting polygenic inheritance. Similarly, recent genomic scans for the 
rumen microbiome have not detected large QTL effects, but these studies have struggled with dimensionality 
(numerous microbes with various potential QTL for evaluation). Note that the co-localization of rumen 
microbial QTL (rmQTL) with phenotypic QTL (pQTL) from marginal associations between genotypes and 
microbial and phenotypic traits through genomic scans, respectively, could help to understand the relationship 
between the host genome, microbiome, and phenotypes. It seems reasonable to view this complex relationship 
as a system or network. In this context, Bayesian networks are a convenient way to represent complex patterns 
of relationships13. They provide a high-level, holistic view of the interplay between random variables (e.g., 
genotypes, microbes, and traits) by representing them as nodes and linking them with edges that describe 
their interactions. Hence, the integration of phenotypic data with the host genome and rumen microbiome 
information via causal networks has the potential to shed light on the genome-by-microbiome interactions that 
underly dairy cow feed efficiency.

This study aimed to reveal gene-microbiome networks underlying feed efficiency integrating genotypic, 
microbial, and phenotypic data obtained from mid-lactation dairy cows. Similar to the approach presented by 
Peñagaricano et al.14, we first explored marginal associations between genotypes and microbial and phenotypic 
traits through genomic scans. Then, in regions where several rmQTL and pQTL co-localized, we performed 
network reconstruction using causal structural learning algorithms.

Materials and methods
Ethics statement
Animal trials were conducted at the University of Florida (Gainesville, FL, USA) and the University of Guelph 
(Guelph, ON, Canada) in accordance with relevant guidelines and regulations. The Institutional Animal Care 
Committees of Florida (protocol no 202300000187) and Guelph (protocol no 4064) approved the experimental 
protocols. No animal procedures in this study required the use of anesthesia or euthanasia, as all animal 
handling and sampling methods compiled with animal welfare standards. Reporting in this manuscript follows 
the recommendations of the ARRIVE guidelines (https://arriveguidelines.org).

Animals
We used a total of 451 lactating Holstein cows from two research farms. The cows were enrolled in six experiments: 
237 cows from five experiments conducted at the University of Florida Dairy Research Unit (Alachua, FL, USA) 
and 214 cows from a single experiment at the Ontario Dairy Research Centre (Elora, ON, Canada), between 
January 2019 and July 2020. Overall, this study included 221 primiparous and 230 multiparous cows, ranging 
from 31 to 136 days in milk (DIM), with an average body weight of 657 ±  82 kg.

In Florida, cows were housed in sand-bedded free-stall barns and were randomly assigned to individual Calan 
gates (American Calan Inc., Northwood, NH, USA) to evaluate daily feed intake. Cows had ad libitum access to 
diets that were fed as total mixed rations (TMR). The TMR were weighed and fed twice daily approximately at 
06: 00 and 13: 00 and refusals were weighed once daily, before morning feeding. The amount of TMR offered to 
individual cows was adjusted daily to result in 5 to 10% refusals. Cows were weighed twice daily, immediately 
after each milking, on a walk-over scale (AfiWeigh, SAE Afikim, Israel) as they left the milking parlor. In 
Ontario, cows were housed in a free-stall barn equipped with Roughage Intake Control System (Hokofarm 
Group, Marknesse, The Netherlands) and mattress-beds with chopped wheat straw bedding. The TMR was 
delivered twice daily approximately at 09: 00 and 15: 30. Refusals were removed from the feed bins daily, and the 
amount of feed offered was adjusted daily to allow 8% refusals. Cows were weighed twice daily on a walk-over 
scale (DeLaval, Tumba, Sweden).

Cows were milked twice daily, and the milk yield was recorded using electronic milk flow meters (AfiFlo, 
SAE Afikim, USA; and DeLaval, Canada). Milk samples were collected once (in Canada) or twice (in Florida) 
weekly from both milkings for fat, protein, and lactose analyses, performed at the DHIA testing laboratory 
(Lactanet, Guelph, ON, Canada) and at the Southeast Milk Inc. DHI Laboratory (Belleview, FL, USA). For 
Canada, the lactose percentage was calculated based on the tank average for each week.

Phenotypic data
We evaluated three feed efficiency traits: DMI, net energy secreted in milk (NESec), and RFI. Net energy secreted 
in milk (Mcal/day) was calculated according to the NRC equations for nutrient requirements of dairy cattle15 
as follows:

	 NESec = [(9.29× kg Fat) + (5.47× kg Protein) + (3.95× kg Lactose)]

We generated weekly means of body weight (BW) using daily records. Weekly changes in BW were calculated 
as the difference between two consecutive weeks and divided by the number of days between measurements to 
generate a daily change in BW in kg/day.
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The DMI records were regressed on the three main energy sinks to calculate RFI values using a linear model 
as follows:

