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Introduction

Placenta supports the normal growth and development of 
the fetus by coordinating gas exchanges, metabolic transfer, 
immunological functions and by producing, metabolizing 
and regulating numerous hormones including polypeptide 
and steroid hormones [1, 2]. Due to the key role of placenta 
during pregnancy, placental alterations are responsible for 
many adverse pregnancy outcomes like preeclampsia and in-
trauterine growth restriction [3-5]. The role of placenta goes 

beyond pregnancy since placental alterations can be risk fac-
tors for cognitive and visual development during childhood 
[6, 7]. And yet, placenta is more studied as a barrier between 
mother and fetus in the scientific literature than a target or-
gan for toxic agents (Fig. 1). 

Its major role in pregnancy disorders should encourage 
scientists to consider placenta as a critical organ to further 
study its response to toxic agents. Hundreds of potential tox-
ic chemicals used in daily life (food, cosmetics, drugs…) and 
environmental pollutants can be responsible for pregnancy 
disorders. Placental alterations then represent a growing con-
cern worldwide and placenta toxicology is about to become 
a fully-fledged toxicology field like cardiotoxicology, hepa-
totoxicity, neurotoxicity… Placental apoptosis is increased 
in spontaneous abortion in the first trimester, preeclampsia, 
post-term pregnancies, and intra-uterine growth restriction 
[8, 9]. Apoptosis is therefore a key endpoint in the assessment 
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of potential risks for placental toxicity by chemicals. 
Placental toxicity is in need of extensive investigation. 

Several models of placenta are available for toxicology stud-
ies. In vivo models are mainly mice, rats and rabbits, but 
placenta is the organ that shows the greatest diversity across 
mammalian species in its morphology and tissue organiza-
tion, mechanisms of implantation and invasion, and endo-
crine regulation [10-12]. Animal models are consequently 
not fully suitable for the assessment of toxicological risk in 
the human placenta. Efforts are besides made to eliminate 
the use of animals in testing over the past 35 years in accor-
dance to the 3R principle (Reduce, Refine, Replace). Perfused 
human placenta is the only model that respects the anatomi-
cal features of the human placenta [13], but the problem lies 
in the limited access to whole placenta for obvious technical 
and logistical reasons. Perfused human placentas as long as 
placenta-derived primary cultures are therefore not appro-
priate for high throughput screening. Moreover, it is almost 
impossible to control the maternal exposition to drugs, 
chemicals, cosmetics and pollutants that could influence the 
placental response to the toxic agent being studied. There are 
several different in vitro approaches currently available to 
evaluate chemicals toxicity in the human placenta. Immor-
talized cell lines can be bought in international cell banks 
like the American Type Culture Collection ATCC, the four 
main cell lines being HTR-8/SVneo, BeWo, JAR and JEG-
3 trophoblastic cells. Contrary to BeWo, JAR and JEG-3 cell 
lines, the HTR-8/SVneo is not derived from a choriocarci-
noma and was immortalized by SV-40 transfection. They 
show lower expression of proteins expressed by trophoblasts 
like cytokeratin-7 (CK7) and E-cadherin than BeWo, JEG-3 
and JAR cell lines [14]. BeWo and JAR cells are less differ-

entiated than JEG-3 cells. BeWo is best suited for studies on 
syncytial fusion as they are the only one to be fusigenic. JAR 
monolayers are unstable, as continued proliferation results 
in the formation of multilayers where ZO-1 and E-cadherin 
are lost from the cell surface [15]. With respect to TransEpi-
thelial Electrical Resistance and electrical behaviour, JEG-3 
are more similar to primary cells than BeWo and JAR cells 
[16]. For all these reasons, the human placental JEG-3 cell 
line is closer to human physiology than the other placenta 
cell lines and appears to be the best tool for the assessment 
of chemical toxicity in placenta. According to ATCC’s in-
structions, JEG-3 cells are grown in MEM culture medium 
supplemented with 10% fetal bovine serum (FBS) to bring a 
large number of nutritional and macromolecular factors es-
sential for cell growth and promote cell proliferation. Fetal 
serum may bind or adsorb chemicals and then mask their 
cytotoxicity [17, 18]. Low serum medium should be preferred 
in toxicological studies but how low is the question. We pre-
viously published numerous studies using different cell lines 
(tenocytes, corneal and retinal epithelial cells, macrophages 
and keratinocytes) that revealed the toxicity of chemicals in 
culture medium supplemented with serum reduced from 
10% to 2.5% [19-22]. Based on our expertise, we suggest that 
the concentration of serum in JEG-3 cells should be reduced 
to 2.5% for toxicology studies.

