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School of Medicine/IIS-Princesa Diego de Leon, Madrid, Spain, 3 Department of Chemistry, McGill University,
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Abstract

We introduce and use Wavelet Imaging on Multiple Scales (WIMS) as an improvement to

fluorescence correlation spectroscopy to measure physical processes and features that

occur across multiple length scales. In this study, wavelet transforms of cell images are

used to characterize molecular dynamics at the cellular and subcellular levels (i.e. focal

adhesions). We show the usefulness of the technique by applying WIMS to an image time

series of a migrating osteosarcoma cell expressing fluorescently labelled adhesion pro-

teins, which allows us to characterize different components of the cell ranging from optical

resolution scale through to focal adhesion and whole cell size scales. Using WIMS we

measured focal adhesion numbers, orientation and cell boundary velocities for retraction

and protrusion. We also determine the internal dynamics of individual focal adhesions

undergoing assembly, disassembly or elongation. Thus confirming as previously shown,

WIMS reveals that the number of adhesions and the area of the protruding region of the

cell are strongly correlated, establishing a correlation between protrusion size and adhe-

sion dynamics. We also apply this technique to characterize the behavior of adhesions,

actin and myosin in Chinese hamster ovary cells expressing a mutant form of myosin IIB

(1935D) that displays decreased filament stability and impairs front-back cell polarity. We

find separate populations of actin and myosin at each adhesion pole for both the mutant

and wild type form. However, we find these populations move rapidly inwards toward one

another in the mutant case in contrast to the cells that express wild type myosin IIB where

those populations remain stationary. Results obtained with these two systems demon-

strate how WIMS has the potential to reveal novel correlations between chosen parame-

ters that belong to different scales.
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Introduction

Fluorescence fluctuation techniques [1, 2] have been extended to the fluorescence imaging

domain, such as image correlation spectroscopy, which analyzes the intensity fluctuations in

space and time from a fluorescence image time series. Spatial correlation analysis of the images

of cells can be used to measure the surface density and aggregation state distributions of fluo-

rescently labeled receptors [3, 4]. Variants have been developed to quantify the colocalization

of different species tagged with fluorophores of different colors [5], to measure transport prop-

erties of biomolecules within the cell membrane and in the cytosol over different time scales

[6, 7], and to separate photophysical and transport contributions to the correlation function

through a Fourier space representation [8]. Analogous developments in imaging fluorescence

correlation spectroscopy use time domain correlation functions calculated from an image

series to map diffusion coefficients and concentrations [9].

Spatio-temporal image correlation spectroscopy was introduced to analyze both space and

time fluctuations and measure the velocity and diffusion coefficients of fluorescently labeled

molecules across multiple regions of cells [10]. A space-time-dependent correlation function is

calculated from the images and is fitted to theoretical models to measure local flows and diffu-

sivities of the tagged molecules. Despite its successes, information is obtained on the molecular

scale dynamics but not the macroscopic cell structural scale. Also sharp intensity changes at

cell boundaries can perturb the space-time correlation functions. Thus, a method that can

span multiple scales is desired.

In this paper, we introduce a new technique called wavelet imaging on multiple scales

(WIMS). Wavelets have been applied in a variety of fields such as computer science and geo-

physics [11]. Their transforms are mathematical operations that separate different length/time

scales in a data set and retain position/time information [12]. In contrast to Fourier trans-

forms, which are powerful when used to analyze linear periodic systems, wavelet transforms

are better suited when applied to study complex heterogeneous systems that are non-station-

ary. Cells and tissues are examples of systems that exhibit such complexity. The ability of wave-

lets to distinguish between different components as well as localize the time and/or space of an

object/event is what differentiates it from Fourier techniques. Many types of functions qualify

as wavelets, giving great flexibility in applications to identify different types of structures by

using different wavelet functions. Wavelets can form either complete or overcomplete basis

sets, depending on their application. The use of overcomplete bases involves an increase in

numerical effort when calculating wavelet transforms. However, this increase is not a signifi-

cant concern given the current state of computer processing power.

Previously, wavelets have garnered interest as a way to deconvolve images to detect hidden

structures that have been in some way obstructed [13–15]. Biophysical applications of wavelets

include a time series approach that examined single-molecule thermal fluctuations switching

between internal states [16]. Another application was as a faster alternative to fitting the cen-

troid of the point spread function [17]. Also, wavelet transforms have been used to characterize

functional signalling domains by their size from Förster resonance energy transfer images

[18]. Recently, non circularly symmetric wavelets have been devised to track the multi-orienta-

tional retinal vasculature in an image series [19].

Cells (104–106 nm) are made up of multiple components that vary in scale by orders of

magnitude. These different organizational components include proteins (5–10 nm), protein

complexes (10–20 nm) and focal adhesions (50–1000 nm). Optical resolution limits for con-

ventional widefield optical microscopy and total internal reflection fluorescence microscopy

reach a resolution of *250 nm, while super-resolution microscopy methods can reach a limit

of between *20–50 nm.

WIMS
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There have been a variety of methods developed to investigate focal adhesions in cells [20–

24]. In an effort to work around the changing morphology, Möhl et al. [20] transformed each

image of an irregularly shaped cell to fit into an unvarying circle. This mapping was used to

look at the fluorescent protein distribution and dynamics, however, the results were not trans-

formed back into the original reference frame. There has been previous work that distinguishes

between the dynamics inside and outside of focal adhesions, such as using FLIP [25] and

FRAP [26] and Raster Image Correlation Spectroscopy [27].

Other focal adhesion detection methods use thresholding (such as a high pass filter) to find

adhesions in an image, tracking their individual movement in time while collecting informa-

tion on their size, shape and lifetime [21, 22]. However, these methods are unable to identify

the internal dynamics, as well as they have difficulty tracking focal adhesions from frame to

frame when neighboring adhesions are present and adhesion mergers or separations occur.

To illustrate the technique, we will analyze a migrating osteosarcoma cell expressing paxil-

lin, a structural adaptor protein that interacts with integrins and focal adhesion kinase in

focal adhesions [28]. Using two families of wavelets, we will detect focal adhesions and their

internal dynamics as well as characterize the cell morphology and track the cell fronts of the

protruding regions. Finally, we will apply WIMS to better understand the effect of actomyo-

sin stability on the dynamic behavior of focal adhesions by contrasting the behavior of non-

muscle myosin IIB with a mutant counterpart in a Chinese hamster ovary cell. In the mutant

case, we will quantitatively describe the changes in the internal dynamics of the actomyosin

filaments that result in the breakdown of the front-back polarization of the cell. We find that

we can decompose a heterogeneous image series to obtain dynamic information and extract

specific features across multiple spatial scales spanning from the optical resolution limit to

the cell morphology scale.