	 DMI = mDIM + cohort + parity + β 1NESec + β 2mBW + β 3∆BW + e

where mDIM  represents the fixed effect of midpoint DIM for the period from 31 to 136 DIM (2 levels: ≤ 67 
DIM and > 67 DIM), cohort represents the fixed effect of treatment nested within experiment and season (13 
levels: 5 levels for Florida and 8 levels for Canada), parity represents the fixed effect of lactation number with 
four levels (1, 2, 3, and 4+), NESec is the net energy secreted in milk with partial fixed regression coefficient 
β 1, mBW  is the metabolic BW with partial fixed regression coefficient β 2, ∆BW  is the change in BW with 
partial fixed regression coefficient β 3, and e is the random residual. The residual of this model is defined as 
RFI, for which positive values indicate animals that had DMI above what was expected, i.e., less feed efficient 
animals, whereas negative values indicate animals with DMI below expected, i.e., more feed efficient animals. 
The coefficient of determination of the model was 0.81. All variables included in the model significantly (P-
value < 0.05) contributed to variation in DMI.

Genotypic data
Cows were genotyped with either low (20k) or medium (50k) density single nucleotide polymorphisms (SNP) 
chips (Illumina Inc., San Diego, CA, USA) and then imputed to a total of 78,933 SNP across the cow genome. 
The genotype data were kindly provided by the Council on Dairy Cattle Breeding (Bowie, MD, USA). We 
retained 78,016 SNP after quality control, including call rates of ≥ 95% for SNP and ≥ 95% for individuals, and 
excluding SNP with minor allele frequency < 1% and in the sexual chromosome. Marker information, including 
chromosome and position, was obtained according to the Bos taurus reference genome assembly ARS-UCD1.3.

Microbial data
Rumen fluid sampling was performed on a single day in the middle of each experimental period when cows 
were between 66 and 105 DIM. The rumen fluid sample for each cow was obtained using an orogastric tube 
attached to a glass vial and equipped with a pump. Samples were snap-frozen in liquid nitrogen immediately 
after sample collection. The DNA extraction and library preparation were processed through a 96-channel 
portable robot pipette to improve pipetting precision. On the day of DNA extraction, rumen content samples 
were thawed in ice, and DNA was extracted using a Mag-Bind® Universal pathogen 96 Kit (Omega Bio-Tek 
Norcross, GA, USA) according to manufacturer instructions. The 16S rRNA gene V4 region was amplified 
by PCR amplification using the following primers: forward (515F-Y, 5’-GTGYCAGCMGCCGCGGTAA) and 
reverse (806R, 5’-GGACTACNVGGGTWTCTAAT) as described by Caporaso et al.16 and modified by Apprill 
et al.17 and Parada et al.18. After DNA amplification, the presence and size of amplicons were verified through 
gel electrophoresis using a 1.2% (wt/vol) agarose gel stained with 0.5 mg/mL ethidium bromide. Purification of 
amplified DNA was performed through magnetic Mag-Bind® TotalPure Next Generation Sequencing (Omega 
Bio-Tek Norcross, GA, USA) following manufacturer instructions. The DNA concentration and purity was 
assessed through spectrophotometry, samples were then diluted to the same concentration using ultrapure 
distilled water, and equal volumes of individual samples were pooled together for sequencing. A final accurate 
and precise double-stranded DNA quantification was performed in a Qubit® fluorometric machine. For 
sequencing, the pooled library was diluted to 4 nM, denatured, and combined with a PhiX Control 3 following 
MiSeq System Denature and Dilute Libraries Guide (Illumina, San Diego, CA, USA). A MiSeq Reagent Kit v2 of 
300 cycles (Illumina, San Diego, CA, USA) was used in an Illumina MiSeq platform set for a 16 S Metagenomics 
Workflow. The raw sequence reads were deposited in the Sequence Read Archive of the National Center for 
Biotechnology Information under the Bio Project PRJNA962991.

Amplicon sequences of the 451 rumen samples were processed using the DADA2 pipeline version 1.819 in the 
R software20. Briefly, denoising analysis was performed by demultiplexing sequencing reads and inspecting for 
errors. Sequences were trimmed and filtered, chimeras were removed, and an amplicon sequence variant (ASV) 
table with 9707 ASV was created. Taxonomy assignment was performed using 16 S rRNA SILVA version 138 
database up to the genus level21. We discarded one sample during wet lab processing and two samples with very 
few (< 3361) sequences and few (< 120) ASV. We retained 448 samples and 1,636 ASV after the removal of those 
ASV present in less than 5% of samples. Considering the compositionality of the microbial abundances, 1 was 
added to all counts in the abundance table to avoid zeros and then applied a centered log-ratio transformation 
(CLR) with the function clr implemented in the R package compositions22.

Candidate rumen microbes
Rumen microbiome data have many variables, i.e., 1636 ASV, so we pre-selected rumen microbes that can 
potentially be used in selective breeding, as shown in Martinez-Boggio et al.7. Using recursive models to evaluate 
the mediation effect of the rumen microbiome on feed efficiency, we ended up selecting 272 microbes with 
moderate heritability ( h2 > 0.10), significant phenotypic effects on DMI, NESec, and/or RFI, and genetically 
correlated with DMI, NESec, and/or RFI (see Supplementary Table S1 online).

