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Introduction
High-resolution microarrays and second-generation sequenc-
ing platforms are powerful tools to investigate genome-wide 
alterations in DNA copy number, methylation, and gene 
expression associated with a disease. An integrated genomic 
profiling approach measures multiple omics data types simul-
taneously in the same set of biological samples. As integrated 
genomic studies emerge, it has become increasingly clear that 
true oncogenic mechanisms are more visible when combining 
evidence across patterns of alterations in DNA copy number, 
methylation, gene expression, and mutational profiles.1,2 Inte-
grative analysis of multiple omic data types can help the search 
of potential drivers by uncovering genomic features that tend 
to be dysregulated by multiple mechanisms.3

This paper is motivated by two specific applications of 
integrative analysis of cancer genomic data. The first applica-
tion is to study the influence of DNA copy number alterations 
(from array comparative genomic hybridization (aCGH)) on 
RNA transcript (from microarray gene expression experi-
ments) levels. While useful information has been revealed by 
analyzing expression arrays alone or CGH arrays alone, careful 
integrative analysis of DNA copy numbers and expression data 
is necessary as these two types of data provide complimentary 
information in gene characterization. Specifically, RNA data 

contain information on genes that are over/underexpressed, 
whereas DNA copy numbers contain information on gains 
and losses that are potential drivers of cancer. Therefore, inte-
grating DNA and RNA data may help discern more subtle 
(yet biologically important) genetic regulatory relationships in 
cancer cells.4

The second application is to investigate the association 
between DNA methylation and gene expression. The advance-
ment of global DNA methylation arrays and next-generation 
RNA sequencing transcriptome studies now allow scientists to 
investigate the functional consequence of DNA methylation in 
various genomic regions, including CpG islands (CGIs), which 
have been extensively investigated in the literature.5–7 Gener-
ally, methylation of regulatory CGIs is thought to downregulate 
transcription by promoting the formation of heterochromatin 
and preventing the binding of transcription factors (TFs).8 In 
normal cells, CGIs are protected from methylation. However, 
hypermethylation of promoter CGIs of important genes, ie, 
tumor suppressor genes (TSGs), is frequently observed in can-
cer cells.9 Thus, integrating DNA methylation and RNA data 
could bring a step closer in unraveling the complex genetic 
regulatory relationships in cancer cells.

The most straightforward way to model the dependence 
of RNA levels on DNA copy numbers or the dependence 
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of gene expression on methylation is through a multivariate 
(multiple-response) regression model with gene expression 
as responses and the DNA copy numbers or methylation as 
covariates. Many other important biological problems can be 
modeled using the multivariate regression model as well. For 
example, in expression quantitative trait loci (eQTL) map-
ping, we can treat gene expressions as responses and genomic 
markers as covariates to identify genomic locations to which 
expression traits are linked.10,11 In the integrative analysis of 
gene expression and chromatin immunoprecipitation (chip-
chip) data, we can treat gene expression as responses and 
TFs as covariates to identify TFs that are related to cell cycle 
regulation.12

While the multivariate linear regression is well studied 
in statistical literatures, the current problems pose new chal-
lenges because of (i) the complicated relationships among 
response variables, (ii) high dimensionality in terms of both 
covariates and responses, and (iii) possible nonlinear asso-
ciation between responses and covariates. Because of chal-
lenge (i), the naive approach of regressing each response 
onto the covariates separately is unlikely to produce satisfac-
tory results, as such methods often lead to high variability 
and overfitting.13,14 For challenge (ii), sparse regularization 
schemes have been utilized in high-dimensional multivari-
ate regression.15–18 Factor analysis has been considered to 
reduce the dimensionality as well.19–21 For challenge (iii), 
most of existing methods are based on linear models and 
may have inadequate performance when the linear assump-
tion is violated.