The objective of the present paper is to establish incuba-
tion conditions for JEG-3 placental cells to reveal pregnancy 
disorders induced by chemicals. To achieve this objective, we 
first studied JEG-3 cells behavior in 2.5% serum compared to 
10%, and second, we checked that JEG-3 cells are able to un-
dergo apoptosis in response to chemicals toxic for pregnant 
women.

1980 1990 2000 2010

100

90

80

70

60

50

40

30

20

10

2019

N
u

m
b

e
r

o
f

P
u

b
m

e
d

p
u

b
li

c
a

ti
o

n
s

Year

0

Pubmed - placenta barrier

Pubmed - placenta target organ
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Materials and Methods 

Materials
All tested chemicals were purchased from Merck (Darm-

stadt, Germany) except ethanol (VWR Chemicals, Radnor, 
PA, USA) and perfluorooctanoic acid (PFOA; ThermoFisher 
Scientific, Waltham, MA, USA). 

All cell culture reagents were obtained from Gibco (Pais-
ley, UK). A 96-well microplates were purchased from Corn-
ing (Amsterdam, The Nederlands) and Nunc Lab-Tek II 
Chamber Slide system from Merck.

Antibodies were purchased from Merck (mouse anti-CK7 
antibody) and ThermoFisher Scientific (Alexa Fluor 488 
goat anti-mouse antibody and isotypic control). Fluorescent 
probes were obtained from ThermoFisher Scientific.

Fluorescence Resonance Energy Transfer (FRET) and 
ELISA kits were purchased from Cisbio Biosassays (Codolet, 
France) and MyBioSource (Vancouver, BC, Canada), respec-
tively. 

Cell culture
The choriocarcinoma-derived JEG-3 cell-line (ATCC 

HTB-36, Manassas, VA, USA), was grown as recommended 
by ATCC: Minimum Essential Medium Eagle’s medium sup-
plemented with 10% FBS, 2 mM of glutamine, 50 IU/ml of 
penicillin and 50 IU/ml of streptomycin. Cells were detached 
using trypsin, counted, and then seeded at 80,000 cells/ml 
in 96-well microplates (200 µl by well) and Nunc Lab-Tek II 
Chamber Slide system for immunostaining.

JEG-3 cells behavior in culture medium supplemented with 
different concentrations of serum

Impact of FBS concentration on cell proliferation 
Cells were cultured in three different concentrations of 

FBS (using the same batch): 0%, 2.5% and 10%. At 24 and 72 
hours, cells were detached using trypsin and then counted 
by the Countess II Automated Cell Counter (ThermoFisher 
Scientific).  

Cell line authentication by Short Tandem Repeat analysis 
(genetic profile)

Cell line DNA was profiled by Short Tandem Repeat (STR). 
This technique also checks the lack of cellular cross-contam-
ination [23]. STR analysis was performed by the Human STR 
Profiling Cell Authentication Service of ATCC. 