Genomic scans
Two complementary genome scans were performed: first, we carried out a classical phenotypic QTL scan 
integrating phenotypic and genotypic data, and second, we performed a rumen microbial QTL scan integrating 
the abundances of the 272 relevant microbes and genotypic data. For the pQTL and rmQTL scans, the following 
linear model was fitted separately to each phenotype and microbial trait:
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	 y = cohort + parity + β SNPSNP + cow + ϵ

where y is the phenotypic trait (DMI, NESec, and RFI) or microbial trait (1 to 272 ASV abundances), cohort 
represents the fixed effect of the cohort, as treatment nested within experiment and season (13 levels), parity 
represents the fixed effect of the lactation number with four levels (1, 2, 3, and 4+), SNP  is the additive SNP 
effect (coded as 0, 1, or 2, i.e., the number of reference allele in the SNP genotype) with partial fixed regression 
coefficient β SNP , cow is the vector of additive polygenic effects, and ϵ  is a vector of residual effects. 
The assumption of the model is cow ∼ N

(
0,Gσ2

g

)
, where G is the additive genomic relationship matrix, 

computed as G = ZZ′ /k, where Z  is a matrix of centered and standardized SNP genotypes and k represents 
the number of SNP23. The WOMBAT software24 was used for model fitting and estimating SNP solutions. To 
correct for multiple testing, we applied the simpleM method25. This approach consisted of four steps: (1) for 
each chromosome, calculate a correlation matrix for the SNP using the composite linkage disequilibrium (LD); 
(2) compute the eigenvalues through principal component analysis of the composite LD matrix; (3) calculate 
the effective number of SNP per chromosome as the number of principal components required to explain 99% 
of the variance in the SNP. Because SNP on different chromosomes are expected to be in linkage equilibrium in 
the general population, the total effective number of SNP (Meff) is obtained by summing the effective numbers 
of SNP of all chromosomes. And finally, (4) adjust P-values from single SNP association tests for multiple 
comparisons using Šidák correction based on Meff: adjusted P-value = 1− (1− Pvalue)Meff . Genes located 
near significant QTL were retrieved from the Ensembl database26 using the BioMart web interface, which is 
based on the Bos taurus genome assembly ARS-UCD1.3.

Causal structural learning
We reconstructed causal networks between cow genome, rumen microbiome, and feed efficiency combining 
genotypes (i.e., co-localized SNP between microbiome and feed efficiency), microbial abundances, and 
phenotypes (DMI, NESec, or RFI).

We represented the causal structures using graphical models because they combine the rigor of a probabilistic 
approach with the intuitive representation of relationships given by graphs. Graphical models are composed of 
two parts: a set V = (v1, v2, . . . , vk) of random variables describing the quantities of interest, and a graph 
G = (V ,E), where V  and E represent sets of vertices and edges, respectively. Each vertex (or node) in G 
represents one of the variables in the network, and the set of edges (or links) connecting variables is used to 
express the dependence structure of the data13. We used the Incremental Association Markov Blanket (IAMB) 
algorithm27 for the network structure learning or reconstruction. The IAMB algorithm first learns the Markov 
Blanket of each variable in the dataset; the Markov Blanket of a given variable vi is defined as the minimal set of 
variables conditioned on which all other variables are probabilistically independent of the target variable vi. This 
preliminary step reduces the number and the size of the subsets considered in the conditional tests of network 
reconstruction, and hence results in a lower computational complexity without compromising the accuracy 
of the resulting inferred network27. In the context of normally distributed variables, these tests are functions 
of the partial correlation coefficients between each pair of variables in V , conditional on a subset of variables 
W ∈ V , represented by pii′ |W . Here, we used the Fisher’s Z test, which involves a transformation of the linear 
correlation coefficient and is defined as:

	
Z (vi, vi′ |W ) =

1

2
·
√
n− |W | − 3 · log

1 + ρ̂ ii′ |W

1− ρ̂ ii′ |W

where ρ̂ ii′ |W  is the estimated of the partial correlation, and |W | denotes the number of variables in set W . The 
Z  statistics has an approximate normal distribution with mean zero and variance 1, i.e., Z (vi, vi′|W ) ∼ N (0, 1)
. After the structure of the network was learned, the estimation of the parameters of the local distributions was 
performed using maximum likelihood, where the causal parameters take the form of regression coefficients. 
Furthermore, the stability of the structure of the causal networks was evaluated using Jackknife resampling. By 
leaving out one observation per time from the dataset, we could evaluate the stability of each edge in the original 
network in terms of presence (presence or absence in the resampled network) and direction (same direction as 
the original edge, opposite direction, or undirected arc). All these network analyses were performed using the 
R package bnlearn28.

Results
Genomic scans
We performed classical whole-genome scans integrating phenotypes, namely DMI, NESec, and RFI, with 
genotypic information (78,016 SNP). We identified three significant pQTL (adjusted P-value ≤  0.10) for DMI, 
one for NESec, and two for RFI, as shown in Fig. 1. The strongest SNP effects for DMI were found in regions 
6.1–6.2 Mb on BTA11 and 7.4 Mb on BTA23, and for RFI were clustered in regions 116.5-117.3 Mb on BTA3 
and 28.1–30.5 Mb on BTA16. Note that for NESec we detected many suggestive SNP (adjusted P-value ≤  0.22) 
on five chromosomes (see Supplementary Table S2 online).