Mathematical overview

Wavelet transform of images

One convenient way to filter an image and select features at specific length scales is to use con-

tinuous wavelet transforms. For a two-dimensional microscopy image, the wavelet transform

is obtained by integrating the image intensity function, I(r), in the following manner,

Tða; bÞ ¼
1

a

Z 1

� 1

dr IðrÞc�
r � b

a

� �

; ð1Þ

where a is a length scale parameter, r is the position vector in the original image, b is a position

coordinate specifying the center of the wavelet function ψ(r), and the superscript � denotes a

complex conjugate. The wavelet transform T(a, b) acts as a filter that selects features of the

original image that vary on a length scale proportional to a around the point (r = b) (the func-

tion ψ(r) is localized near the origin). Numerous functions can be used as wavelets as long as

they satisfy the following two conditions:

Z 1

� 1

dr cðrÞ ¼ 0; ð2Þ

which ensures that the wavelet transform of a constant (uniform) image vanishes and

Z 1

� 1

dr cðrÞcðrÞ� <1; ð3Þ

which guarantees that the wavelet is localized in space.
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Wavelets are more than simple filters. The original image can be recovered by inverting the

wavelet transform as follows,

IðrÞ ¼
1

cc

Z 1

� 1

db
Z 1

0

da
1

a4
Tða; bÞc

r � b
a

� �

; ð4Þ

where cψ is an overall constant that depends on the form of the wavelet function [29]. This con-

stant is defined as:

cc ¼

Z 1

� 1

dr gðrÞgðrÞ� ð5Þ

where

gðrÞ ¼
Z 1

� 1

dr
cðr0Þ

jr � r0j
:

The inverse wavelet transform is only well defined if cψ is finite. This imposes one last wavelet

condition,

0 < cc <1; ð6Þ

called the admissibility condition. Discrete wavelet transforms [30], which uses a discretized

wavelet function, can also be used in the same context.

Throughout this paper, we will use two types of continuous wavelet transforms based on

two families of wavelet functions. The first one is a common, circularly symmetric and real

wavelet function,

c
r � b

a

� �

¼ 2 �
r � b

a

�
�
�
�

�
�
�
�

2
 !

e�
r� b

aj j
2
=2

ð7Þ

called the “Mexican hat” wavelet, also known as the “Ricker” wavelet.

The second is a family of “stretched” wavelets that are extended in one direction:

cx;y

r � b

a

� �

¼ 2 �
rkðyÞ � b

a

� �2

�
1

x
2

r?ðyÞ � b

a

� �2
 !

�

e
�

1

2

rkðyÞ � b

a

� �2

þ
1

x
2

r?ðyÞ � b

a

� �2
 !

;

ð8Þ

where the elongation/compression of the wavelet along r? is determined by ξ (ξ> 1 for elon-

gation and 0< ξ< 1 for compression) and where the angle θ specifies the orientation of the

rotated wavelet about its center,

rkðyÞ ¼ x cos y � y sin y

r?ðyÞ ¼ x sin yþ y cos y;
ð9Þ

where x and y are the coordinates in the frame of the original image. All orientations can be

described using θ’s ranging from 0˚ to 180˚ due to the stretched wavelet’s two-fold rotational

symmetry. Wavelet transform coefficients obtained with the stretched wavelet, Tξ,θ(a, b), are

obtained from Eq 1 with ψ replaced by ψξ,θ. Similarly, the original image can be recovered

from Eq 4 with ψ and T replaced by ψξ,θ and Tξ,θ with cψ,ξ,θ = π (1 + ξ2)/2ξ. It is straightforward

to show that both types of wavelets satisfy the conditions given by Eqs 2 and 3.
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We decided upon these two wavelets because one is circularly symmetric (the Mexican hat

wavelet) and the other is non circularly symmetric (the stretched wavelet). Stretched wavelets

are derived from Mexican hat wavelets but with added anisotropy. They were used instead of

the more common Morlet wavelet (a Mexican hat with a plane wave through it) since the Mor-

let wavelet can have multiple waves within if scales are not carefully set resulting in a comb-

like effect with multiple peaks inside the wavelet, as opposed to the stretched wavelet, which

only has a single peak in the center.

The use of ridgelets, a combination of Radon transforms and wavelets, is another way to

obtain orientation information, particularly for edge detection applications. However, ridge-

lets, in contrast to wavelets, do not approach zero in all directions as r!1. We decided to

use a wavelet since the goal was to detect adhesions of finite length, which is better suited to a

wavelet basis in detecting and localizing them.

Methods

Wavelet transform and inverse transform

In practice, Eqs 1 and 4 are rewritten with a discrete mesh:

Tða; bÞ ¼
1

a

X

j;k
Dr IðrjkÞc

�
rjk � b

a

� �

ð10Þ

and

IðrÞ ¼
1

cc

X

j;k

Xnmax

nmin

DbDa
1

a4
n

Tðan; bjkÞc
r � bjk

an

� �

; ð11Þ

where rjk and bjk are the position coordinates of the j, k indices in the two-dimensional image

and the wavelet function, respectively, and n is the scale index parameter where nmin and nmax

are its minimum and maximum values. This reconstructs the image using a partial integration

over a that includes only the scales of interest that lie between anmin
and anmax

. The wavelet trans-

form and inverse wavelet transform coefficients are oversampled in space due to the transla-

tion invariant/shift invariant nature of wavelets [31].

The pixel size and full image dimension of the original image are insufficient to calculate

the wavelet transform coefficients at very small or very large length scales (i.e. the a in Eq 1)

when using a discrete mesh. Wavelet transforms at small length scales were performed on a

finer mesh for better numerical accuracy where 16 (4×4) mesh points all retain the value of the

each original pixel (no interpolation). This is necessary since there are not enough elements in

the original discrete representation to properly sample a continuous wavelet at small length

scales. For improved computational efficiency in calculating the large length scale wavelet

transforms, each image in the series was shrunk by a factor of four, reassigning the mean val-

ues of four (2×2) pixels to the new (coarser) mesh and this scaled down image was padded

with zeros with a border of size 3a.

The calculation time of the wavelet transform T(a, b), was shortened by avoiding the inte-

gration of the whole image in Eq 1. The integrals were bounded by a box centred at b where

the corners are at (bx ± 3a, by ± 3a) since ψ(a, b) is nearly zero outside this box. An analogous

approach was used in finding the inverse wavelet transform.

To reduce the calculation time, we implemented a parallel approach using graphical pro-

cessing units (Dual Intel Sandy Bridge EP E5-2670, 8-core, 2.6 GHz, 20MB Cache, 115W).

For the U2OS cell, the image series was of size 590 × 638 pixels × 150 frames, which involved

the introduction of a finer mesh for small length scales, a full range of equidistant a’s, and/or

WIMS
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a span of different angles/orientations for the stretched wavelet transform. We decomposed

this data set into subsets of multi-dimensional arrays. The size of a data subset is dependent

on the specific application, depending on whether we were calculating wavelet transforms or

inverse wavelet transforms, small or large scales and if we were using a range of angles. The

total number of elements from the array to be analyzed and the size of the resulting output

could not exceed the allocated memory available on a processor. The most extensive compu-

tation we did was run on 50 processors for five days and most runs involved less than 20%

of the maximum computational resources. Our code is available on GitHub (https://github.

com/toplak/wims).