Boosting, originally proposed as an ensemble scheme for 
classification, ie, AdaBoost,22 has attracted a lot of attention 
both in the machine learning and statistics literature, mainly 
because of its flexibility in modeling possible nonlinear asso-
ciation and excellent prediction performance. Friedman et al.23 
demonstrated that the AdaBoost ensemble method can be rep-
resented as a stagewise forward additive modeling procedure, 
which leads to many new versions of boosting. One particular 
method is component-wise L2-boosting, which has been dem-
onstrated to be a powerful method for univariate regression 
with single response.24,25

In this paper, we introduce a novel multivariate  
component-wise boosting method, which extends the univari-
ate component-wise boosting from the single-response setting 
to the multiple-response setting. Inherited from the univari-
ate component-wise boosting, the proposed method is not 
only able to model the nonlinear association between response 
and covariates when nonlinear base learners are used but also 
able to avoid overfitting in high-dimensional setting because 
of the implicit shrinkage in the estimation of the method. By 
jointly fitting regression models on all responses, the proposed 
method is able to borrow strength across different responses 
and is shown to have better performance in both prediction 
and variable selection than the separate univariate boosting 
method.

Methods
We start our exposition by assuming that we have n observa-
tions. For the ith subject, we observe q responses, y yi i

q1, ,… , 
and p covariates, xi1,…, xip. We consider the following multi-
variate regression model:

	 y F x x i n g qi
g g

i ip i
g= + = =( , , ) , , , , , , ,1 1 1… … …∈ 	 (1)

where F g(⋅) is the regression function for the gth response and
∈i

g ’s are error terms. Without loss of generality, we assume 
that all responses and covariates are standardized, ie, have 
zero mean and unit variance, before the analysis.

In the remaining of this section, we first review the 
univariate component-wise boosting method with single 
response, followed by presenting our multivariate component-
wise boosting method with multiple responses.

Univariate component-wise boosting with single 
response. The component-wise boosting25,26 is a special ver-
sion of the general boosting method.22–24,27,28 It starts from 
the null model, ie, the model with no covariate, and in each 
iteration, the model is updated by adding the covariate that 
yields the greatest improvement in the model fit at the current 
stage. We summarize the algorithm as follows.

Algorithm: univariate component-wise boosting
Step 1 (Initialization) Set iteration index m = 0. Initialize 

a starting model F0
 , for example, F0 0 = .

Step 2 (Component-wise regression) Compute residuals 
u y x i ni i i= − =Fm

 ( ), , ,1… . For each covariate xj, fit a uni-
variate regression model such that

	
h

h
u h xj i ij

i

n
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⋅
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=
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Step 3 (Model update) Select the covariate xj such that

	
j

k
u h xi k ik

i

n
= −

=
∑arg min ( ( )) . 2

1 	
Update F F vh xm m j j

  
+ = +1 ( ),  where 0 , v , 1 is a shrinkage 

factor, for example, v = 0.01.
Step 4 (Iteration) Increase iteration index m by one and 

repeat Step 2 and Step 3 until reaching a stopping time M.
In Step 2, h(⋅) is known as a base learner, which is a func-

tion to model the association between the residual and a sin-
gle covariate. Three popular choices for h(⋅) are linear function 
h(x)  =  xβ, stump (one-level regression tree), and smoothing 
spline.25 When the stump or smoothing spline is used, the 
final model may capture the nonlinear association between 
the response and the covariates. The number of iterations M is 
a tuning parameter that can be selected using a validation set 
or cross-validation. The importance of each covariate can be 
evaluated by the cumulative deduction of mean square error 
(MSE) in the fitting procedure.29
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The parameter v in Step 3 can be regarded as controlling 
the learning rate of the boosting procedure. Smaller values of 
v (more shrinkage) result in larger training risk for the same 
number of iterations M. Thus, both v and M control predic-
tion risk on the training data. However, these parameters do 
not operate independently. Smaller values of v lead to larger 
values of M for the same training risk, so that there is a tradeoff 
between them. In terms of selection of v, empirically it has 
been found24 that smaller values of v favor better test error and 
require correspondingly larger values of M. In fact, Friedman24 
suggested that the best strategy appears to be to set v to be very 
small (v , 0.1) and then choose M by early stopping. In this 
paper, we fix v = 0.01 in all numerical studies.

An advantage of the component-wise boosting method 
is the computation efficiency, since in each iteration, only uni-
variate models are fitted. This makes the boosting method 
very suitable for analyzing high-dimensional data.