CK7 immunostaining
The CK7 intermediate filament is an established marker 

of trophoblastic cells [14, 24]. A 24 hours after seeding in cul-
ture medium supplemented with 2.5 or 10% FBS, JEG-3 cells 
were fixed in 4% paraformaldehyde for 20 minutes, permea-
bilized in 0.1% Triton X-100 for 10 minutes, saturated with a 
solution of 1% BSA and 0.1% Tween in PBS for 2 hours, and 
then incubated overnight at 4°C with mouse anti-CK7 anti-
body (196 µg/ml) diluted in PBS containing 1% BSA and 0.1% 
Tween 20. After washing, the cells were incubated with Alexa 
Fluor 488 goat anti-mouse antibody (4 µg/ml) diluted in PBS 
containing 1% BSA for 2 hours at room temperature. Nuclei 
were stained with 300 nM DAPI for 5 minutes and Vecta-
shield (Vector Laboratories, Burlingame, CA, USA) mount-
ing medium was used for microscopy images (EVOS FL, 
ThermoFisher Scientific). Mouse IgG1 kappa clone P3.6.2.8.1 
was used as an isotypic control to help differentiate non-
specific background signal from specific antibody signal.

Hormone release quantitation 
After 72 hours of incubation in cell culture medium 

supplemented with 2.5% or 10% FBS, microplates were cen-
trifuged, and cell supernatants were collected. Estradiol was 
quantified in cell supernatants by FRET technology (HTRF 
Cisbio Biosassays, Codolet, France) according to manufac-
turer’s instructions. The detection limit of this assay is 20 pg/
ml.

Human placental lactogen (hPl) hormone and human 
hyperglycosylated Chorionic Gonadotropin (hCG) hormone 
were measured by sandwich ELISA (MyBioSource) accord-
ing to manufacturer’s instructions. Sensitivities are <46.875 
pg/ml and 39 pg/ml for hPl and hCG dosage, respectively.

Impact of FBS concentration on sodium lauryl sulfate and 
PFOA cytotoxicity

Cells were incubated with sodium lauryl sulfate or PFOA 
diluted in culture medium supplemented with either 2.5% or 
10% FBS. After 24 hours, cell viability was evaluated using 
the neutral red assay. Neutral Red solution at 0.4% in water 
was diluted in culture medium with a ratio of 1:79 to give 
a final concentration of 50 µg/ml. Neutral Red was distrib-
uted in the plates for a 3-hour incubation time at 37°C. The 
cells were then rinsed with PBS to remove any remaining 
unincorporated dye. The dye was then released from the 
cells using a lysis solution (1% acetic acid, 50% ethanol and 
49% H2O) and the fluorescence was measured (λex=540 nm, 
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λem=600 nm) using Spark microplate fluorometer (Tecan, 
Männedorf, Switzerland).

Apoptosis evaluation after incubation with toxic agents 

Toxic agents 
Tested toxic agents for apoptosis evaluation were detailed 

in Table 1. Solvents were evaluated alone to discriminate 
their potential effect (data not shown). 

Determination of subcytotoxic concentrations
Known apoptotic agents were diluted in culture medium 

supplemented with 2.5% FBS and incubated for 24 hours. 
Before running the apoptosis assay, cell viability was deter-
mined using the Alamar blue assay to eliminate necrotic 
concentrations and only keep subcytotoxic concentrations of 
the agents. Alamar blue was diluted in culture medium to a 
working concentration of 9 µg/ml. The cells were incubated 
with the solution for 6 hours at 37°C. The fluorescence signal 
was read (λex=535 nm, λem=600 nm) using the Spark cyto-
fluorometer.

Evaluation of chromatin condensation as a hallmark of 
apoptosis 

The UV fluorescent probe Hoechst 33342 enters living 
and apoptotic cells, intercalating into DNA. The fluorescent 
signal is proportional to chromatin condensation in apopto-
sis. The cells were incubated with Hoechst 33342 at 10 µg/ml 
for 30 minutes at room temperature. The fluorescence signal 
was read (λex=360 nm, λem=460 nm) using a cytofluorom-
eter (Spark).

Statistical analysis
Means of at least three independent experiments were 

calculated and normalized to control. A one-way ANOVA 
followed by Dunnett’s test were performed (α risk=5%) using 
GraphPad Prism 6 software (San Diego, CA, USA). Thresh-
olds of significance were *P<0.05, **P<0.01, ***P<0.001, and 
****P<0.0001 compared to control.

