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Abstract: We aimed to predict keratoconus progression and the need for corneal crosslinking (CXL)
using deep learning (DL). Two hundred and seventy-four corneal tomography images taken by
Pentacam HR® (Oculus, Wetzlar, Germany) of 158 keratoconus patients were examined. All patients
were examined two times or more, and divided into two groups; the progression group and the non-
progression group. An axial map of the frontal corneal plane, a pachymetry map, and a combination
of these two maps at the initial examination were assessed according to the patients’ age. Training
with a convolutional neural network on these learning data objects was conducted. Ninety eyes
showed progression and 184 eyes showed no progression. The axial map, the pachymetry map,
and their combination combined with patients’ age showed mean AUC values of 0.783, 0.784, and
0.814 (95% confidence interval (0.721–0.845) (0.722–0.846), and (0.755–0.872), respectively), with
sensitivities of 87.8%, 77.8%, and 77.8% ((79.2–93.7), (67.8–85.9), and (67.8–85.9)) and specificities of
59.8%, 65.8%, and 69.6% ((52.3–66.9), (58.4–72.6), and (62.4–76.1)), respectively. Using the proposed
DL neural network model, keratoconus progression can be predicted on corneal tomography maps
combined with patients’ age.

Keywords: keratoconus; progression; deep learning; prediction; corneal crosslinking; tomography;
patients’ age

1. Introduction

The first human study of the corneal crosslinking (CXL) to halt the progression of
keratoconus/keratectasia was reported by Wollensak et al. [1] in 2003, at the time thought
to be an incurable disease. Patients with this condition sometimes had to endure pain
when wearing contact lenses, with the sudden occurrence of acute hydrops as an additional
complication. Keratoplasty has been necessary with disease progression in some cases.

The primary purpose of CXL is to halt the progression of keratoconus. The best
candidate for CXL is an individual with keratoconus or post-refractive surgery ectasia who
has recently revealed disease progression. However, there are no definitive criteria for
predicting keratoconus progression at present. The parameters that must be considered are
changes in refraction (including astigmatism), uncorrected and best spectacle-corrected
visual acuities, and corneal shape and thickness (according to corneal topography or
tomography) [2–6].

Widely accepted indications for CXL include an increase of 1.00 diopter (D) or more
in the steepest keratometry measurement, an increase of 1.00 D or more in the manifest
cylinder, and an increase of 0.50 D or more in the manifest refraction spherical equivalent
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in 12 months [7]. It may take several months to years to determine whether a patient
meets the clinical criteria for CXL. However, especially for some patients, the disease may
exacerbate rapidly during the follow-up period, even while awaiting CXL [8]. Therefore, a
method for predicting the progression and the need for CXL in keratoconus cases at the
first examination is required.

Artificial intelligence (AI) is the fourth industrial revolution in mankind’s history,
and deep learning (DL) is a class of state-of-the-art machine learning techniques that has
sparked tremendous global interest in recent years [9]. In the field of ophthalmology, DL
use for the diagnosis of diabetic retinopathy, glaucoma, age-related macular degeneration,
and retinopathy of prematurity using fundus photographs and/or optical coherence to-
mography (OCT) have been developed [10–16]. For corneal diseases, DL can predict the
likelihood of the need for future keratoplasty treatment [17]. Recently, DL has been used
for the detection and staging of keratoconus [18–20]; however, the ability of DL to predict
progression, namely the decision for CXL indication, has not been reported.

In the present work, we aimed to determine the need for CXL to halt keratoconus
progression using DL. To our knowledge, this is the first trial to distinguish the indication
for CXL by DL.

2. Materials and Methods

This study followed the ethical standards of the Declaration of Helsinki and the study
protocol was approved by the Institutional Review Board of the Keio University School
of Medicine.

We retrospectively analyzed the axial and the pachymetry maps combined with the
patients’ age at the initial visit of each patient by DL. Two hundred and seventy-four eyes of
158 patients with keratoconus (112 males and 46 females; mean age, 27.8 ± 11.7 years), who
visited the Department of Ophthalmology, Keio University School of Medicine from January
2009 to August 2018 at least twice, were included to the present study and retrospectively
examined (Supplementary Material Table S1). Tomography images of those eyes were
taken using Pentacam HR® instrument (Oculus, Wetzlar, Germany) by trained certified
ophthalmic technicians at the first visit (Figure S1). Keratoconus was diagnosed based on
corneal tomography, i.e., ectasia screening using the CASIA® device (Tomey, Aichi, Japan),
and/or topographic keratoconus classification using the Pentacam HR instrument. Eyes
with pellucid marginal degeneration, keratectasia after laser refractive corneal surgery,
previous acute hydrops, or other ocular surface diseases were excluded. Then, the patients
were followed 2 times or more with certain intervals. The mean period between the initial
and final examination was 2.60 ± 2.09 years (varied from 6 weeks to 8.6 years).