We also performed genomic scans integrating rumen microbial abundances with genotypic information 
(78,016 SNP). We obtained 1,028 significant rmQTL (adjusted P-value ≤  0.10) mapped all across the cattle 
genome but mainly on BTA5 (66 rmQTL), BTA11 (49 rmQTL), BTA9 (49 rmQTL), and BTA7 (49 rmQTL) (see 
Supplementary Table S2 online). The rumen microbial genera with more significant QTL were Prevotella (164 
rmQTL), Prevotella_7 (71 rmQTL), Rikenellaceae RC9 gut group (46 rmQTL), Acetitomaculum (42 rmQTL), and 
Christensenellaceae R-7 group (36 rmQTL). Note that the Prevotella genus, represented by more than 50 ASV, 
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showed associations all across the genome. However, for some microbial genera, we identified strong SNP effects 
on specific genomic regions (Fig. 2). For Prevotella_7 we found five ASV with significant SNP on three regions 
of BTA11 (1.0-1.3, 2.6–2.9, and 6.1–6.2 Mb), and for Acetitomaculum we found four ASV with significant SNP 
on two regions of BTA5 (61.8–65.6 and 106.2-107.2  Mb). Also, for Prevotellaceae UCG-004 (ASV1018) we 
found SNP effects only on BTA5 and BTA11. Furthermore, we detected 69 significant co-localized SNP on 23 
chromosomes for rumen microbiome. We identified one SNP on BTA29 co-localizing for 13 ASV belonging 
to the genera Prevotella and Prevotella_7, and the Lachnospiraceae family. Also, we identified four SNP co-

Fig. 2.  Genomic scans for rumen microbial abundances. The horizontal line indicates the adjusted P-value 
threshold of 0.10.

 

Fig. 1.  Genomic scans for dry matter intake (DMI), net energy secreted in milk (NESec), and residual feed 
intake (RFI). The horizontal line indicates the adjusted P-value threshold of 0.10.
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localized in the region 1.0-1.3 and 6.1–6.2 Mb on BTA11 for six ASV from Prevotella_7, Prevotellaceae UCG-004, 
Lachnospiraceae NK3A20 group, and [Eubacterium] nodatum group.

Remarkably, we obtained two significant co-localized SNP between DMI and rumen microbiome clustered 
in the region 6.1–6.2 Mb on BTA11 (Fig. 3). Note that we also found very close significant SNP effects between 
feed efficiency traits and rumen microbial traits in eight chromosomes (Table 1). For RFI, we detected three 
pQTL: one in the region 116.5-117.3  Mb on BTA3, where Prevotella ASV57, Syntrophococcus ASV666, and 
[Eubacterium] brachy group ASV2236 showed significant SNP; one in the region 28.1–30.5  Mb on BTA16, 
where Succiniclasticum ASV83 showed a significant SNP; and one in the region 37.2  Mb on BTA19, where 
Acetitomaculum ASV1936 showed a significant SNP. Furthermore, for trait NESec, we found significant SNP 
effects for F082 ASV537 and Lachnobacterium ASV1454 close to the suggestive pQTL in the region 16.5 Mb on 
BTA13.

Causal networks
The pQTL and rmQTL analyses showed that some feed efficiency traits and rumen microbes are associated with 
the same SNP on BTA11. Also, there are co-localized regions on BTA3 and BTA7 with significant pQTL and 
rmQTL. So, to infer the functional relationship involving the cow genome, rumen microbiome, and feed efficiency 
traits, we used the IAMB algorithm in conjunction with Fisher’s Z  test to assess for conditional independence 
( α = 0.10). The causal structural learning was performed using adjusted phenotypic and microbial traits (i.e., 
corrected by cohort and parity effects), and the most significant SNP located on BTA3, BTA7, and BTA11. We 
used as prior knowledge that the genotypes may have a causal effect on rumen microbiome and feed efficiency 
but not the opposite or between genotypes. The stability of the network was evaluated using Jackknife resampling 
and expressed as the frequency at which a given edge was presented or not and with the same direction in the 
resampled network. Figure 4 shows that the stability and direction of the edges in the causal networks were very 
consistent, i.e., most of the edges were present in more than 65% of the resampled networks.

Interestingly, we identified different types of causal relationships between variables, with direct and indirect 
pathways. Figure 4 shows that two QTL on BTA3 (labeled as Chr3:116,575,934 and Chr3:117,335,980) were 
directly and indirectly associated with RFI mediated by the rumen microbiome (ASV1047, ASV666, and 
ASV57). Furthermore, two QTL on BTA7 (Chr7:17,454,617 and Chr7:52,843,633) showed direct effects on DMI 
and NESec, and an indirect effect on Rikenellaceae RC9 gut group (ASV460) and CAG-352 (ASV1085) mediated 
by DMI. We also found mediated effects of the cow genome on the rumen microbiome by DMI on BTA11. The 
two co-localized SNP (labeled as Chr11:6,192,173 and Chr11:6,216,461) between DMI and rumen microbiome 
were marginally associated with DMI and six rumen microbes. Note that DMI is mediating genetic effects on 
Rikenellaceae RC9 gut group (ASV31). We also found in this network marginal associations between microbial 
genera such as Prevotella_7, Rikenellaceae RC9 gut group, and the Lachnospiraceae family.