The Mexican hat wavelet transforms (such as those shown in Fig 1B–1F) were calculated

for a range of scale parameters using Eq 10. Similarly, the stretched wavelet transforms were

calculated using Eq 10 for a range of angles in one of two ways: (a) with a constant a and ξ, and

(b) with variable a and ξ. For (a), the choice of a and ξ was determined by finding the set of

adhesions with the highest wavelet coefficients for a range of values, but since the adhesions in

the image are of variable lengths/widths, we selected an (a, ξ) pair that is the median value of

the adhesions detected. For (b), we calculated the stretched wavelets for multiple (a, ξ) pairs

across a broad range of values. This is used to reconstruct the image (such as in Fig 2B) by cal-

culating the local maxima of Tξ,θ(a, b) from each set of wavelet transform coefficients (in terms

Fig 1. The continuous wavelet transform filters out different spatial scales. (A) Original TIRF

microscopy image of paxillin-mKO in a U2OS cell plated on laminin and imaged at 37˚C. (590×638 pixels,

0.105 μm/pixel). The blue and green squares are regions of interest that are further analyzed in Figs 2 and 4.

(B–F) Wavelet transform coefficients T(a, b) for multiple spatial scales, a, in ascending order: (B) a = 2 pixels,

(C) a = 5, (D) a = 10, (E) a = 30, and (F) a = 60. The radius of the red circle in the upper left corner of each

wavelet transform represents the value of a. The wavelet transform coefficients are presented in an inverted

greyscale (regions of low/high intensity are lighter/darker).

https://doi.org/10.1371/journal.pone.0186058.g001

WIMS

PLOS ONE | https://doi.org/10.1371/journal.pone.0186058 October 19, 2017 6 / 24

https://github.com/toplak/wims
https://github.com/toplak/wims
https://doi.org/10.1371/journal.pone.0186058.g001
https://doi.org/10.1371/journal.pone.0186058


of b and θ) and performing the following sum over these local maxima,

IRðrÞ ¼
XL

‘

DaDb
1

a4
Tx;y‘
ða; b‘Þcx;y‘

r � b‘
a

� �

; ð12Þ

where bℓ and θℓ indicate the location of the ℓ local maxima, with the total number of local max-

ima indicated by L. In order to recreate the configuration of the adhesions in the original

images, we devised an automated routine to map out the location, orientation and size of adhe-

sions. The algorithm calculates the wavelet coefficients for multiple scales and angles and finds

their local maxima. The local maxima are arranged in descending order with the adhesion

with the largest maxima placed first. Additional adhesions are placed one at a time, ensuring

that potential adhesions do not overlap with any previously established adhesions, and iterate

through the list of all local maxima. Potential adhesions with large wavelet coefficients are

given priority but will not be placed if a previous adhesion is established in the same region.

Each adhesion’s region is defined as an oriented ellipse with major and minor axes of size a
and ξ. Fig 2B shows the reconstructed image, IR(r), obtained from this procedure when the

sum is performed over all maxima found that are at least 10% as high as the wavelet coefficient

of the highest local maximum. The entire image of the cell is reconstructed in S1 Fig. The

inverse wavelet transforms from both families used Eq 11. The boundary was determined by

first calculating the wavelet transforms, followed by the inverse wavelet transform for the

coarsest scales. We then applied a threshold to find the boundary. The choice of the smallest

scale in the inverse wavelet transform will determine the degree of accuracy of the boundary

when compared to the actual cell edge (the difference being less than or equal to a).

This process was carried out across all the frames in the image series in order to track the

appearance and disappearance of each adhesion as well as any changes in position and orienta-

tion. We assumed that an adhesion found in consecutive frames was the same adhesion if the

position of the adhesion in the second frame was within an elliptical region with major and

minor axes of size a and ξ, centered at the first adhesion and their orientations were within 10˚

of each other as long as it was not already linked to a previous adhesion that had a larger wave-

let coefficient.

Fig 2. Wavelet mapping the location and orientation of the most prominent adhesions. (A) The region

of the original image bound by the blue box in Fig 1A. (B) A spatial map of the amplitudes greater than 10% of

the highest amplitude obtained by the wavelet transform across multiple orientations of stretched wavelets

with parameters a = 10 and ξ = 1.5.

https://doi.org/10.1371/journal.pone.0186058.g002
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The internal dynamics within the adhesions first used the results from the reconstruction of

Tξ,θ(a, b) from a single frame. A one-dimensional profile of each adhesion was found by taking

a cross-section centered at the position, b, of the local maxima along its orientation, θ, extend-

ing to the cell boundary on one side and an equal length in the opposite direction. This line,

x(t), remained fixed in position and orientation (t = 0 in S2 and S3 Figs) as cross-sectional data

from the original image series was collected for the 20 frames preceding and following this

frame to investigate the dynamics. The data above the mean of the maximum and minimum

intensity were fit to a function, ϕ(x, t), consisting of a mixture of two Gaussians:

�ðx; tÞ ¼ A0
1
ðtÞe� ðxðtÞ� b1ðtÞÞ

2=2a2
1
ðtÞ þ A0

2
ðtÞe� ðxðtÞ� b2ðtÞÞ

2=2a2
2
ðtÞ ð13Þ

where the amplitude of the peaks are A1;2 ¼ A0 þ A0
1;2

, A0 is the minimum intensity, α1,2(t) is

the standard deviation of each peak and β1,2(t) is the location of the center of each peak. We

used a constrained minimization to fit Eq 13 to ensure the amplitudes of both peaks were

greater than zero. Occasionally there are errors in the tracking algorithm when it flips

between fitting one peak or two within an adhesion. When fitting velocities these stray peaks

are ignored.

Three different methods were used in determining the size and number of peaks for the

one-dimensional profiles of the myosin IIB/vinculin data. The first method smoothed the data

and found the local extrema. The peaks were arranged in order of their prominence, that is,

the largest difference in local maximum and both adjacent local minima. Differences were also

found between local maxima located between an adjacent local maximum and the second

nearest local maximum in case a peak has a double hump profile. These peaks were fit with a

Gaussian or a mixture of two Gaussians (Eq 13) for each interval between each pair of local

minima. The second method involved taking the second derivative of the smoothed data and

finding the local extrema. Mexican hat wavelets were fit to the derivative peaks and the size of

the original peaks were found by integrating these wavelets twice. Finally, a wavelet composed

of the sum of two Lorentzian functions was used:

‘ðxÞ ¼
1

pg
1þ

x � x0

g

� �2
" #� 1

�
1

2pg
1þ

x � x0

2g

� �2
" #� 1

ð14Þ

where γ is the Lorentz term and x0 is the location of the center of the peak. This function meets

the criteria of a wavelet since it has compact support
� R1

� 1
j‘ðxÞjdx <1

�
and finite energy

� R1
� 1
j‘ðxÞj2dx <1

�
. This wavelet is similar in shape to the Mexican hat except it has very

long tails to ±1. This is in order to minimize the effects of the two negative regions on each

side of the peak. The fits that are coincidental with all three methods were kept in our analysis.

