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Abstract Benign breast disease (BBD) is diagnosed in

1–2 million women/year in the US, and while these

patients are known to be at substantially increased risk for

subsequent development of breast cancer, existing models

for risk assessment perform poorly at the individual level.

Here, we describe a DNA-microarray-based transcriptional

model for breast cancer risk prediction for patients with

sclerosing adenosis (SA), which represent � of all BBD

patients. A training set was developed from 86 patients

diagnosed with SA, of which 27 subsequently developed

cancer within 10 years (cases) and 59 remained cancer-free

at 10 years (controls). An diagonal linear discriminate

analysis-prediction model for prediction of cancer within

10 years (SA TTC10) was generated from transcriptional

profiles of FFPE biopsy-derived RNA. This model was

tested on a separate validation case–control set composed

of 65 SA patients. The SA TTC10 gene signature model,

composed of 35 gene features, achieved a clear and sig-

nificant separation between case and control with receiver

operating characteristic area under the curve of 0.913 in the

training set and 0.836 in the validation set. Our results

provide the first demonstration that benign breast tissue

contains transcriptional alterations that indicate risk of

breast cancer development, demonstrating that essential

precursor biomarkers of malignancy are present many

years prior to cancer development. Furthermore, the SA

TTC10 gene signature model, which can be assessed on

FFPE biopsies, constitutes a novel prognostic biomarker

for patients with SA.
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Introduction

Breast cancer (BC) is the most commonly diagnosed can-

cer in women in the US, with estimated incidence of more

than 230,000 new cases and 40,000 deaths expected in

2014 [1]. BC is most effectively treated when identified at

early stages of development; better identification of which

women are at increased risk for developing breast cancer

would have considerable benefit for optimal use of

surveillance resources. Currently, the most commonly used

method for assessment of breast cancer is the Breast

Cancer Risk Assessment Tool (BCRAT, also referred to as

the Gail model) [2], which works well to identify
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populations of women at increased BC risk, but which

performs less well when used to predict risk for individual

women [3, 4].

More than 1 million women per year in the US have

breast biopsies with benign findings; these women are

classified as having benign breast disease (BBD) and are

known to have significantly elevated risk for subsequent

development of breast cancer [5, 6]. BC risk for women

with BBD can be stratified by histological features present

in the benign biopsy, including type of lesion and degree of

lobular involution [5, 7–9]. An individualized risk assess-

ment model for women with BBD, designated the BBD-BC

model, was recently developed for women with BBD and

includes histologic features of the biopsy as well as other

demographic and clinical features [4]. The BBD-BC model

was found to provide improved performance for women

with BBD as compared to the BCRAT model; in a cohort

of women with BBD identified at the Mayo Clinic, the

BBD-BC had a Receiver Operating Characteristic area

under the curve (ROC AUC) of 0.665, while the BCRAT

had a ROC AUC of 0.567 [4]. The BBD-BC model thus

provided improved risk classification compared to the

BCRAT; however, the BBD-BC model was designed to

predict risk for all women with BBD. It is likely that better

discrimination of risk could be obtained by developing

models for specific subtypes of BBD.

Sclerosing adenosis (SA) is a common BBD lesion that

is characterized by epithelial proliferation, disordered aci-

nar architecture, and stromal fibrosis (Fig. 1) [5, 10, 11].

Investigation of the Mayo Clinic BBD cohort revealed that

SA was present in 28 % of the cohort and was associated

with an approximate doubling of risk of subsequent BC

[11]. This increased risk indicates that premalignant

changes are likely present in some patients with SA. We

obtained RNA from formalin-fixed, paraffin-embedded

SA-containing biopsies and sought transcriptional elements

that could predict subsequent cancer incidence. Our results

demonstrate the development and validation of the first

microarray-based gene signature to predict risk of later BC

from benign breast tissue and provide a template for a

novel clinical assay with considerable translational

potential.