Discussion
We explored the relationships between the host genome and rumen microbiome underlying the expression of 
feed efficiency traits in mid-lactation Holstein cows. Cows establish a symbiotic relationship with the rumen 
microbiome, which allows them to digest human-inedible plant materials, supplying 70% of the energy the host 
needs and 60% of the amino acids that reach the small intestine29. Given this critical role, the rumen microbiome 
is widely recognized for its major contributions to feed efficiency7,30,31. Recently,  we evaluated the mediation 
effects of rumen microbial abundances on feed efficiency traits using recursive models7. However, how the cow 
genome, rumen microbiome, and feed efficiency traits (i.e., DMI, NESec, and RFI) interact remain unclear.

Feed efficiency traits showed no large peaks or pQTL in our genomic scans, which suggests they are highly 
polygenic traits regulated by many small-sized effects. These findings agree with previous studies in Holstein 
cows in which authors did not find specific genomic regions associated with RFI11,12. Residual feed intake is 
a composite trait including major energy sinks (e.g., energy needs for milk synthesis and cow’s maintenance), 

Fig. 3.  Co-localized quantitative trait loci for phenotypes (dry matter intake (DMI) and residual feed intake 
(RFI)) and rumen microbial abundances. The horizontal line indicates the adjusted P-value threshold of 0.10.
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so it is related to diverse biological processes and metabolic pathways12 that could result in a diluted effect of 
many associated genomic regions. Contrary to RFI, we expected to find genomic regions associated with NESec 
(calculated using fat and true protein), mainly on BTA14, due to the presence of a major gene named DGAT132. 
Note that these results could be explained by the limited sample size of 448 cows used in our study. Also, for 
DMI, we did not find clear pQTL in genomic regions where previous studies had detected significant effects for 
DMI11,12 and fertility and economic merit10,33.

Rumen microbial abundances showed many rmQTL across the genome, as reported in different livestock 
species34–37. These findings suggest that many small-sized gene effects also regulate the rumen microbiome. 
However, we identified significant host genetic effects on the abundance of the genera Acetitomaculum, 
Prevotella_7, and Prevotellaceae UCG-004 on BTA5 and BTA11, Treponema on BTA8, and Butyrivibrio on 
BTA7 (Fig. 2). Note that many of these microbial genera are generalists, possessing broad functional capability 
that allow them to adapt to diverse ecological niches38. Tapio et al.39 reported the presence of Acetitomaculum, 
Butyrivibrio, and Prevotella within multiple rumen microbial sub-networks in dairy cows. Interestingly, these 
microbes co-localize, which means that the same host genomic regions regulate their abundance. Hence, we 
hypothesize that major host genomic regions control the abundance of these generalist microbes through 
physical and metabolic mechanisms, including passage rate, constant supply of substrates, pH, temperature, 
among others40. We did not find any major gene that could directly explain the mechanisms the host genome 
has to control microbial abundances in the rumen.

Furthermore, we found co-localization of feed efficiency traits and rumen microbial abundances on many 
chromosomes. Note that all the rumen microbes included in the genomic scans were heritable and correlated 

Phenotypic trait Chr Position (bp) Microbial trait
-log10
(P-value)