1 Results

Cell morphology detection and delineation

A fluorescence microscopy image time series of a cell expressing fluorescently-labeled proteins

will have structures and processes that span across multiple length and time scales. Our ability

to measure these properties depends on resolution, field of view, time sampling and the bright-

ness of the fluorescent probes tagged to the macromolecules of interest. For example, Fig 1A
shows a U2OS cell (an osteosarcoma cell line, [32]) expressing the fusion construct paxillin-

mKO (a focal adhesion-associated adaptor protein, [28]), which has been imaged via total

internal reflection microscopy (see Supplementary Materials). In this image, several character-

istic length scales can be observed: the overall size/shape of the cell as well as the length/width

WIMS
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of focal adhesions down to the spatial resolution limit set by diffraction and aberrations. It is

advantageous to analyze the time behavior of the cell components at each of these length scales

independently. This can be done using the wavelet transforms introduced in the Mathematical

Overview.

Fig 1B–1F shows the wavelet transform T(a, b) of the image of the cell in Fig 1A. These

were obtained using the Mexican hat wavelet function, Eq 7, to calculate the continuous wave-

let transform given by Eq 1. The small a wavelet transform, Fig 1B, reveals the fine details of

the image while the larger scale transform, Fig 1F, outlines the overall morphology of the cell.

Fig 2 shows a side by side view of the original image (Fig 2A) and a reconstructed image

(Fig 2B) composed entirely of stretched wavelets that are positioned and oriented with respect

to the highest registration in their surroundings. The reconstructed image in Fig 2B is made

up of 180 angles, θ, in increments of one degree, with a = 10 and ξ = 1.5 pixels. Stretched wave-

lets with higher wavelet transform coefficients (shown in red/yellow) detect the adhesions with

the highest intensities.

We now show that the shape of the cell boundary can be obtained by inverting the wavelet

transforms from a subset of the larger a’s, such as those shown in Fig 1D–1F. This is accom-

plished by using Eqs 10 and 11 where anmin
= 20, anmax

= 200 and Δa = 4. The results of this proce-

dure are depicted in Fig 3, which shows the outlines of the cell boundary for two images. In

addition to the large scale features, Fig 3 also shows the configurations of the focal adhesions

detected in the middle frame (color coded by region). In addition, the internal dynamics of each

focal adhesion are visualized, where each symbol indicates a separate cluster of proteins inside a

particular adhesion. The translational velocity of adhesions is small in comparison to the inter-

nal dynamics within the adhesions. The internal dynamics will be revisited later in this paper.

Detection of focal adhesions

Focal adhesions are elongated and oriented along one direction (with their long axis roughly

perpendicular to the cell boundary). In order to detect the focal adhesions we require a method

to identify adhesions using scales that match their length, width and characteristic orientation.

The stretched wavelet is used for this purpose (Eq 8).

Fig 4 focuses on a small region of interest in the image (green box in Fig 1A) that shows

seven focal adhesions that are similarly oriented. The wavelet transform of that region of the

image is performed with the stretched wavelet with a = 10, ξ = 1.5 (the wavelet is over six times

longer than its width) and at various orientations. Fig 4C and 4D show that the amplitude of

the wavelet transform is large when the orientation of the focal adhesions and that of the wave-

let function match. In contrast, the wavelet transforms shown in Fig 4B and 4E were per-

formed with a stretched wavelet orientation that does not match that of any of the focal

adhesions. Hence, the amplitude for these two panels is drastically reduced. Note that the pro-

cedure is capable of detecting slight variations in orientation of the focal adhesions. This is evi-

dent from the focal adhesion in the bottom right of Fig 4A, which has a slightly different

orientation than the other focal adhesions in the rest of the image. This adhesion is brighter in

Fig 4D than its neighbors, which appear brighter in Fig 4C. This means that the wavelet coeffi-

cients in this region are at their maximum at this slightly different orientation, (differing by

18˚ from Fig 4C). This adhesion is being picked up in both Fig 4C and 4D, but the coefficient

is highest in Fig 4C. The wavelet coefficient at this position and angle has contributions from

both the central adhesion and the neighboring adhesion on the same axis but it is still not as

elevated as much as the same coefficient in Fig 4C. This additional contribution from the

nearby adhesion would still be visible at other angles in the same range. The signal is maxi-

mized at a specific angle, but nevertheless detectable at others.

WIMS
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We can approximate and rapidly reconstruct the gross features of the focal adhesion distri-

bution using the stretched wavelet coefficients across all angles (such as those shown in Fig 4)

and assemble them as shown in Fig 2. The stretched wavelet transformed coefficients, Tξ,θ(a,

b) are computed from a smaller region of interest in the cell image shown by the blue box in

Fig 1A and here reproduced in Fig 2A. The family of stretched wavelets used to reconstruct

the image in Fig 2B uses a = 6 pixels and ξ = 1 across 180 different angles, θ. The results show

that by using the right wavelet (here, a stretched wavelet that is similar in shape to the focal

Fig 3. Multi-spatial scale cell information via wavelet analysis: Cell boundary tracking, detection of

focal adhesions and internal dynamics. The movement of the cell boundary occurs over the course of 200

s (40 frames) where the green line is the boundary of the retracting region that the cell vacated, the red line is

the boundary along the protruding region that the cell has entered and the blue line envelopes the region

where the cell has remained over this time. The ellipses represent the focal adhesions detected at the midway

point (100 s), and are enlarged by a factor of two to display the internal dynamics. The green and yellow

ellipses are adhesions in the retracting region, red and pink adhesions are part of the protruding region, white

adhesions are between the protruding and retracting adhesions yet still at the cell periphery and the blue are

adhesions in the central region of the cell. The yellow and pink ellipses highlight special cases that are unique

to each region. Each arrow and dot inside an ellipse represent the presence of a sub population within each

adhesion, where arrows show the direction of motion of a translating sub population and dots show sub

populations, which remain stationary.

https://doi.org/10.1371/journal.pone.0186058.g003
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adhesions), the main features of the original image on a given scale can be reconstructed with

only a few wavelet coefficients. Moreover, the number of maxima that were found is L = 92,

which is a measure of the number of focal adhesions in the image.

We can take this a step further by expanding the wavelet family to include a range of scale

parameters a and ξ in calculating stretched wavelet transforms as shown in Fig 5. In Fig 5A

and 5B we are able to reconstruct the gross features of the focal adhesion distribution of two

U2OS cells: one plated on the extracellular matrix protein laminin (Fig 5A) and the other

plated on the extracellular matrix protein fibronectin (Fig 5). In each image, the entire set of

stretched wavelet transforms were calculated using all combinations of a = {4, 5, 6 . . . 19, 20}

pixels and x ¼ f1

2
; 1; 3

2
g pixels across 360 different angles, θ. In Fig 5A, L = 201 adhesions were

found inside the cell plated on laminin, while in Fig 5B, L = 62 adhesions were detected on

fibronectin. The adhesions in Fig 5A and 5B were binned by their scale, a, as shown in Fig 5C

and 5D. Fig 5C shows that the majority of adhesions in Fig 5A were greater than the minimum

scale (a = 4) and were detected across the entire range (a = 4 – 20), tapering off in number as

the scale increased. This is in contrast to Fig 5D where nearly all of the adhesions (56/62) in

Fig 5B were grouped in the minimum scale (a = 4).

We observe that the morphology of the fibronectin-plated cell (Fig 5B) is less polarized and

active than its laminin-plated counterpart, which has an irregular boundary and contains

larger adhesions (Fig 5A). The identification of different numbers and sizes in adhesions in

U2OS cells on laminin and fibronectin by WIMS opens the possibility of establishing addi-

tional correlations with the level of cell activity and shape.