Methods

Patients and samples

This study sample comprises patients selected from the

Mayo BBD Cohort, which has been previously described

[5, 9]. The Mayo BBD Cohort includes 9854 women ages

18–85 who had excisional breast biopsy with benign

findings between 1967 and 1991 at Mayo Clinic (Roche-

ster, MN). Demographic descriptors and potential breast

cancer risk factors were identified via medical record

review and from self-response questionnaires [5, 9]. Over a

median of 18.9 years of follow-up, 924 of these women

have been diagnosed with BC. Informed consent was

obtained from each subject. All study procedures have been

approved by the Mayo Clinic Institutional Review Board.

Biopsy findings were classified into the following cate-

gories: non-proliferative fibrocystic changes (NP), prolif-

erative fibrocystic disease without atypia (PDWA), and

proliferative fibrocystic disease with atypia [i.e., atypical

hyperplasia (AH)] [12]. Sclerosing adenosis (SA) is a

proliferative lesion, without atypia, that consists of

enlarged and distorted lobules with prominent myoepithe-

lium and stromal fibrosis. Because of concerns with tissue

quality from the older biopsy specimens, eligibility for this

study was restricted to the 1486 women diagnosed with

PDWA and SA between the years of 1977 and 1991.

Two sets of breast cancer cases and controls from the

SA group were formed for study purposes: one for model

development (N = 86) and one for model validation

(N = 65). For each, an age-stratified random sample of

women with breast cancer at any time was selected, with

selection probabilities proportional to the size of the age

strata. Women from the last 10 years of the cohort

recruitment period (1982–1991) were preferentially sam-

pled, again under the assumption that tissue quality would

be higher for these women than for those from the earlier

years of the cohort. An equal number of controls were then

frequency matched to these cases based on 5-year age and

year of biopsy categories. The presence of SA lesions in the

case/control samples was confirmed and reviewed by a

second breast pathologist (AN). Study cohort demographic

and clinical characteristics are in Table 1.

▲

▲

Fig. 1 Histology of sclerosing adenosis (SA). H&E image of SA

(arrow) in field containing two normal lobules (arrowheads). Scale

bar 1 mm
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RNA extraction and gene expression profiling

RNA was extracted from FFPE samples using the High

Pure RNA Paraffin Kit (Roche Diagnostics, Mannheim,

Germany). The amount and quality of RNA were assessed

with ND-1000 Spectrophotometer (Nanodrop, Wilmington,

DE), and they were considered adequate for further anal-

ysis if the optical density 260/280 ratio was C1.8, and the

total RNA yield was C500 ng. Extracted RNA was labeled

and hybridized according to manufacturer’s instruction for

the Whole Genome DASL assay (Illumina, San Diego,

CA). All samples in the model development set had tech-

nical replicates. The first replicate was randomized to one

96-well plate for assay preparation, and the second repli-

cate for each sample had a different randomization to a

second 96-well plate. For the validation set, only 17 sam-

ples were profiled in replicate. Briefly, 200 ng of total

RNA was reverse transcribed with biotinylated oligo(dT)

and random nonamer primers. The resulting cDNA was

annealed to chimeric query oligonucleotides which contain

a gene-specific region and a universal primer sequence for

PCR amplification, and then bound to streptavidin-conju-

gated paramagnetic particles. The gene-specific oligonu-

cleotides were extended by second-strand cDNA synthesis

and then ligated. Subsequently, the products were seques-

tered by magnetic separation, washed to remove unbound

molecules, and then amplified by PCR with fluorophore-

labeled universal primers. The resulting PCR products

were purified, applied to Human HT-12 v.4 beadchips

(Illumina), and then hybridized for 16 h at 58 �C. The

beadchips were washed and then scanned in a BeadArray

Reader using BeadScan v3 software (Illumina). Quality

control parameters were determined to be within normal

ranges before proceeding to the final data analysis. Sample

probe gene expression values for the 29,377 probes were

exported from Illumina Genomestudio and imported into

the software R [13] for normalization, additional quality

control, analysis, and prediction model development. The

agreement between technical replicates was analyzed for

correlation between model metrics in the first and second

Table 1 Characteristics of

study set and comparison to

overall SA patient cohort

Not selected (N = 1316) Study set (N = 170) p value

Age at BBD 0.3441

\45 301 (22.9 %) 40 (23.5 %)

45–55 447 (34.0 %) 66 (38.8 %)

55? 568 (43.2 %) 64 (37.6 %)