Adjusted
P-value

RFI 3

116,928,313 [Eubacterium] brachy group ASV2236 4.97 0.03

116,982,317 [Eubacterium] brachy group ASV2236 4.49 0.08

117,019,819 [Eubacterium] brachy group ASV2236 5.03 0.02

117,188,731
Syntrophococcus ASV666 5.09 0.02

NA/NA ASV1047 6.17 0.00

117,243,769

Prevotella ASV57 4.41 0.10

Syntrophococcus ASV666 4.58 0.07

NA/NA ASV1047 5.77 0.01

117,327,502

Prevotella ASV57 4.41 0.10

Syntrophococcus ASV666 4.58 0.07

NA/NA ASV1047 5.77 0.01

DMI 7

45,668,300 CAG-352 ASV1085 5.54 0.01

46,762,222 Rikenellaceae RC9 gut group ASV460 4.44 0.09

48,190,690 Falsiporphyromonas ASV1443 6.15 0.00

DMI 11

6,192,173

Rikenellaceae RC9 gut group ASV31 4.67 0.06

Veillonellaceae/NA ASV60 7.46 0.00

Prevotella_7 ASV136 4.53 0.07

Lachnospiraceae/NA ASV245 5.52 0.01

Syntrophococcus ASV291 6.15 0.00

Prevotella_7 ASV320 4.94 0.03

6,216,461

Rikenellaceae RC9 gut group ASV31 4.67 0.06

Veillonellaceae/NA ASV60 7.46 0.00

Prevotella_7 ASV136 4.53 0.07

Lachnospiraceae/NA ASV245 5.52 0.01

Syntrophococcus ASV291 6.15 0.00

Prevotella_7 ASV320 4.94 0.03

NESec 13

12,700,320 F082/NA ASV537 4.44 0.09

13,669,253 F082/NA ASV537 4.62 0.06

15,010,929 F082/NA ASV537 4.58 0.07

15,194,874 Lachnobacterium ASV1454 5.85 0.00

NESec 15 58,654,570 Lachnospiraceae/NA ASV2216 5.05 0.02

RFI 16 28,702,319 Succiniclasticum ASV83 4.52 0.08

RFI 19 37,677,866 Acetitomaculum ASV1936 4.90 0.03

NESec 26 37,900,334 Rikenellaceae RC9 gut group ASV460 6.03 0.00

Table 1.  The co-localized SNP between phenotypic and microbial traits with their chromosome (Chr), 
position, -log10(P-value), and adjusted P-value. RFI   Residual feed intake, DMI   Dry matter intake,  NESec  Net 
energy secreted in milk
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with DMI, NESec, and/or RFI (see Supplementary Table S1 online). The identification of genomic regions shared 
by both microbiome and feed efficiency traits, along with our previous findings that the inclusion of specific 
microbes into genomic models can increase the total heritability of feed efficiency traits7, highlights the potential 
use of microbiome information in selective breeding. Rumen microbes could be used as correlated traits or even 
included in selection indexes.

We further explored these genomic regions using Bayesian networks to decipher potential causal relationships 
between the host genome and rumen microbiome that could be underlying feed efficiency traits. Remarkably, 
the structural learning algorithm detected different types of relationships, as shown in Fig.  4. First, the cow 
genome directly affects feed efficiency traits and rumen microbiome abundances, which agrees with the genomic 
scans results. Second, the cow genome (Chr3:116,575,934) indirectly affects RFI, mediated by the abundance 
of Syntrophococcus, Prevotella, and an unknown genus of Class Bacilli. Prevotella genus plays a major role in 
the rumen due to its diverse metabolic roles, such as its ability to utilize starch, protein, hemicellulose, and 
pectin to produce acetate, succinate, and propionate39. Our findings show that Prevotella interacts with other 
microorganisms and impacts dairy cow feed efficiency. Third, the cow genome on BTA7 (Chr7:52,843,633) and 
BTA11 (Chr11:6,192,173 and Chr11:6,216,461) affects the abundance of Rikenellaceae RC9 gut group mediated 
by DMI and the Lachnospiraceae family (ASV245). Rikenellaceae RC9 gut group produce propionate, acetate, 
and/or succinate, and it was observed that the diet affected its associations with growth performance and feed 
efficiency39,41. Interestingly, this network shows that the direction typically assumes in the recursive model 
( ASV → DMI)7 could be in the opposite direction ( DMI → ASV ). These findings highlight potential 
mechanisms through which the host can control the rumen microbiome, such as passage rate. Note that less feed 
intake will increase the retention time in the rumen, i.e., feed stays longer, which in turn can increase digestibility 
per unit of organic matter consumed, and that could affect rumen turnover, the rate of microbial growth, and, 
therefore, affect the rumen microbial abundances and RFI. Notably, research has shown that lactating cows that 
eat at a slower rate are more feed efficient5. Moreover, our results also show the complexity of the microbial 
interactions in the rumen involving microbes from different families (Prevotellaceae, Rikenellaceae, and 
Lachnospiraceae) interacting with each other due to their broad metabolic capabilities.

We revealed host genome and rumen microbiome networks underlying feed efficiency traits in Holstein 
cows. These findings, derived from relevant rumen microbes with a moderate heritability, significant phenotypic 
effect on feed efficiency, and genetic correlation with feed efficiency traits, add significant biological evidence 
to support their use in breeding programs. We acknowledge that the use of a reduced number of candidate 
microbes might be too simplistic and may not fully account for the dimensionality of the rumen microbiome. 

Fig. 4.  Casual networks integrating genotypic data (blue), rumen microbial abundances (green), and 
phenotypic traits (orange). (a) causal network showing a direct and indirect relationship between genome 
and residual feed intake (RFI) mediated by the rumen microbiome; (b) causal network showing a direct 
relationship between genome, phenotypes (dry matter intake (DMI), and net energy secreted in milk (NESec)), 
and rumen microbiome, and indirect with the rumen microbiome and NESec mediated by DMI; (c) causal 
network showing a direct relationship between genome, DMI, and rumen microbiome, and indirect with 
the rumen microbiome mediated by DMI. The consistency of the network structure is expressed in terms of 
stability (the frequency at which a given edge is presented) and direction (the frequency at which a given edge 
has the same direction; in parenthesis) in the resampled networks comparing with the original network.
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However, to our knowledge, this study is unique because it employs Bayesian networks to study the direct and 
indirect relationships between cow genome, rumen microbiome, and complex phenotypic traits in dairy cattle.