Cell boundary and focal adhesion analysis

Fig 6A counts the number of adhesions detected, Fig 6B measures the arc length of the expand-

ing cell front and Fig 6C measures the area of the two protruding regions shown in Fig 3,

which are plotted as a function of time. The shaded regions of Fig 6A–6C shows the timeframe

of the dynamics in Fig 3 relative to the entire image series. Initially (t = 1 – 300 s), both regions

expand outwards rapidly before slowing down, with the bottom left front moving at 1.80±0.16

μm/min and the top right front moving at 1.65±0.13 μm/min, respectively, where the cell front

velocities were found by tracking the movement of the cell boundary in the protruding region.

The bottom left protruding region shown in black in Fig 6A–6C developed many adhesions

during this time, peaking at 450 s, with the adhesions gradually decreasing for the remainder

of the image series. The top right protruding region shown in blue stops protruding at the 300

s mark, with the number of adhesions, arc length and area all plateauing. In fact, the arc length

and area both decrease slightly, due to the two sides retracting inward as shown in Fig 3. The

Fig 4. Stretched wavelet transform coefficients represented as heat maps for four different wavelet

orientations. (A) 36×36 pixels image extracted from the green box in Fig 1A. (B–E) Stretched wavelet

transform coefficients, having units of [pixels]2 of spatial frequency 1/(aδr). The parameters of the stretched

wavelet were a = 10 and ξ = 1.5 with θ values of (B) θ = 180˚, (C) θ = 144˚, (D) θ = 126˚ and (E) θ = 90˚ (see Eq

8). Note how it maximally registers for those adhesions in the matched orientations, indicated by the red

amplitude.

https://doi.org/10.1371/journal.pone.0186058.g004
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number of adhesions during this downward trending interval remains constant, in contrast to

the bottom left region that loses large and elongated adhesions. At the beginning of the image

series (t = 1 – 300 s), we observe the number of adhesions, arc length and area to be linear (Fig

6A–6C). With this information, we find a relationship between the product of the velocity of

the front, duration of activity and arc length with the number of adhesions each region has.

This correlation results in a constant of 2.97 adhesions/μm2 for the bottom left region and 0.70

adhesions/μm2 for the top right region, with the larger bottom left region having a greater den-

sity of adhesions. Comparing between both regions, 4.3× as many adhesions are mobilized in

the larger bottom left region compared to the top right region.

At a given time, we detected approximately 130 adhesions and we studied over 150 time

frames in the entire image series, which we grouped into bins based on their orientation and

Fig 5. Finding adhesions of different sizes in U2OS cells using stretch wavelet transforms. (A) An

image of a U2OS cell plated on the extracellular matrix protein laminin (10 μg/mL). (B) An image of a U2OS

cell plated on the extracellular matrix protein fibronectin (2 μg/mL). Green ellipses show the detection of the

position and the orientation of the adhesions found via stretch wavelets. The major and minor axes of each

ellipse represent the length and width parameters, (a, ξ). (C) Histograms of the length scales (a) of the

adhesions plated on laminin. (D) Histograms of the length scales (a) of the adhesions plated on fibronectin.

Bin size 0.105 μm (1 pixel) for both. Note that adhesions of longer lengths (a) as well as a greater number of

total adhesions are detected in the cell plated on laminin compared to its fibronectin counterpart.

https://doi.org/10.1371/journal.pone.0186058.g005
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distance to the cell boundary (Fig 6D–6F). Fig 6D is a histogram that shows the likelihood that

an adhesion’s orientation will be normal to the tangent line of the cell boundary. The great

majority are nearly perpendicular, where 54.0% are between 75–90˚ and 84.4% are between

60–90˚. This is also noticeable in Fig 3 by the configurations of the adhesions across all regions

relative to the tangent lines at the boundary. Fig 6E sorts the angles in Fig 6D into bins by the

distance from the cell boundary to each adhesion before averaging each bin. Fig 6F shows the

number of adhesions in each bin in Fig 6E. There are very few adhesions located close to the

cell boundary (less than 1 μm), but as the counts increase with the distance, the angle begins to

approach 90˚. Over half (51.7%) of the adhesions are located between 2.0–3.5 μm away from

the cell boundary, with the maximum number of adhesions (919) located at 2.8 μm.

Description of the internal dynamics of adhesive structures

Ten different types of internal dynamics were observed within the adhesions, as shown in Fig

3, with a few limited to specific regions of the cell. This is in contrast to the negligible transla-

tional motion of the adhesions as a complex. Each of the adhesions are color coded by region,

with the colors matching the cell boundaries of the red protruding, green retracting and blue

Fig 6. Dynamic information and distribution analysis from wavelet analysis. (A–C) highlights dynamic information obtained via

wavelet analysis from (A) the adhesion scale, and (B, C) across the whole cell for the two protruding regions of the cell shown in Fig 3, with

the region in the top right corner in blue and the region in the bottom right corner in black. The light gray background illustrates the time

period pertaining to Fig 3, S2, S3 and S4 Figs. (A) The number of adhesions detected as a function of time. (B) The arc length of the cell

fronts in the protruding region over time. (C) The area swept out by the protruding regions over time. (D–F) Information obtained from all the

adhesions detected throughout the image series across all regions grouped into 100 bins. (D) The distribution of the angle between the

orientation of an adhesion and the tangent line of the nearest cell boundary to the adhesion. The majority of adhesions are found to be

perpendicular to its targeted cell boundary. (E) A plot of the mean angle in (D) separated by the distance between each adhesion and its

corresponding cell boundary. The black line is at 90˚ (F) The distribution showing the prevalence of the adhesions categorized by distance in

(E).

https://doi.org/10.1371/journal.pone.0186058.g006
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central regions. The white adhesions are uncategorized as they do not appear to distinctly

belong to either the protruding or retracting regions. The pink adhesions highlight colliding

adhesions in the protruding region and the yellow adhesions show examples of sub popula-

tions changing directions in the retracting regions. The protruding, retracting and central

regions are equally well represented in Fig 3, with each of these regions containing between

39–42 adhesions. Refer to S1 Table for a complete breakdown of the number of occurrences of

each. A selection of ten of the cases in S1 Table (in bold and italics) have been included in S2

Table to compare the velocities of the sub populations detected within the adhesions.