Multivariate component-wise boosting. We now con-
sider the multiple-response setting. The key of our extension 
from single-response boosting to multi-response boosting is 
to modify the way to select the best covariate to update the 
model to borrow strength across multiple responses. We use 
the integrative analysis of DNA copy numbers and expres-
sion data as an example. Suppose a DNA copy number alter-
ation is associated with several genes, but these individual 
associations are all relatively weak. If we look at the asso-
ciation between the DNA copy number alteration and gene 
expressions one by one (single-response regression), we may 
fail to discover this alteration. However, if we can combine 
the signal across different genes and consider an overall asso-
ciation between this alteration and all genes, we may have a 
better chance of identifying the alteration. This enlightens 
us to consider selecting xj, which yields the smallest overall 
MSE (which is equivalent to the best overall-fit). Specifi-
cally, in each iteration, suppose u y F xi

g
i
g

m
g

i= −  ( )  is the cur-
rent residual associated with the gth response. We select the 
covariate xj such that
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11
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where we adjust the MSE by the square of Euclidean norm of 
the corresponding residual. This adjustment is shown to work 
better than the unadjusted method in our numerical analysis. 
When there is only one response, we can see that the criterion 
given by (2) is equivalent to the criterion used in the univariate 
component-wise boosting.

Once the covariate xj is selected, the next step is to 
update the models for q responses. One option is to update 
all q models by including xj, but this leads to an all-in-all-
out updating strategy, with which the covariate is expected 
to be either associated with all responses or not associated 
with any response. In many practical problems, however, 

it is more likely that one covariate is associated with only a 
subset of responses in our multivariate boosting method. For 
example, in the integrative analysis of copy number variation 
and gene expression, we may expect a particular copy num-
ber affects only a small set of genes. This enlightens us to 
update a subset of responses. Specifically, we first rank all q 
responses in an increasing order according to their adjusted 

MSEs ( ( )) / ( ) .u h x ui
g

k
g

j i
g

i
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i
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== ∑∑  2 2
11

 Then we only update 

models for the first s responses, which have the strongest asso-
ciation with the covariate xj. The number s can be a tuning 
parameter or fixed at s = 1 for simplicity. We summarize our 
multivariate component-wise boosting algorithm as follows.

Algorithm: multivariate component-wise boosting
Step 1 (Initialization) Set iteration index m = 0. Initialize 

starting models F g
0 , for example, F g pg

0 0 1= =, , , .…
Step 2 (Component-wise regression) Compute residuals 

u y F x i n g qi
g

i
g g

i= − = =
m ( ), , , , , , .1 1… …  For each covari-

ate xj, fit a univariate regression model such that
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Step 3 (Model update) For each covariate xj and each 
response, calculate the adjusted MSE (adj-MSE) e j

q :
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Select the covariate xj such that j  =  argmink ∑ =g
q

k
qe1 .  

For this covariate xj, sort e j
q  in the increasing order. For the 

responses with s smallest e j
q , update F F vh xm

g
m
g

j
g

j
  

+ = +1 ( ),
where 0 , v , 1. One can take v = 0.01 as in Section 2.1.

Step 4 (Iteration) Increase iteration index m by one and 
repeat Step 2 and Step 3 until reaching a stopping time M.

The covariate importance can be evaluated using the simi-
lar strategy as component-wise boosting with single response 
described in Section  2.1. For each covariate, the response- 
specific importance score is calculated by the cumulative 
adjusted MSE for each response. The overall importance score 
for a covariate is the summation of its response-specific impor-
tance scores. The R code is available upon request.

We would like to point out that Lutz and Buhlmann30 
also proposed a multivariate component-wise L2-boosting, 
but their approach is still within the linear model framework. 
In addition, it requires the estimation of inverse covariance 
matrix of covariates, which can be challenging when fitting 
high-dimensional genomic data.

Simulation Study
In this section, we conduct simulation studies to demonstrate 
the operating characteristics of our multivariate component-
wise boosting method. We consider five methods: separate 
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analysis with the lasso method (slasso), multivariate adaptive 
regression splines (MARS),31 regularized multivariate regres-
sion for identifying master predictors (RemMap),18 the sepa-
rate univariate boosting method (sboost), and our multivariate 
boosting method (mboost). For boosting methods, we con-
sider three base learners: ordinary least square (ols), one-level 
regression tree (tree), and smoothing spline (spline). The lasso 
method is implemented using R package glmnet, the MARS 
method is implemented using R package earth, and the 
RemMap method is implemented using R package remMap.