Results

JEG-3 cells behavior in culture medium supplemented 
with different concentrations of FBS

Impact of FBS concentration on cell proliferation 
Three percentages of FBS were used: 0%, 2.5%, and 10% 

in culture medium (Fig. 2).
The percentage of living cells was dramatically decreased 

after 24 hours in culture medium without FBS (0% FBS); as 
expected, JEG-3 cells were not able to proliferate without 
FBS due to a lack of nutritional and macromolecular factors. 
JEG-3 cell proliferation in culture medium supplemented 
with 2.5% was similar to proliferation in 10% FBS at 24 and 
72 hours.

Cell line authentication by STR analysis
The STR analysis was performed to compare nine STR 

core markers in JEG-3 cells in culture medium supplemented 
with 2.5% FBS to JEG-3 cells in 10% FBS (Table 2). 

Table 1. Tested toxic agents for apoptosis evaluation

Chemical
Source of  
exposure

Tested  
concentrations

Solvent

Ethanol Beverage 0.1%–10% (v/v) NA
Quinalphos Environmental 

pollution
0.1–500 µM DMSO

Bisphenol F Food and cosmetic 
packaging

0.1–200 µM DMSO

4,4’-DDT Food, environmental 
pollution

1–40 µM DMSO

BAC Health care products 0.00001%–0.001% (m/v) Water
Phenoxyethanol Cosmetics 0.0001%–1% (v/v) NA
Propylparaben Cosmetics 1–100 µM Ethanol
PFOA Food 0.04–400 µg/ml NA

4,4’DDT, 4,4’-dichlorodiphenyltrichloroethane; BAC, benzalkonium chloride; 
PFOA, perfluorooctanic acid; NA, not available. Fig. 2. Proliferation of JEG-3 cells in culture medium supplemented 

with different FBS concentrations. JEG-3 cells were incubated 
with three different concentrations of FBS for 24 or 72 hours, cell 
count was conducted to quantify the effect of FBS on JEG-3 cell 
proliferation. Black: 10% FBS, grey: 2.5% FBS, light grey: 0% FBS. 
FBS, fetal bovine serum; NS, not significant.
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JEG-3 cells in 10% or 2.5% FBS expressed the same STR 
core markers. Reducing the percentage of FBS in culture me-
dium of JEG-3 cells had no impact on DNA specific loci.

Expression of CK7 as a marker of placental cells 
CK7 is a well-known epithelial marker for trophoblast 

cells and is known to be expressed in JEG-3 cells cultured in 
10% FBS [14]. According to our microscopic observations, 
JEG-3 cells expressed similar levels of CK7 in 2.5% FBS and 
10% FBS (Fig. 3A). The expression of CK7 was quantified 
using ImageJ software (Fig. 3B) and no statistical differences 
were observed between 2.5% FBS and 10% FBS.

Quantification of estradiol, hyperglycosylated hCG and 
hPL secretion by JEG-3 cells
We compared the secretion of placental hormones by 

JEG-3 cells in culture medium supplemented with 10% FBS 
to JEG-3 cells in 2.5% FBS. After 24 hours in either medium, 
the levels of each hormone were comparable (Table 3). 

Impact of FBS concentration on sodium lauryl sulfate and 
PFOA cytotoxicity
We compared sodium lauryl sulfate (SLS) and PFOA 

cytotoxicity in 2.5% FBS and 10% FBS, respectively (Fig. 4). 
At all tested concentrations, SLS diluted in culture medium 
supplemented with 10% FBS had no effect on JEG-3 cell 
viability. On the contrary, SLS diluted in culture medium 
supplemented with 2.5% FBS induced cytotoxicity at 30 µg/

Table 2. STR analysis of JEG-3 cells cultured in culture medium supplemented with either 10% or 2.5% FBS
Cell culture 
condition