Year of benign biopsy 0.2938

1977–1981 241 (18.3 %) 37 (21.8 %)

1982–1986 501 (38.1 %) 55 (32.4 %)

1987–1991 574 (43.6 %) 78 (45.9 %)

Breast cancer status \0.0001

Unaffected 1202 (91.3 %) 90 (52.9 %)

Breast cancer 114 (8.7 %) 80 (47.1 %)

Overall impression 0.0815

PROL. DIS W/O ATYPIA 1187 (90.2 %) 146 (85.9 %)

PROL. DIS W/ATYPIA 129 (9.8 %) 24 (14.1 %)

Atrophy 0.0036

Missing 46 7

NO 148 (11.7 %) 31 (19.0 %)

1–74 % TDLU 996 (78.4 %) 125 (76.7 %)

[75 % TDLU 126 (9.9 %) 7 (4.3 %)

Columnar alteration 0.0730

Missing 1 0

NO 614 (46.7 %) 67 (39.4 %)

Marked 701 (53.3 %) 103 (60.6 %)

Family history of breast cancer 0.0249

Missing 3 0

None 814 (62.0 %) 87 (51.2 %)

Weak 337 (25.7 %) 56 (32.9 %)

Strong 162 (12.3 %) 27 (15.9 %)
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replicates for the model development set and between the

first and second replicates for the validation set respec-

tively (Supplementary Fig. 1).

Gene expression intensities from only the model

development set were quantile-normalized in an iterative

fashion using the normalization stress metric as described

by Mahoney et al. to exclude failed samples [14]. Samples

and their respective replicates were kept for further anal-

ysis if the normalization stress metric was less than

0.585 = log2(1.5). The model validation set was quantile-

normalized separately to the final normalized distribution

from the model development set. Normalized gene

expression values were transformed to the log2 scale for

analysis.

The complete description of the methods involved in SA

TTC10 (cancer within 10 years) model development and

analysis, including extensive internal model validation, is

provided in Supplemental Methods.

Results

We used the development of BC at 10 years as the primary

end point for model development. The 86 patients in the

model development set included 27 TTC10-cases and 59

TTC10-controls, and the 65 patients in the validation set

included 10 TTC10-cases and 55 TTC10-controls, with 3

and 12 replicates, respectively. The optimum-filtering

strategy of 45 % detected-p value\0.01 and 35 probes was

chosen based on the local minimum (to prevent over-fit-

ting) of the average prediction error from the 100 Monte

Carlo cross-validation test sets (Fig. 2a), which filtered out

8873 probes from further analysis (Fig. 2b). The 35 probes

selected as final-model features are shown in Supplemen-

tary Table 1.

Prediction performance for the model development set

was ROC AUC = 0.91 (95 % CI, 0.87, 0.95) with a pre-

diction accuracy of 80 % (95 % CI 70, 88 %; Fig. 2c). The

independent validation set had an ROC AUC = 0.84

(95 % CI 0.75, 0.92) with a prediction accuracy of 58 %

(95 % CI 46, 71 %; Fig. 2d). Actual TTC10 case/control

status and the continuous version of the DLDA prediction

model metric for both the model development and vali-

dation sets are displayed (Fig. 2e). Full prediction perfor-

mance and accuracy metrics are shown in Table 2. Actual

time-to-cancer based on the predicted group for each

sample is displayed in Kaplan–Meier plots (Fig. 3).