We can detect a wide range of behaviors inside the adhesions characterized by Fig 3, which

we catalog in S2, S3 Figs, S1 and S2 Tables. We will highlight two cases in detail, one in the

retracting region (Panel D in S2 Fig and Panel D in S3 Fig) and one in the protruding region

(Panel F in S2 Fig and Panel F in S3 Fig). We plotted the trajectory and size of each cluster in

S2 Fig where the center of each circle charts the cluster position at a given time (β1,2(t) in Eq

13), the radius represents the amplitude above the mean (A0
1;2
ðtÞ) of the peak and the line

thickness of each circle represents the width of the peak (α1,2(t)). S3 Fig shows the size of each

sub population, using the amplitude and peak width information to find the area under each

Gaussian peak (the intensity/size of the peak). The dotted lines show the position of the cell

boundary in time. We define i as a unit of fluorescence intensity from the image. In the retract-

ing region, Panel D in S2 Fig shows a case of one sub population (in green) moving at the same

velocity as the cell boundary (0.29 μm/min). Another cluster (in blue) initially moves towards

the cell boundary (with a velocity of 1.08 μm/min) before switching directions to match the

velocity of the other cluster and the cell rear. The latter cluster stays relatively constant in size

while the initially larger unidirectional cluster becomes smaller at a rate of 22 i/s. In the pro-

truding region, Panel F in S2 Fig shows an example of two colliding clusters, where one cluster

(in blue) translates away from the cell boundary (−0.42 μm/min) while another cluster (in

green) moves towards it (0.39 μm/min). Before their collision at 30 s, they both increase in size

(the blue cluster at 36 i/s and the green cluster at 24 i/s). However, immediately after the colli-

sion the green cluster loses over half its size before recovering, while the blue cluster continues

its gains (possibly at the expense of the green cluster) before a sharp decrease in size.

The six cases presented in S2 and S3 Figs of the possible range of dynamics within adhe-

sions shows we can quantify many aspects of their behavior. First of all, multiple sub popula-

tions can be separated within a single adhesion where we can then differentiate multiple

forms of transport. Reliable quantitative estimates of the varying intensities in time helps

gain insight into the growing or shrinking of sub populations (including their appearance/

disappearance), which allows for direct comparisons between nearby members. It also regis-

ters the time when major events occur, such as collisions or changes in direction, as well as

the duration a sub population is in a certain state. Finally, incorporating the cell boundary

details allows for a useful comparison between the velocity of the cell front/rear and the

internal velocities of the adhesions.

Internal dynamics categorization

S4 Fig shows the regional distribution of velocities of the diverse sub populations inside the

adhesions shown in Fig 3, where the internal velocities are separated into (A) the protruding

region (26 red and 16 pink adhesions in Fig 3), (B) the retracting region (35 green and four yel-

low adhesions in Fig 3), (C) the central region (39 blue adhesions in Fig 3), and (D), the inter-

secting region adjacent to both the protruding and retracting regions (the ten white adhesions

in Fig 3). The red bars on the positive side represent the number that move away from the cell

boundary, while the blue bars represent those that move in the direction towards the cell

WIMS
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boundary. These sub populations are sub-adhesion clusters identified by fitting a two Gaussian

mixture, not the adhesion itself. The majority of the sub populations in all of the regions con-

sistently move away from the cell boundary, with 62/82 (76%) in the protruding region and

71/83 (86%) in the retracting region. This is even the case in the central region (Panel C in

S4 Fig) where the separation between an adhesion and cell boundary is at least 4 μm (60/

80 = 75%). There are many more directed towards the cell boundary in Panel A in S4 Fig, the

protruding region, than there are in the other regions of the cell, due to the 16 colliding cases

(the pink adhesions in Fig 3) with a mean velocity of −0.52 ± 0.12 μm/min (refer to S2 Table).

The four cases with switching behavior in Panel B in S4 Fig, the retracting region (the yellow

adhesions in Fig 3), are present with a mean velocity of −0.57 ± 0.33 μm/min (S2 Table). Over-

all, the positive velocities tend to be larger in the retracting region compared to the protruding

and central regions, having twice as many translating at a velocity between 0.5 to 1.0 μm/min.

The protruding and central regions contain many more velocities near zero, although there

appears to be a slight yet noticeable translation away from the cell boundary in the protruding

region as evidenced by the higher ratio of red to blue sub populations around zero in Panel A
in S4 Fig compared to the central region that by definition is distant from any cell boundary,

evident from the nearly equal likelihood it would lean positive or negative for stationary

cases. This result indicates that large adhesions can undergo a small translation away from the

boundary, which may be due to the drag of retrograde actin flow. This could be tested by

extending the approach to two color channels and measuring the actin flow simultaneously

[33].

WIMS quantitatively describes the alterations to the internal dynamics of

actin and adhesions induced by the introduction of a point mutation in

NMII-B

We now apply WIMS to a Chinese Hamster Ovary (CHO.K1) cell that expresses a mutant

myosin II-B form (1935D) that displays decreased filament stability [34] compared to its wild

type control to quantify the internal dynamics of the actin/myosin interaction and their effect

over adhesion dynamics. In Fig 7A and 7B we show a typical actin filament in the cell express-

ing the 1935D mutant of NMII-B. Fig 7 illustrates how we extract information about the inter-

nal dynamics by first identifying an adhesion situated at a specific position and orientation

using stretch wavelets. From this, we take cross-sections along the major axis of the adhesion

in time for both vinculin and myosin (across both channels) to detect and characterize the

dynamics of different populations for each protein. Fig 7A depicts, on the left, the distribution

of the NMII-B 1935D mutant in a CHO.K1 cell devoid of endogenous NMII-B with superim-

posed ellipses to represent the spatially resolved adhesion found from the stretch wavelet trans-

forms. The right panel represents the localization of vinculin in the same area. This panel also

depicts a graphical representation of the determination of the center of mass of each separate

protein population at a given time. In general, vinculin illuminates the adhesions that decorate

the ends of the myosin II-defined actomyosin cables that support the adhesions. When exam-

ined in a time-lapse image series, we find that the centers of mass of vinculin along a straight

line defined by the centers of mass of the myosin II move towards each other following a linear

path, suggesting that they are part of the same larger-scale structure (Fig 7B). These measure-

ments also allow us to estimate the velocity of these populations (Fig 7B).

Fig 7C and 7D show the velocity histograms obtained for adhesions in CHO.K1 cells

expressing the wild type and 1935D NMII-B forms for myosin IIB (Fig 7C) and vinculin (Fig

7D). In Fig 7E, we combine the myosin and vinculin velocities for each cell type and partition

them into a histogram. The average velocity of the mutant anchors is nearly five times the
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Fig 7. Internal dynamics of the actin filaments in a CHO.K1 cell expressing a mutant NMII-B. (A) The

images of the myosin channel (left column) and the vinculin channel (right column) in the mutant myosin IIB

cell at t = 10.0 min. The green ellipse shows the detection of the position and the orientation of the actin

filament found via stretch wavelets and the yellow arrows pointing to yellow circles show the internal peaks of

both the myosin and vinculin populations. (B) The trajectories of the myosin and vinculin poles pulling inwards

for the example in (A). The vinculin poles are shown in red and the myosin poles are shown in blue. A line of

best fit is included for each population. (C) Histograms of the myosin IIB velocities for the mutant (shown in

blue) and the wild type case (shaded light gray). (D) Histograms of the vinculin velocities for the mutant (in

red) and the wild type case (shaded light gray). (E) Histograms of the combined myosin IIB and vinculin

velocities for the mutant (shown in purple) and wild type cases (shaded light gray) for all actin filaments. The

velocities in the mutant case are faster than the wild type. The inset shows the histogram of the difference in

velocities between a vinculin/myosin pair (~vv � ~vm) for both the mutant case (shown in green) and the wild

type case (shaded light gray), where the vinculin velocities for the mutant cell are consistently higher than the

myosin velocities. Bin size 0.03 μm/min for both.

https://doi.org/10.1371/journal.pone.0186058.g007
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velocity of the wild type (0.10±0.07 μm/min vs. 0.022±0.015 μm/min). Wild type NMII-B is

very slow, with an average velocity of 0.016±0.010 μm/min, moving inwards. As is the case in

the mutant cell, vinculin is faster than the myosin (0.028±0.017 μm/min vs. 0.016 μm/min).