CXL treatment was applied to eyes with recently active keratoconus that showed
significant keratoconus progression, based on aforementioned criteria by corneal specialists.
Eyes that underwent CXL were assigned to the progression group; eyes that did not
undergo CXL were placed in the non-progression group (Figure 1).

We created an AI model to predict conical cornea progression with an axial map
(Axial), a pachymetry map (Pachy), and their lateral combination (Both) taken at the
first visit, using a Pentacam HR instrument; the assessments were based on patients’ age
(Figure 2).

The K-fold (K = 5) cross-validation method [21,22] was used in this study. The original
sample was randomly partitioned into k subsamples. K-1 subsamples were used as training
data after data augmentation and the remaining single subsample was retained as the
validation data for testing the model. The cross-validation process was repeated k times,
with each of the subsamples was used as the validation data. All images were resized to
224 pixels × 224 pixels.
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The deep neural network model was constructed based on the Visual Geometry
Group-16 (VGG-16) [23–25]. The five blocks with convolutional layers, rectified linear unit
activation function and max pooling layer of the VGG-16 [26–28] were used in this neural
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network. We used parameters from ImageNet blocks 1–4. This method is called fine-tuning
and used in various studies [29].

After five convolutional blocks, the global average pooling layer is passed, such that
spatial information is removed from the extracted features. After the global average pooling
layer, we combined the standardized age information. The ratio of the amount of age
information to the amount of image information is referred to here as the parameter ratio,
described below. The extracted features were then compressed by passing through the
fully connected layers. The last fully connected layer with the activation function, Softmax,
evaluated the probability of each class (i.e., the two groups comprising the progression
group and the non-progression group). The number of units in the hidden layer (n_dim) is
described below.

We used the optimization momentum stochastic gradient descent algorithm (inertial
term = 0.9) [30,31] as the optimizer. The learning ratio of the optimizer is described below
(Figure 3).
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Figure 3. Overall architecture of the neural network model used in this study. VGG: Visual Geome-
try Group.

The images were compressed in five blocks of visual geometry group-16 network and
a global average pooling layer. Afterwards, standardized age information was combined in
the “parameter ratio”. The extracted features were then compressed by passing through the
fully connected layers. The last fully connected layer with the activation function, Softmax,
evaluated the probability of each class (i.e., the two groups comprising the progression
group and the non-progression group). VGG-16: Visual Geometry Group-16 and n_dim,
the number of units in the hidden layer.

The parameter ratio, n_dim, and learning ratio were chosen from a uniform distribu-
tion from 0.2 to 0.8, an exponential distribution from 26 to 28, and a logarithmic distribution
from 10-4 to 10-2, respectively. The performance of our approach was evaluated using the
k-fold cross-validation method 10 times. The parameters with the highest area under the
curve (AUC) were used. The developed prediction model and training were applied using
Python TensorFlow (https://www.tensorflow.org/ (accessed on 15 February 2021)). We
used Optuna (https://optuna.readthedocs.io/en/stable/index.html (accessed on 15 Febru-
ary 2021)) for setting the hyperparameter. The training and analysis codes are provided in
Dataset S1.

https://www.tensorflow.org/
https://optuna.readthedocs.io/en/stable/index.html
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The performance metrics were AUC, sensitivity, and specificity. The receiver operating
characteristic curve (ROC) and the AUC were calculated using the NN’s output as the
probability that a certain image belonged to the progression group, in addition to actual
progression information. Using the Youden index [32] in the ROC curve, we defined the
optimal cutoff value and the sensitivity and specificity of the cutoff value.

We compared patient age with the Welch’s t-test and male–female ratio with the
Fisher’s exact test. p < 0.05 was considered statistically significant. Statistical analysis was
performed using Python Scipy (https://www.scipy.org/ (accessed on 15 February 2021))
and Python Statsmodels (http://www.statsmodels.org/stable/index.html (accessed on
15 February 2021)).

For the AUC analysis, the AUC was assumed to be normally distributed and the 95%
confidence interval (CI) was calculated with the following formula:

95%CI = AUC± Z(0.975) ∗ SE(AUC)

Z(x) =
1√
2π

exp(− x2

2
)

SE(AUC) =

√
AUC(1− AUC) +

(
np − 1

)
(Q1 − AUC2) + (nN − 1)(Q2 − AUC2)

npnN

Q1 =
AUC

2− AUC

Q2 =
2AUC2

1 + AUC

3. Results
3.1. Background

Ninety eyes showed progression and were included in the progression group; the
other 184 eyes did not show progression and were placed in the non-progression group.
The background information of both groups is listed in Table 1.

Table 1. Patients’ background.