Simulation setup. We consider two scenarios: (1) the 
true model is linear and (2) the true model is nonlinear. In 
scenario (1), we simulate data for n = 50 observations, p = 100 
covariates, and q = 100 responses. The true model is

	 Y XB E= + , 	  (3)

where Y is a 50 × 100 response matrix, B is a 100 × 100 coeffi-
cient matrix, X is a 50 × 100 covariate matrix, and E is a 50 × 100 
error matrix. Each row of the covariate matrix X is drawn 
independently from MVN(0, ΣX), where ∑ = ×X Xij

[ ]σ 100 100 
with σXij

 = 0.7|i–j|. The rows of error matrix E are drawn inde-
pendently from MVN(0, ΣE), where ∑ = ×E Eij

[ ]σ 100 100  with 
σ ρE E

i j
ij

= −| |. .We consider two values of ρE: 0 and 0.9. The 
coefficient matrix B is generated by matrix element-wise prod-
uct B = W*K*Q. The element of W is drawn independently 
from N(0,1), the element of K is drawn independently from 
Bernoulli distribution with success probability 0.5, and Q has 
rows that are either all ones or all zeros, where p-independent 
Bernoulli variables with success probability 0.1 are drawn to 
determine whether a row is one or zero.

In scenario (2), we simulate data for n = 100 observations, 
p = 50 covariates, and q = 20 responses. The true model is

y
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f x fi
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 		  (4)

where f1(x) = x, f2(x) = (2x – l)2, f x x x3 2 2 2( ) sin( ) /( sin( )),= −π π  
and f4(x) = 0.1sin(2πx) + 0.2cos(2πx) + 0.3sin2(2πx) + 0.4cos3 

(2πx) + 0.5sin3(2πx). The domain of all four functions is [0,1]. 
The covariates are generated as xj =  (w

j
 + u/2), j = 1,…, 50, 

where elements of wj, j = 1, …, 50 and u are drawn indepen-
dently from uniform distribution U(0,1). The elements of εi

g

are drawn independently from N(0, σ2), where σ2 is chosen 
such that the average signal-to-noise ratio of the model is  
1 or 3.

Simulation analysis. For both scenarios, we repeated the 
simulation for 100 times. All tuning parameters were selected 
using five-fold cross-validation. To evaluate the variable selec-
tion performance of a method, we consider the following two 
measurements, namely sensitivity and specificity:

	
Sensitivity

g j d d

g j d

j
g

j
g

j
g

=
( ) ≠ ≠{ }

( ) ≠{ }
# 0 0

# 0

, :

, :
,

 and 	 (5)

	
Specificity

g j d

g j d

j
g

j
g

j
g

=
( ) = ={ }

( ) ={ }
# 0 0

# 0

, :

, :
,

d and
	 (6)

where d j
g = 1 if the gth response is associated with the jth 

covariate in the true model, d j
g = 1  if the gth response is asso-

ciated with the jth covariate in the fitted model, and d j
g = 0  

otherwise.
To evaluate the prediction performance of the model, 

in each simulation, we generated a test set with n = 10,000 
observations using the same distribution as the training data. 
Following suggestion from a reviewer, we calculated the fol-
lowing scaled average mean square error (SAMSE) on the 
test set:

	
SAMSE = −

==
∑∑1 2

11

2

nq
y yik ik

k

q

i

n

k( ) / , σ 	 (7)

where n is the sample size, q is the number of responses, and 
σ k

2  is the variance of error term for the kth response.
Simulation results. The simulation results are sum-

marized in Table 1. In both linear and nonlinear scenarios, 
the multivariate boosting method has smaller average MSEs, 
higher sensitivity, and higher specificity than the separate uni-
variate boosting, no matter which base learner is used. When 
the true model is linear, the multivariate boosting with OLS 
as base learner has smaller average MSEs than the other two 
multivariate regression methods: MARS and RemMap. When 
the true model is nonlinear, the multivariate boosting with a 
nonlinear base learner (tree or spline) has a clear advantage in 
prediction over MARS and RemMap. The multivariate boost-
ing method also has either significantly higher or comparable 
sensitivity and specificity than MARS and RemMap.

Real Application
In this section, we analyze two publicly available breast cancer 
datasets from integrative cancer genomic studies.