Structural equation models and graphical models have been used to infer causal relationships between 
variables42–45 and genomic scans are widely used to reveal the genetic basis of complex human46 and animal47 
traits. Here, we described a multistep procedure for inferring causal networks integrating multi-omics data, 
including microbiome data. Such approach can be powerful for revealing complex gene-microbiome interactions 
underlying complex phenotypic traits in livestock species.

Overall, our findings shed light on how the cow genome can act directly on both the rumen microbiome and 
feed efficiency, and indirectly through DMI on Rikenellaceae RC9 gut group, and through the rumen microbiome 
on RFI. Furthermore, the multistep procedure that combines genome scans for phenotypes and microbiome 
and Bayesian networks to integrate the multi-omics data allowed us to reveal different types (direct and indirect 
paths) of relationships between the cow genome and rumen microbiome underlying feed efficiency.

Data availability
The raw sequence reads were deposited in the Sequence Read Archive of the National Center for Biotechnology 
Information under the Bio Project PRJNA962991.

Received: 1 August 2024; Accepted: 25 October 2024

References
	 1.	 Cammack, K. M., Austin, K. J., Lamberson, W. R., Conant, G. C. & Cunningham, H. C. Ruminnat nutrition symposium: tiny but 

mighty: The role of the rumen microbes in livestock production. J. Anim. Sci. 96, 752–770 (2018).
	 2.	 Berry, D. P. & Crowley, J. J. Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. J . Anim. Sci. 91, 1594–1613 

(2013).
	 3.	 VandeHaar, M. J. et al. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J. Dairy. Sci. 

99, 4941–4954 (2016).
	 4.	 Pryce, J. E., Wales, W. J., De Haas, Y., Veerkamp, R. F. & Hayes, B. J. Genomic selection for feed efficiency in dairy cattle. Animal. 8, 

1–10 (2014).
	 5.	 Cavani, L. et al. Estimates of genetic parameters for feeding behavior traits and their associations with feed efficiency in Holstein 

cows. J. Dairy. Sci. 105, 7564–7574 (2022).
	 6.	 Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 

14, e1007580 (2018).
	 7.	 Martinez-Boggio, G. et al. Investigating relationships between the host genome, rumen microbiome, and dairy cow feed efficiency 

using mediation analysis with structural equation modeling. J. Dairy. Sci. 107, 8193–8204 (2024).
	 8.	 Martinez Boggio, G. et al. Host and rumen microbiome contributions to feed efficiency traits in Holstein cows. J. Dairy. Sci. 107, 

3090–3103 (2024).
	 9.	 Bourdon, R. Chapter 13 - Correlated response to selection. In understanding animal breeding (ed Linsner, K.) 275–276 (Prentice-

Hall, Upper Saddle River, New Jersey, (2000).
	10.	 Cole, J. B. et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in 

contemporary U.S. Holstein cows. BMC Genom. 12, 408 (2011).
	11.	 Lu, Y. et al. Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency. J. Dairy. Sci. 101, 

3140–3154 (2018).
	12.	 Li, B. et al. High-density genome-wide association study for residual feed intake in Holstein dairy cattle. J. Dairy. Sci. 102, 11067–

11080 (2019).
	13.	 Scutari, M. & Denis, J. B. Bayesian Netw. (Chapman and Hall/CRC, 2021).
	14.	 Peñagaricano, F. et al. Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of 

phenotypic, genotypic and transcriptomic data. BMC Syst. Biol. 9, 58 (2015).
	15.	 National research council. Nutr. Requirements Dairy Cattle (National Academies, 2001).
	16.	 Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 

1621–1624 (2012).
	17.	 Apprill, A., Mcnally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases 

detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
	18.	 Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes 

with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
	19.	 Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).
	20.	 R Core Team. A language and environment for statistical computing. Preprint at. (2022).
	21.	 Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 

41, D591–D596 (2013).
	22.	 van den Boogaart, K. G. & Tolosana-Delgado, R. Compositions’: A unified R package to analyze compositional data. Comput. 

Geosci. 34, 320–338 (2008).
	23.	 VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy. Sci. 91, 4414–4423 (2008).
	24.	 Meyer, K. WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. 

Zhejiang Univ. Sci. B. 8, 815–821 (2007).
	25.	 Gao, X., Starmer, J. & Martin, E. R. A multiple testing correction method for genetic association studies using correlated single 

nucleotide polymorphisms. Genet. Epidemiol. 32, 361–369 (2008).
	26.	 Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).
	27.	 Tsamardinos, I., Aliferis, C. & Statnikov, A. Algorithms for large scale markov blanket discovery. In: Proc. of the 16th International 

Florida Artificial Inteligence Research Society Conference AAAI Press, Nenlo Park, California, (2003).
	28.	 Scutari, M. Learning Bayesian networks with the bnlearn R package. (2009).
	29.	 Seymour, W. M., Campbell, D. R. & Johnson, Z. B. Relationships between rumen volatile fatty acid concentrations and milk 

production in dairy cows: A literature study. Anim. Feed Sci. Technol. 119, 155–169 (2005).
	30.	 Monteiro, H. F. et al. Rumen and lower gut microbiomes relationship with feed efficiency and production traits throughout the 

lactation of Holstein dairy cows. Sci. Rep. 12, 4904 (2022).
	31.	 Delgado, B. et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. 