The differences in velocity between vinculin and myosin populations (Δv = vv − vm) that are

found at the same pole are shown in the inset of Fig 7E. In the wild type case, Δv is clustered

around zero, while in the mutant case, vinculin is faster than the 1935D mutant, resulting in

most trajectories appearing like that shown in Fig 7B and the center of mass of vinculin gets

closer to the center of mass of the 1935D by moving at twice the speed on average (0.13±0.07

μm/min vs. 0.07±0.07 μm/min).

Although it was previously known that the NMII-B 1935D mutant negatively affected the

stability of actomyosin bundles from the overall lack of front-back polarization of the cell and

that the NMII-B filaments turned over frequently [34], the mechanisms responsible were not

specifically identified. With WIMS, we observe that both mutant and wild type cells have

detectable populations of both vinculin and myosin at both ends of the actomyosin filaments.

In the wild type case, these populations remain stationary, whereas in the mutant case, the fila-

ments are no longer locked in place, resulting in all of the populations at the poles to move

inward.

Discussion

Wavelet imaging at multiple scales is a technique that combines several individual functions

into a single tool by its ability to decouple cell dynamics and features across multiple spatial

scales. At fine scales WIMS is a technique that can analyze diverse behavior of multiple clusters

existing in the same focal adhesion to coarse scales where it can reveal large scale details such

as the relationship between the number of adhesions and the cell boundaries. This approach

provides insight into the mechanisms governing individual focal adhesions (both macroscop-

ically and internally), as well as collectively based on type and region. Finally, we can integrate

the information acquired across different scales to discover relationships such as that between

the cell boundary velocity and the adhesion dynamics (Panels A,B,D in S2 Fig).

There is a noticeable difference in the internal dynamics of the actomyosin bundles between

the wild type and mutant variant CHO.K1 cells, which may be explained by considering the

stability of the filaments themselves. The coupling of the adhesive strength of the focal adhe-

sions to the substratum and the interaction between actin and myosin that takes place at the

filaments that define the adhesions generally results in a state of dynamic equilibrium, result-

ing in very slow inward movement of the adhesion and the filaments themselves. The data

presented here show that reducing the stability of the filaments by introducing a mutation to

myosin II promotes an imbalance that results in a strong inward movement of both the myosin

II and the adhesion. The mutant myosin II-B mini filaments are less stable and consequently

more easily pulled by the retrograde flow of the filament.

The subsequent shortening of the mutant NMII-B bundles is likely due to increased suscep-

tibility to depolymerization of the actin filaments that underlie the myosin II-B bundles, which

would be a consequence of the reduced stability of the overall structure. This is supported by

evidence that indicates that unravelling of the actomyosin bundles render the filaments more

susceptible to depolymerization [35].

Although the movement of the wild type NMII-B is almost negligible, some centripetal

movement remains, indicating that, by default, actomyosin bundles are not in perfect steady-

state, undergoing modest disassembly over time. The range of velocities for both the myosin

and vinculin dynamics in the wild type cell are on the same order with the magnitudes found

using STICS [36], where the actin and vinculin magnitudes were approximately 0.05 μm/min.
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In the U2OS cell from Fig 1, adhesions in the protruding and retracting regions share

some similar dynamics, however key differences were (a) the presence of separate colliding

populations in adhesions in protruding regions and (b) two populations initially colliding

but then one population changes direction in retracting regions. Previous methods have not

been able to distinguish between multiple populations within adhesions, and when using

Fourier methods only the dynamics of the dominant peak is observed, or in the case of each

population having similar size yet moving in opposite directions, they would negate each

other [37]. Our results point to a more complicated system than simple sliding and treadmill-

ing models provide.

Our technique is able to take an image series of a heterogenous cell and break it down into

its base components visualized via fluorescence: the cell boundary, focal adhesions and the

structures within the adhesions (Fig 3). It serves as a multi-purpose tool when previously a

large set of separate techniques would be needed to cover a wide range of spatial and temporal

resolutions. Techniques such as photon-counting histogram [27] and number and brightness

analysis [38] measure dynamics, aggregation levels and the exchange of adhesion components,

but do not bridge to the larger scale of the entire cell. A combination of approaches may be

useful where WIMS targets the molecular measurements to key areas of dynamic turn over

during cell migration.

In Fig 5, WIMS characterized the expected differences between adhesions on both a lami-

nin and fibronectin substrate. We have previously described the contrasting behaviours of

cells on different substrates [39]. In that study, we investigated the role of different integrin

receptors and substrates in the control of the adhesive and migratory mechanisms for various

cell types, including CHO.B2 and U2OS cells. We found that cells plated on laminin migrate

and protrude more quickly than those plated on fibronectin. In particular, U2OS cells spread

and migrate spontaneously on laminin with their adhesions elongating quickly, in comparison

to these cells adhering to fibronectin, both due to integrins [39]. Fig 5 showed that WIMS can

characterize adhesions regardless of their size or substrate and can quantify their contrasting

biologically relevant behaviours.

Spatio-temporal image cross correlation analysis [40] cannot distinguish between the

dynamics within adhesions and outside them unless they occur on different time scales. It

compartmentalizes a data set into a grid, where each region of interest is analyzed using win-

dowed Fourier transforms, which may lead to artifacts such as ringing. This is particularly

problematic at the edges (regions with a sharp drop in intensity), especially at protruding

edges, due to significant spatial heterogeneity. WIMS can be used on the same microscopic

data series as the Fourier techniques. Since there are potentially unlimited families of wavelets,

which have their own built-in parameters (e.g. orientation for stretch wavelets), as well as a

range of scales, a, it is important to adapt your choice of parameters for your particular pur-

pose or application. Narrowing down your possibilities will alleviate or reduce the longer com-

putation times required for analysis.

Recent advances in super-resolution microscopy, such as photoactivation localization

microscopy [41, 42], scanning angle interference microscopy [43] and more recently pat-

terned-activation nonlinear structured illumination microscopy [44] have emerged allowing

us to image individual molecules and sub-regions of adhesions across an entire cell. Since

WIMS is a mathematical technique, it can be used together with super-resolution techniques.

Wavelets are an effective method to characterize the perimeter and area of a cell in tracking

the movement of the boundary as well as any changes in cell shape. The results are comparable

to those achieved using level set methods [45], a numerical method that involves first knowing

the morphology of a cell, which is used together with a propagating front to iteratively fit to

the contours of the cell over all of the frames [46]. Although the wavelet method worked well,
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the morphology of the U2OS cell was smooth and continuous, and would have inferior results

compared to the level set method in cases of boundaries with steep discontinuities such as

those found in neurons, as well as cell boundaries translating with wildly changing velocities.