Integrative analysis of gene expression data and copy 
number variation data. In this subsection, we analyze a 
breast cancer dataset described in Sørlie et  al.32 The dataset 
contains both the microarray gene expression and aCGH pro-
filed for 172 breast cancer specimens. For each specimen, we 
have expression profiles of 578 genes and 384 copy number 
alteration intervals (CNAIs). Since variations in DNA copy 
number play an important role in cancer development through 
altering the expression levels of cancer-related genes, we 
would like to identify important genes in aCGH experiment, 
model the association of RNA transcript level with gene copy 
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The performance of MARS method is inadequate. It has the 
largest AMSE and selects only about four CNAIs in average. 
This may be because the MARS method selects CNAIs in the 
all-in-all-out fashion, ie, a CNAI is considered to be associated 
with either all genes or no gene, but the true relationship pat-
tern is possibly that one CNAI only affects a subset of genes.

We also calculate the average covariate importance scores 
over 100 replicates for both univariate boosting method and 
multivariate boosting method. Figure 1 shows the concentra-
tion plots of the importance scores. For each concentration 
plot, the covariate importance scores are sorted from the larg-
est to the smallest. The x-axis represents the sorted index of 
covariates, and the y-axis represents the cumulative impor-
tance scores. It is evident from these plots that the covariate 
importance scores given by the multivariate boosting method 
is more concentrated than the importance scores given by the 
separate univariate boosting method. For example, when the 
regression tree is used as the base learner, the top 100 cova-
riates selected by the multivariate boosting method have a 
cumulative importance score of 90, while the separate univari-
ate boosting method needs more than 200 covariates to reach 
the cumulative importance score of 90.

Table 3 lists the 10 CNAIs with top average importance 
scores selected by the multivariate boosting methods. We can 
see that there is a strong concordance among multivariate 
boosting methods with three different base learners on selected 
CNAIs with high important scores. Among the identified 
CNAIs, loss of heterozygosity on chromosome 19pl333 has 
been shown to be one of the most frequent alteration observed 

number, and predict the RNA transcript levels using DNA 
copy number variations in aCGH experiments. The details of 
data preprocessing can be found in Peng et al.18

In our analysis, the 172 samples were randomly split into 
a training set (120  samples) and a test set (52  samples). All 
methods were applied to training set to build the predictive 
models. All tuning parameters were selected using five-fold 
cross-validation. Once an optimal model was obtained, it was 
used to predict the gene expression profiles for samples in the 
test set. To evaluate the prediction performance of the model, 
we calculate the following SAMSE on the test set:

	
SAMSE = −( )

==
∑∑1 2 2

11nq
y yik ik k

k

q

i

n
 / ,σ 	 (8)

where n is the sample size, q is the number of responses, and 
σ k ik iki

n y y n2
2

1
1= −( ) −

=∑ / ( ) is the sample standard devia-
tion of the kth responses on the test set.

The procedure was repeated 100 times, and the results 
are shown in Table 2. The multivariate boosting method with 
tree as the base learner has the smallest average MSE among 
all methods, which suggests a possible nonlinear association 
between gene expression and copy number alteration. In addi-
tion, the multivariate boosting method tends to select a smaller 
number of CNAIs than the separate univariate boosting 
method, no matter which base learner is used. When the ordi-
nary least square is used as the base learner, our multivariate 
boosting methods select a smaller number of CNAIs than the 
other two methods based on linear model, RemMap and slasso. 

Table 1. Results of simulation studies. In each cell, the number outside the parenthesis is the average value over 100 replications and the 
number within the parenthesis is the corresponding standard error.

Method AMSE Sensitivity Specificity AMSE Sensitivity Specificity

Scenario (1), ρE = 0 Scenario (1), ρE = 0.9

mboost.ols 0.366 (0.007) 0.81 (0.003) 0.97 (0.001) 0.369 (0.007) 0.80 (0.003) 0.96 (0.001)

sboost.ols 0.400 (0.007) 0.73 (0.003) 0.88 (0.003) 0.399 (0.007) 0.73 (0.003) 0.87 (0.004)

mboost.spline 0.406 (0.006) 0.77 (0.008) 0.96 (0.002) 0.404 (0.008) 0.77 (0.83) 0.95 (0.20)

sboost.spline 0.444 (0.008) 0.69 (0.005) 0.82 (0.004) 0.443 (0.008) 0.69 (0.49) 0.85 (0.46)

mboost.tree 0.559 (0.005) 0.75 (0.004) 0.87 (0.003) 0.562 (0.006) 0.75 (0.40) 0.87 (0.26)

sboost.tree 0.931 (0.006) 0.67 (0.003) 0.73 (0.006) 0.926 (0.006) 0.68 (0.38) 0.72 (0.56)