Progression Group Non-Progression Group p-Value

Age (mean ± SD) 21.0 ± 5.9 31.5 ± 12.4 p < 0.01
Gender (female ratio) 24/90 55/184 p = 0.67

SD: standard deviation.

3.2. Evaluation of Keratoconus Progression

The predictive performance of keratoconus progression is shown in Table 2 and
Figure 4.

Table 2. Area under the curve (AUC), sensitivity, and specificity outcomes obtained by assessment
using an axial map, a corneal pachymetry map, and a combination of the two, with or without respect
to patients’ age.

AUC Sensitivity Specificity

Axial 0.783 (0.721–0.845) 87.8% (79/90)
(79.2–93.7)

59.8% (110/184)
(52.3–66.9)

Pachy 0.784 (0.722–0.846) 77.8% (70/90)
(67.8–85.9)

65.8% (121/184)
(58.4–72.6)

Both 0.814 (0.755–0.872) 77.8% (70/90)
(67.8–85.9)

69.6% (128/184)
(62.4–76.1)

AUC, area under the curve.

https://www.scipy.org/
http://www.statsmodels.org/stable/index.html
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4. Discussion

In this study, we developed a new method to predict the progression of keratoconus
using DL via an AI platform. When the possibility for keratoconus progression was
combined with patients’ age, the AUC values were 0.783 (0.721–0.845) with the axial
map, 0.784 (0.722–0.846) with the corneal pachymetry map, and 0.814 (0.755–0.872) using
both maps.

The age of the enrolled patients was significantly younger in the progression group
than in the non-progression group. Age is an inevitable factor in keratoconus progression,
partly because keratoconus is a disorder that tends to progress depend on the patients’ age;
its progression tends to slow during middle age but young onset keratoconus has been
shown to progress much faster [33,34]. We had previously investigated the condition of
keratoconus patients who were followed-up twice or more after the initial visit and found
that the patients’ age was the most relevant factor with respect to keratoconus progression,
followed by Rmin (the minimum sagittal curvature evaluated by Pentacam HR) of the
corneal frontal plane [35]. The disproportionate influence of age between progression and
non-progression groups was ineluctable.

Considering that a young age is relevant to keratoconus progression, we applied
patients’ age to corneal tomography data to predict progression using our DL approach.
We used three types of maps: an axial map of the corneal frontal plane, a pachymetry
map, and a combination of the two; the three map types showed similar AUC, sensitivity,
and specificity values. This demonstrates the clinical versatility of DL for predicting
the progression of keratoconus, as the axial map of the corneal frontal plane is usually
displayed by every corneal topography/tomography device.

An AUC value of 0.78–0.81 is not a perfect indicator for progression prediction. For
keratoconus specialists, who determine empirically the indication of CXL considering the
clinical stage of keratoconus and patients’ age, the diagnosis rate may not be sufficient;
however, it could serve as an indicator for non-specialists such as family practitioners,
general ophthalmologists/optometrists, or specialists in other fields of ophthalmology to
help them decide whether patients should consult with corneal specialists trained in CXL.

In the present investigation, we used the images of the corneal tomography resized
to 224 pixels × 224 pixels. This compression could be suitable for the analysis or corneal
tomography/topography, because the present investigation requires analysis of relatively
large area of the pictures, not like finding out the tiny hemorrhages like in the assessment
of diabetic retinopathy. This character can help accelerate the calculation speed and also be
applied to other devices with lower specification, possibly bringing a great advantage for
the clinical use.
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This is the first trial that proposes the prediction of keratoconus progression by
corneal topographic data at the first visit of the patients using DL as long as our knowledge,
containing some limitations. The limitations of the present study included relatively
small number of the participants and variation in the follow-up period to determine the
indication for CXL (from 6 weeks to 8.6 years). Reassessment of all cases followed up for
more than 2 years may provide a more accurate representation.

We excluded cases with pellucid marginal degeneration from the present study, which
shows protrusion and thinning of the lower part of the cornea that occurs after the third or
fourth decade of life and continues to progress even after middle-age. This was done partly
because we thought that this condition might be different from the usual keratoconus and
also because the number of patients with pellucid marginal degeneration was too small
(less than 10% of the whole). The mechanisms for delayed occurrence and progression of
protrusion in eyes with pellucid marginal degeneration has not been clarified. DL using a
large number of keratoconus cases may elucidate these unclarified questions.

5. Conclusions

We attempted to predict the exacerbation of keratoconus that required CXL aftertime
using DL and showed that the axial map or the pachymetry map combined with the
patients’ age were useful indicators of the need for CXL, with about 80% probability. The
prediction of keratoconus progression using AI-based DL is expected to help ophthal-
mologists/optometrists, and especially non-specialists, regarding the timing of referring
patients to corneal specialists for CXL treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/4/844/s1, Figure S1: Axial map of the frontal plane and pachymetry map of Pentacam HR,
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