This is a shortcoming of the choice of wavelet, not WIMS; selecting or designing a wavelet that

incorporates such discontinuous features (such as any from the Daubechies family [31] would

have comparable results to those obtained from level set methods.

In this paper, we illustrated the power of wavelet transforms to analyze an image time series

of a cell and obtained a wealth of information on the cell’s dynamics at different spatial scales.

We have shown that wavelet transforms can be used to study the dynamics of cell morpholo-

gies, focal adhesion disassembly and formation as well as the microscopic dynamics that drive

these larger scale processes. The translational motion of the focal adhesions can be tracked

with wavelets as a comparison tool to the internal dynamics of the multiple clusters within the

adhesions. We are able to separate individual adhesions that are clustered together and isolate

their dynamics. We have the ability to classify adhesions based on their locations in the cell

and their internal dynamics.

Here we have demonstrated some of the capabilities of the method as applied to a migrating

cell in a simple tissue culture system, and to characterize dynamic differences for cells express-

ing a mutant form of myosin II-B relative to wild type. A great promise of this approach is that

it can be readily extended beyond just spatial wavelets and generalized to two or more detec-

tion channels. These extensions will enable studies that can correlate information from multi-

ple molecular constituents and bridge to the scale of the organelle and cellular level output

behavior. We are currently working on such applications.

Supporting information

S1 Fig. Image reconstruction. Reconstructed image of the entire cell shown in Fig 1A using

stretched wavelets of fixed size and shape (a = 10 and ξ = 1.5) and 180 orientations. The 250

largest wavelet transform coefficients were used. 590×638 pixels, 0.105 μm/pixel, frame 80 of

150.

(EPS)

S2 Fig. Plots representing the shape and position of the wavelet peaks detected within the

adhesions as a function of time. The dashed line is the position in time of the cell boundary

each adhesion is oriented towards. The colors blue, green and red are used to distinguish

between different clusters, with each color matching its corresponding intensity in S3 Fig.

The radius of the circle represents the peak amplitude and the width of the line of each circle

is the peak width. The cases are organized into protruding (A–D) and retracting regions (E
and F). (A) Two stationary peaks, where the velocity of both stationary clusters and the cell

rear is the same at 0.04 μm/min and the green peak closer to the cell boundary decreases in

size while the blue peak increases in size. (B) Two translating peaks, moving away from the

initial position of the cell boundary (the clusters and the boundary all moving at 0.45 μm/

min). (C) Three successive translating peaks, each moving away from the cell boundary at

0.47 μm/min (green), 0.68 μm/min (blue) and 0.63 μm/min (red). (D) Two peaks that ini-

tially collide but soon after the blue peak changes direction, resulting in both moving away

from the boundary. (E) One stationary peak and one translating peak (moving away at 0.08

μm/min moving from the cell boundary, which moves in the opposite direction (at −0.27

μm/min). (F) Colliding peaks. Refer to S3 Fig for corresponding intensity plots for each of

these sub populations.

(EPS)
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S3 Fig. Plots showing the intensity contribution of the sub populations within each adhe-

sion over time corresponding to the six cases presented in S2 Fig. The colors of each case

match the shape and position of the clusters in S2 Fig. (A) Two stationary sub populations.

The sub population nearest to the boundary (in green) decreases in size by 5 i/s, while the sub

population furthest from the boundary (in blue) increases by 6.5 i/s, eventually overtaking the

green cluster in size. This may be evidence of component exchange between sub populations,

as there is no translation of either cluster although one cluster grows while the other one

shrinks, with the net result of proteins being transported away from the cell boundary. (B)

Two sub populations moving away from the cell boundary. The leading cluster (in green)

remains the same size at the beginning, whereas the trailing cluster (in blue) initially grows,

plateauing at double the size of the leading cluster, before both clusters drop at a rate of 40 i/s
at approximately the same time. (C) Three sub populations moving away from the cell bound-

ary. The three successive clusters each grow at a rate of approximately 40 i/s and then immedi-

ately diminish in size. (D) One sub population (in green) moving away from the cell boundary

and one (in blue), which initially moves towards the cell boundary but changes course and

finally moves away from it. (E) One stationary sub population (in green) and one (in blue)

moving away from the cell boundary, which moves in the opposite direction (at −0.27 μm/

min). The translating cluster (in blue) grows at 20 i/s before diminishing in size at 18 i/s. The

stationary cluster (in green) grows at 12 i/s before it also drops in size at 13 i/s. The blue cluster

plateaus approximately 15 s before the green cluster. (F) Two colliding adhesions, one (in

green) moving towards the cell boundary and one (in blue) moving away from the cell bound-

ary. We define i as a unit of fluorescence intensity from the image.

(EPS)

S4 Fig. Regional distribution of the internal velocities of the adhesions shown in Fig 3. (A)

protruding region, (B) retracting region, (C) central region, and (D) the intersecting region

between the protruding and retracting regions. Positive velocities (shown in red) move away

from the cell boundary while negative velocities (shown in blue) move towards the cell bound-

ary. Bin size of 0.1 μm.

(EPS)

S1 Table. Internal dynamics classification. Classification of the multiple types of internal

dynamics identified within the 130 adhesions highlighted in Fig 3 by the total number of

occurrences in the cell followed by their frequency based on the region they occupy. The ten

unique internal dynamic categories are: (A) Two peaks colliding with one another, (B–D) one,

two or three peaks translating away from the cell boundary, (E) a stationary peak and a trans-

lating peak translating away from the cell boundary, (F) a stationary peak and a translating

peak translating towards the cell boundary, (G–H) one or two stationary peaks, (I) two peaks

moving in opposite directions resulting in a collision but the peak translating towards the cell

boundary switches direction and the two peaks both move away from the cell boundary, and

(J) a stationary peak with two peaks translating away from the cell boundary. An arrow point-

ing to the right,!, represents a translating peak moving away from the cell boundary and an

arrow pointing to the left, , represents a translating peak moving towards the cell boundary.

A vertically centered dot, �, represents a stationary peak and a hooked arrow pointing to the

right, ,!, represents a translating peak that switches direction after colliding with another

peak. Additional velocity information for ten of the most prominent and prevalent cases

(highlighted in italics and bold) is provided in S2 Table. Colliding peaks (A) are mainly found

in protruding regions while the similar case of peaks that initially collide but translate together

are exclusively found in retracting regions. Cases of a translating peak with another peak (C
and E) are commonly found throughout the cell, whereas situations with three translating
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peaks (D) are absent from protruding regions.

(PDF)

S2 Table. Velocities grouped by their internal dynamics classification. The mean velocities

of the peaks found within adhesions for various categories of internal dynamics for the ten

bolded and italicized cases in S1 Table organized by region (protruding, retracting or central).

For the cases of multiple peaks translating in the same direction, the velocities are first

arranged in descending order,~v1 > ~v2 > ~v3, where the mean velocity is calculated among

each subcategory. In the adhesion undergoing switching behavior,~v1 is the unwavering peak

and~v2A=2B are the velocities of the peak before and after it flips direction. The confidence

boundaries are the 95% confidence limit of the mean using standard deviation.

(PDF)

S1 File. Live-cell imaging. Details of the live-cell imaging.

(PDF)
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