MARS 0.604 (0.010) 0.89 (0.02) 1 (0) 0.598 (0.010) 0.89 (1.48) 0.96 (0.08)

RemMap 0.370 (0.008) 0.89 (0.002) 0.59 (0.005) 0.374 (0.008) 0.89 (0.20) 0.66 (0.64)

slasso 0.421 (0.008) 0.65 (0.004) 0.04 (0.006) 0.423 (0.008) 0.65 (0.38) 0.94 (0.06)

Scenario (2), Average SNR = 1 Scenario (2), Average SNR = 3

mboost.spline 0.72 (0.01) 0.91 (0.01) 0.87 (0.005) 0.44 (0.01) 0.99 (0.002) 0.83 (0.005)

sboost.spline 0.75 (0.01) 0.87 (0.01) 0.81 (0.005) 0.44 (0.02) 0.99 (0.003) 0.76 (0.006)

mboost.tree 0.76 (0.01) 0.89 (0.01) 0.81 (0.007) 0.51 (0.01) 0.99 (0.002) 0.72 (0.007)

sboost.tree 0.75 (0.01) 0.84 (0.01) 0.74 (0.006) 0.52 (0.01) 0.98 (0.003) 0.63 (0.008)

MARS 0.78 (0.01) 0.76 (0.02) 0.94 (0.002) 0.45 (0.01) 0.98 (0.009) 0.95 (0.003)

RemMap 0.89 (0.01) 0.72 (0.02) 0.72 (0.014) 0.73 (0.01) 0.72 (0.014) 0.72 (0.013)

slasso 0.90 (0.01) 0.58 (0.01) 0.90 (0.003) 0.74 (0.01) 0.63 (0.007) 0.89 (0.003)
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Figure 1. Concentration plots of covariate importance scores for boosting-based methods.

Table 2. Results of integrative analysis of expression and copy 
number alteration on Sørlie’s breast cancer dataset. In each cell, 
the number outside the parenthesis is the average value over 
100 replications and the number within the parenthesis is the 
corresponding standard error.

Method SAMSE # of 
Selected 
Covariates

mboost.ols 0.92 (0.01) 154.9 (3.4)

sboost.ols 0.92 (0.004) 381.8 (0.2)

mboost.tree 0.89 (0.004) 254.2 (2.7)

sboost.tree 0.90 (0.004) 384.0 (0.1)

mboost.smsp 0.92 (0.004) 81.7 (1.2)

sboost.smsp 0.94 (0.004) 379.8 (0.9)

MARS 1.00 (0.01) 3.7 (0.1)

RemMap 0.92 (0.004) 201.6 (0.9)

slasso 0.91 (0.003) 311.5 (1.0)

 

in breast cancer, whereas breast cancer-related genes such as 
PYCARD, IL4R, and PLK1 are located within chromosome 
16p13.3–16p11.2.

Integrative analysis of gene expression data and meth-
ylation data. In this subsection, we analyze a breast cancer 
dataset described in The Cancer Genome Atlas (TCGA) Net-
work.34 The purpose of the analysis is to model the association 

between gene expression and DNA methylation across CpG 
sites. In our analysis, we consider a set of 808 cancer-related 
genes derived from published cancer gene lists. Furthermore, 
we focus on genes in chromosomes 13 and 17 as these two 
chromosomes have been shown to exhibit strong implication 
in breast cancer development,35,36 thus enabling us to bet-
ter relate our results to known biological findings. Finally, 
we remove genes whose number of missing values is greater 
than 10 and remove subjects with any missing values. The 
final dataset has 333 samples with gene expression profiles of 
41 genes and methylation values of 88 CpG sites.