Sci. Rep. 9, 11 (2019).

Scientific Reports |        (2024) 14:26060 9| https://doi.org/10.1038/s41598-024-77782-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	32.	 Grisart, B. et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting 
milk yield and composition. Proc. Natl. Acad. Sci. 101, 2398–2403 (2004).

	33.	 Cole, J. B. et al. Distribution and location of genetic effects for dairy traits. J. Dairy. Sci. 92, 2931–2946 (2009).
	34.	 Zhang, Q. et al. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in 

dairy cows. ISME J. 14, 2019–2033 (2020).
	35.	 Li, F. et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in 

cattle. Microbiome 7, (2019).
	36.	 Abbas, W. et al. Influence of host genetics in shaping the rumen bacterial community in beef cattle. Sci. Rep. 10, 15101 (2020).
	37.	 Martinez Boggio, G., Meynadier, A., Buitenhuis, A. J. & Marie-Etancelin, C. Host genetic control on rumen microbiota and its 

impact on dairy traits in sheep. Genet. Selection Evol. 54, 77 (2022).
	38.	 Muller, E. E. L. Determining microbial niche breadth in the environment for better ecosystem fate predictions. mSystems. 4, 

2379–5077 (2019).
	39.	 Tapio, M., Fischer, D., Mäntysaari, P. & Tapio, I. Rumen microbiota predicts feed efficiency of primiparous nordic red dairy cows. 

Microorganisms. 11, 1116 (2023).
	40.	 Domingues Millen, D. & De Beni Arrigoni, M. & Dias Lauritano Pacheco, R. Rumenology. (2016).
	41.	 Kruger, B. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 

2958–2972 (2016).
	42.	 Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 

37, 710–717 (2005).
	43.	 Chaibub Neto, E. et al. Causal graphical models in systems genetics: A unified framework for joint inference of causal network and 

genetic architecture for correlated phenotypes. Ann. Appl. Stat. 4, 320–339 (2010).
	44.	 Pegolo, S. et al. Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle. Sci. 

Rep. 10, 7751 (2020).
	45.	 Rosa, G. J. M. et al. Inferring causal phenotype networks using structural equation models. Genet. Selection Evol. 6, 1–13 (2011).
	46.	 National Institutes of Health, N. H. G. R. I. A catalog of published genome-wide association studies.
	47.	 Hu, Z. L., Park, C. A. & Reecy, J. M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and 

providing updated services. Nucleic Acids Res. 50, D956–D961 (2022).

Acknowledgements
The authors would like to thank all farm staff at the University of Florida Dairy Unit (Alachua, FL, USA) and 
the Ontario Dairy Research Centre (Elora, ON, Canada), graduate students and interns for all their help with 
animal handling, sample collection and data acquisition, and Drs. Delaine de Melo and Erika Bonsaglia from the 
University of California-Davis (Davis, CA, USA) for their help with sample processing.

Author contributions
FP, GJMR, KAW, and GMB conceived and designed the study. HFM, FSL, CCF, RSF, JESP, BM, FSS, and ESR 
collected and generated the data. GMB analyzed all the data. FP, GJMR, and KAW contributed to the interpreta-
tion of the results. GMB wrote the first draft of the manuscript. All authors read, edited, and approved the final 
version of the manuscript.

Funding
This research was supported by the USDA National Institute of Food Agriculture (grant n° 2019-67015-32114) 
and the Foundation for Food and Agriculture Research (FFAR; grant n° RC109491). Collection of rumen fluid 
samples, blood samples, and feed efficiency phenotypes in Canadian cows were supported by Dr. Ribeiro’s fund-
ing from the Ontario Agri-Food Innovation Alliance (Guelph ON, Canada; project no. 030277) and the Food 
from Thought Thematic Research Fund (Guelph ON, Canada; project no. 499121). The genotypes of Canadian 
cows were provided by Dr. Schenkel’s funding from the Dairy Research Cluster 3 (Lactanet, Guelph ON, Canada; 
and Agriculture and Agri-Food Canada, Ottawa, ON). The funding bodies did not contribute to the design of the 
study or collection, analysis and interpretation of data and writing the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​7​7​7​8​2​-​z​​​​​.​​

Correspondence and requests for materials should be addressed to G.M.-B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2024) 14:26060 10| https://doi.org/10.1038/s41598-024-77782-z

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-77782-z
https://doi.org/10.1038/s41598-024-77782-z
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2024 

Scientific Reports |        (2024) 14:26060 11| https://doi.org/10.1038/s41598-024-77782-z

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Revealing host genome–microbiome networks underlying feed efficiency in dairy cows
	﻿Materials and methods
	﻿Ethics statement
	﻿Animals
	﻿Phenotypic data
	﻿Genotypic data
	﻿Microbial data
	﻿Candidate rumen microbes
	﻿Genomic scans
	﻿Causal structural learning

	﻿Results