Loci
D5S818 D13S17 D7S820 D16S539 vWA THO1 AMEL TPOX CSF1PO

10% FBS 10, 11 9, 11 10, 12 13, 14 16 9, 9.3 X, Y 8 11, 12
2.5% FBS 10, 11 9, 11 10, 12 13, 14 16 9, 9.3 X, Y 8 11, 12

STR, short tandem repeat; FBS, fetal bovine serum.
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ml (37% of living cells, Fig. 4A) and 50 µg/ml (10% of living 
cells). PFOA cytotoxicity was observed at 80 µg/ml and 120 
µg/ml in FBS 2.5% (68% and 27% of living cells, respectively, 
Fig. 4B) whereas only a slight loss of cell viability was ob-
served at 120 µg/ml in FBS 10% (85% of viable cells). The 
classic concentration of FBS used for cell culture (10% of 
total volume) tends to mask SLS and PFOA cytotoxicity con-
trary to reduced FBS concentration (2.5%).

Based on our results, we pursue our study only using cul-
ture medium supplemented with FBS 2.5%; we renamed cells 
with these incubation conditions JEG-Tox.

Response of JEG-Tox cells to apoptosis inducers 
We studied chromatin condensation in JEG-Tox cells after 

incubation with apoptotic chemicals. Before assessing chro-
matin condensation, we selected subcytotoxic concentrations 
i.e. concentrations that result in % of living cells higher than 
70 (data not shown). This threshold is recommended in ISO 
standards and OECD guidelines that assess cytotoxicity on 
monolayer cells. Subcytotoxic concentrations ranged from 
0.1% to 5% for ethanol, from 0.03 to 150 µg/ml for quinal-

phos, from 2 to 20 µg/ml for bisphenol F, from 0.4 to 16 µg/
ml for 4,4’DDT, from 0.1 to 2.5 µg/ml for BAC, from 0.0001% 
to 0.15% for phenoxyethanol, from 0.2 to 20 µg/ml for pro-
pylparaben and from 0.04 to 100 µg/ml for PFOA.

As shown in Fig. 5, all the apoptotic chemicals signifi-
cantly induced chromatin condensation in JEG-Tox cells. 
Chromatin condensation was initiated with ethanol 2.5%, 
quinalphos 0.3 µg/ml, bisphenol F 5 µg/ml, 4,4’DDT 2 µg/
ml, BAC 2.5 µg/ml, phenoxyethanol 0.15%, propylparaben 
20 µg/ml and PFOA 20 µg/ml; all those concentrations being 
in accordance with the literature in other cell types [25-31].

Discussion

Chemicals are more concentrated in the placenta than in 
maternal tissues [32]. Exposure of pregnant women to haz-
ardous chemicals and environmental pollutants like alcohol, 
pesticides, preservatives, or plasticizers can lead to decreased 
birth length and weight and increased infant mortality, alter-
ations of developing nervous system and other vital organs, 
endocrine disruptions [33-36]. 

Proteins present in FBS can bind chemicals thus masking 
their potential cytotoxicity and affecting cell response. It was 
previously proposed that the protein corona formed around 
particles greatly influences particle toxicity [37]. High FBS 
concentrations used in growth medium (mainly 10%) are 
therefore not suitable for toxicity studies. Some of our previ-
ous studies on ocular and skin cell lines demonstrated that 
2.5% FBS is a good compromise as serum total deprivation 
induces cell death [38-40]. In this study, we compared pla-
cental JEG-3 cells behaviour in 2.5% FBS versus 10% FBS. 

0

150

100

50

10

C
e

ll
v
ia

b
il

it
y

(%
)

SLS concentration ( g/ml)�

0

10% FBS

2.5% FBS

****

A B

30 50

****
100 96 95 89 87 37 93 10

0

150

100

50

40

C
e

ll
v
ia

b
il

it
y

(%
)

PFOA concentration ( g/ml)�

0

10% FBS

2.5% FBS

****

80 120

****

100 100 99 94 96 68 85 27

Fig. 4. Comparison of JEG-3 cell viability after incubation with SLS (A) or PFOA (B) in FBS 10% or FBS 2.5%. JEG-3 cells were incubated with 
SLS from 10 to 50 µg/ml or PFOA from 40 to 120 µM for 24 hours. Cell viability was determined using the neutral red assay. ££££P<0.0001 
compared to negative control in 10% FBS, ****P<0.0001 compared to negative control in 2.5% FBS (n=3). FBS, fetal bovine serum; PFOA, 
perfluorooctanic acid; SLS, sodium lauryl sulfate.