In our analysis, the 333 samples were randomly split into 
a training set (267 samples) and a test set (66 samples). The data 
analysis procedures are the same as described in Section 3.1. 
The results are shown in Table 4. Similar to the results of inte-
grative analysis of gene expression and copy number altera-
tions, the MARS method has an inadequate performance. It 
has the largest AMSE among five methods and selects only 
about nine CpG sites in average. This may be because the all-
in-all-out selection fashion of MARS does not fit the data 
well. All methods except MARS have comparable prediction 
performances; however, our multivariate boosting method has 
much smaller model size compared to other methods. Figure 2 
shows the concentration plots of the average importance scores 
over 100 replicates. From the plots, we can see that the covari-
ate importance scores given by multivariate boosting method 
are more concentrated than the importance scores given by 
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separate univariate boosting method. For example, when 
the smoothing spline is used as the base learner, the top 20 
covariates selected by the multivariate boosting method have 
a cumulative importance score of 90, while the separate uni-
variate boosting method needs approximately 40 covariates to 
reach the cumulative importance score of 90.

Table 5 lists the 10 CpG sites with top average impor-
tance scores selected by the multivariate boosting methods. 
We can see that there is a strong concordance among mul-
tivariate boosting methods with three different base learners 
on selected CpG sites with high important scores. Among 
these selected genes, GFAP, GRB7, ALOX12, MFAP4, and 
HOXB2 are well unknown to be related to breast cancer.

Discussion
In this paper, we propose a novel multivariate component-
wise boosting method to fit multivariate regression models. 
The proposed method is able to model the possible nonlinear 

Table 4. Results of integrative analysis of expression data and 
methylation data on TCGA breast cancer dataset. In each cell, 
the number outside the parenthesis is the average value over 
100 replications and the number within the parenthesis is the 
corresponding standard error.

Method SAMSE # of 
Selected 
Covariates

mboost.ols 0.91 (0.02) 77.04 (0.30)

sboost.ols 0.93 (0.01) 87.96 (0.02)

mboost.tree 0.80 (0.01) 64.19 (0.77)

sboost.tree 0.80 (0.01) 87.74 (0.06)

mboost.spline 0.83 (0.01) 45.34 (0.71)

sboost.spline 0.89 (0.03) 85.68 (0.13)

MARS 0.84 (0.01) 8.45 (0.10)

RemMap 0.91 (0.02) 84.53 (0.17)

SLASSO 0.89 (0.01) 87.90 (0.03)

associations between responses and covariates. By jointly fit-
ting models across multiple responses, our method identi-
fies important covariates based on their overall effects across 
responses. The performance of the proposed methods is dem-
onstrated using both simulation studies and real data analysis.

In many important problems, there could be natu-
ral grouping structures in responses and/or covariates. For 
example, in eQTL study, on one hand, genes belonging 
to the same pathway can be grouped together, and we may 
expect a single nucleotide polymorphism (SNP) to be associ-
ated with many genes within a pathway. On the other hand, 
SNPs belonging to the same gene can be grouped together, 
and we may expect several SNPs within a same coding region 
are associated with the expression of one gene. Integrating 
these grouping structures in the analysis may help boost the 
signal-to-noise ratio.37 Our proposed method can be modi-
fied to take into account these grouping information in the 
analysis as follows.

Suppose that there are S groups in responses and T groups 
in covariates. Let Ak ⊂ {1, …, G}, k = 1, …, S, and Bk ⊂ {1, …, 
p}, k = 1, …, T, are the corresponding indices associated with 
these groups. We allow for overlaps among Ak ’s or Bk ’s. These 
groups create S × T blocks. In each iteration of boosting, we 
first select a block with the best overall association and then 
select a subset of covariates and a subset of response to update. 
Specifically, in each iteration, we first select the block (s, t)  
such that

	

( , ) arg min
( , ) : ,

( ( ))

s t
q r q S r T A B

u h x
q r

i
g

j
g

ij

i

=
≤ ≤ ≤ ≤

−

∑ =

1 1

1
| || |

2

1



nn
i
g

i

n

j Bg A u
rq

( )
,

2
1=∈∈

∑∑∑ 	 (9)

where |Aq| and |Br| are the cardinalities of Aq and Br, respectively. 
Then we rank all response–covariate combinations within the  
(s, t)th block in increasing order according to their corresponding 

Table 3. Lists of top 10 CNAIs selected by multivariate boosting methods.