Table 3. Quantification of hormones in cell supernatants of JEG-3 cells in 10% 
FBS or 2.5% FBS

Cell culture 
condition

Estradiol (ng/ml) hCG (mUI/ml) hPL (µg/ml)

FBS 10% 1±0.2 1.9±0.4 2.1±0.6
FBS 2.5% 1±0.6 2.2±0.2 1.5±0.3
P-value >0.9999 (NS) 0.7 (NS) 0.7 (NS)

Values are presented as mean±SD.
FBS, fetal bovine serum; hCG, human chorionic gonadotropin; hPL, human 
placental lactogen; NS, not significant.
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viability and chromatin condensation were quantified using the Alamar blue and Hoechst 33342 assays, respectively. Dashed line: cell viability, 
solid line: chromatin condensation. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 compared to negative control (n=3). BAC, benzalkonium 
chloride; PFOA, perfluorooctanic acid; 4,4’DDT, 4,4’-dichlorodiphenyltrichloroethane.
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We first evaluated cell proliferation and observed that JEG-3 
cells cultured in 2.5% or 10% FBS have similar proliferation 
rates, and as expected, cells in 0% FBS did not survive. We 
second analysed STR core markers and concluded that JEG-3 
cells had the same STR core markers and thus the same gen-
otype whether they are cultured in 2.5% or in 10% FBS. We 
third performed immunochemistry studies to ensure that 
JEG-3 cells in 2.5% FBS express CK7, a known marker of pla-
cental cells. Our results showed that reducing the percentage 
of FBS in JEG-3 cells does not alter signatures of cell identity 
such as cell proliferation rate, DNA profile and specific pro-
tein expression. JEG-3 cells in 2.5% FBS released similar lev-
els of hCG, hPL, and estradiol to JEG-3 cells in 10% FBS, and 
thus maintain the endocrine function of human placenta. 

In the cytotoxicity study, we didn’t observe any cell death 
when SLS was diluted in 10% FBS up to 50 µg/ml whereas 
when it was diluted in 2.5% FBS, SLS induced a dramatic 
loss of cell viability at 30 µg/ml. Cytotoxicity of PFOA was 
revealed at 200 µM when it was diluted in 2.5% FBS whereas 
only a slight loss of cell viability was observed at 300 µM 
when it was diluted in 10% FBS. It appears that JEG-3 cells 
in 2.5% FBS are more suitable for toxicological studies than 
JEG-3 cells in 10% FBS. We renamed JEG-3 cells in 2.5% FBS 
JEG-Tox cells. 

Apoptosis is suggested to be a key mechanism in placental 
dysfunction. A growing amount of data indeed suggests that 
uncontrolled placental apoptosis has side effects on both the 
placenta and maternal physiology [41]. To validate JEG-Tox 
cells as a pertinent model for the evaluation of placental tox-
icity, we checked whether they were able to trigger apoptosis 
after incubation with known apoptotic agents. We selected 
chemicals that pregnant women can be exposed to such as 
ethanol through alcohol consumption, preservatives present 
in cosmetics or drugs, pesticides and cookware coatings. In 
our experimental conditions, all the tested apoptotic chemi-
cals induced chromatin condensation in JEG-Tox cells.

To conclude, reducing the percentage of FBS from 10%, 
which is the recommended concentration for cell growth, 
to 2.5% does not affect neither DNA profile, nor placental 
marker, nor hormone secretion, but reveals placental toxicity 
increasing cell sensitivity to chemicals contrary to FBS 10%. 
JEG-Tox cells can be of great value in placental toxicological 
studies, especially to study apoptosis that is at the origin of 
numerous severe pregnancy disorders.
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