MBOOST.OLS mboost.tree mboost.spline

Score (s.d.) Cytoband Score (s.d.) Cytoband Score (s.d.) Cytoband

9.36 (0.55) 16p13.3–16p11.2 7.85 (0.43) 16p13.3–16p11.2 6.59 (0.39) 16p13.3–16p11.2

8.12 (0.41) 17q12–17q12 4.70 (0.36) 19p13.2–19p12 5.01 (0.34) 1p36.11–1p35.2

5.14 (0.47) 17q21.2–17q21.31 4.44 (0.36) 19p13.3–19p13.2 4.78 (0.46) 19p13.3–19p13.2

4.81 (0.48) 1p36.11–1p35.2 3.94 (0.33) 1p34.3–1p34.2 3.73 (0.32) 17q21.2–17q21.31

4.31 (0.39) 19p13.3–19p13.3 3.87 (0.32) 17q12–17q12 3.46 (0.28) 17q21.31–17q21.32

3.65 (0.35) 17q21.31–17q21.32 3.68 (0.32) 1p36.11–1p35.2 2.88 (0.22) 4p16.3–4p16.1

2.27 (0.22) 17q12–17q12 3.15 (0.27) 2q31.1–2q31.1 2.73 (0.16) 10q21.3–10q22.2

2.19 (0.23) 5q23.3–5q31.3 2.64 (0.26) 17q21.2–17q21.2 2.47 (0.17) 17q12–17q12

2.18 (0.23) 4p16.3–4p16.1 2.56 (0.28) 17q21.2–17q21.31 2.34 (0.26) 1p34.3–1p34.2

2.05 (0.28) 5q13.2–5q13.2 2.35 (0.16) 15q11.2–15q11.2 2.26 (0.15) 15q11.2–15q11.2
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MSEs and update the first u combinations. The number 
u can be a tuning parameter or fix u  =  1 for the simplicity.  
A separate manuscript for this extension is in preparation.

In our current manuscript, we investigate the association 
between two genomic data sets, one as covariate matrix and 
the other as response matrix. An interesting future extension 
of our proposed multivariate boosting method is to consider 
multiple genomic datasets as covariates and/or responses, 
each with potentially a different distribution (eg, discrete, 

Table 5. Lists of top 10 CpG sties selected by multivariate boosting methods.

mboost.ols mboost.tree mboost.spline

Coordinate Gene Score (s.d.) Coordinate Gene Score (s.d.) Coordinate Gene Score (s.d.)

cg21944455 GFAP 13.39 (0.87) cg21944455 GFAP 17.48 (1.44) cg21944455 GFAP 25.35 (1.83)

cg03684977 GRB7 10.72 (0.84) cg03760483 ALOX12 12.78 (1.38) cg03760483 ALOX12 16.76 (1.36)

cg03760483 ALOX12 8.09 (1.67) cg03684977 GRB7 7.82 (0.93) cg03684977 GRB7 8.00 (1.29)

cg13030582 MFAP4 7.36 (2.48) cg13030582 MFAP4 6.91 (1.85) cg25882366 HOXB2 4.73 (0.89)

cg25882366 HOXB2 5.01 (0.36) cg25882366 HOXB2 5.26 (0.84) cg03001305 STAT5A 3.92 (0.58)

cg05292376 AATK 4.18 (0.37) cg03001305 STAT5A 3.98 (0.55) cg05292376 AATK 3.63 (0.65)

cg03001305 STAT5A 3.79 (0.50) cg13263114 ERBB2 3.47 (0.54) cg09038914 GFAP 3.54 (0.48)

cg25465406 GUCY2D 3.56 (1.05) cg11679069 DNAJC15 2.51 (0.54) cg25465406 GUCY2D 3.47 (1.13)

cg09038914 GFAP 3.25 (0.44) cg25465406 GUCY2D 2.50 (0.78) cg13030582 MFAP4 2.89 (2.15)

cg17129388 NGFR.2 2.71 (0.57) cg09038914 GFAP 2.16 (0.47) cg13263114 ERBB2 2.57 (0.32)

 

categorical, or continuous). Such integrative analysis might 
bring us a step closer in understanding the complex process of 
cancer cell development, in collective efforts to realizing the 
promise of personalized medicine.
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