Combined BCRAT ? TTC10 and BBD-BC ? TTC10

models were built for the samples where both the BCRAT

and BBD-BC model metrics were available (Fig. 4). All

the patient samples in the model development set could be

used, and 10 TTC10 cases and 41 TTC10 controls were

available from the validation set. For the training set, the

TTC10 model improved discrimination of the BCRAT

model, with AUC = 0.64 (95 % CI 0.57–0.71) for BCRAT

alone, 0.91 (95 % CI 0.87–0.95) for BCRAT combined

with TTC10, and 0.91 (95 % CI 0.87–0.95) for TTC10

alone (Fig. 4a). The TTC10 model also improved dis-

crimination of the BBD-BC model, with AUC of 0.63

(95 % CI 0.56–0.70) for BBD-BC alone, 0.93 (95 % CI

0.89–0.97) for BBD-BC combined with TTC10, and 0.91

(95 % CI 0.87–0.95) for TTC10 alone (Fig. 4b). Similarly,

Fig. 2 Development and validation of SA TTC10 model. a Mean

area above the receiver operating characteristic (ROC) curve plotted

against the number of top genes included in the classifiers. b Plot of

average gene expression values indicating probes which were used for

the model building ([45 % positive expression, p\ 0.1 for differ-

ence between cases and controls) and locations of which probes were

included in the model. Probes passing the filtering threshold are

shown in red, those filtered out are shown in blue, and those probes

selected as final-model features are shown as large black dots. c,

d ROC for SA TTC10 model applied to training set (c; N = 86) and

validation set (d; N = 65). e SA TTC10 predictions for training and

validation dataset cases and controls. The vertical dashed line

separates the samples into those predicted to be a TTC10-control

(prediction metric B0) or TTC10-case (prediction metric[0)
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for the validation set, the TTC10 model also improved

discrimination: AUC = 0.55 for BCRAT alone, 0.79

(95 % CI 0.70–0.87) for BCRAT combined with TTC10,

and 0.80 (95 % CI 0.71–0.89) when TTC10 is used alone

(Fig. 4c). Improvements of TTC10 with the BBD-BC

model are as follows: AUC = 0.75 (95 % CI 0.65–0.85)

for BBD-BC alone, 0.82 (95 % CI 0.73–0.91) for BBD-BC

combined with TTC10, and 0.80 (95 % CI 0.71–0.89) for
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Fig. 3 Time-to-Cancer Distributions within SA TTC10 prediction

groups. a, b Kaplan–Meier plots visualizing the distribution of actual

time-to-cancer within predicted case/control groups in training

(a) and validation (b) cohorts
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TTC10SA: 0.91 ± 0.04
BCRAT: 0.64 ± 0.07

BCRAT+TTC10SA: 0.91 ± 0.04

TTC10SA: 0.91 ± 0.04
BBD-BC: 0.63 ± 0.07

BBD-BC+TTC10SA: 0.93 ± 0.04

TTC10SA: 0.80 ± 0.09
BCRAT: 0.55 ± 0.10

BCRAT+TTC10SA: 0.79 ± 0.09

TTC10SA: 0.80 ± 0.09
BBD-BC: 0.75 ± 0.10

BBD-BC+TTC10SA: 0.82 ± 0.09

Fig. 4 Combination of SA TTC10 model with BCRAT or BBD-BC

models improves performance of each. a, b ROC for BCRAT (a) and

BBD-BC (b) models with SA training set. c, d ROC for SA TTC10

combined with BCRAT (c) and BBD-BC (d) models for SA

validation set

Table 2 Model metrics for the TTC10 model, unless otherwise specified

Cases/controls TTC10

Model development Validation set

27/59 10/55

Number of final-model features 35 35

TTC10 AUC: only samples with BCRAT and BBD-BC risk scores 0.91 (0.87, 0.95) 0.80 (0.71, 0.89)

AUC: BCRAT alone 0.64 (0.58, 0.71) 0.56 (0.45, 0.66)

AUC: BCRAT ? TTC10 0.91 (0.87, 0.95) 0.79 (0.70, 0.88)

AUC: BBD-BC alone 0.63 (0.56, 0.70) 0.75 (0.66, 0.84)

AUC: BBD-BC ? TTC10 0.93 (0.89, 0.96) 0.82 (0.73, 0.91)

True positives 26 9

True negatives 43 29

False positives 16 26

False negatives 1 1

Accuracy 0.80 (0.70, 0.88) 0.58 (0.46, 0.71)

Sensitivity 0.96 (0.81, 1.0) 0.90 (0.56, 1.0)

Specificity 0.73 (0.60, 0.84) 0.53 (0.39, 0.66)

Technical replicates spearman correlation

Rho

0.86

p B 0.0001

0.98

p B 0.0001
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TTC10 alone (Fig. 4d). Thus, in women with SA, the SA

TTC10 model provides improved and independent risk

assessment compared to those of the BCRAT and the

BBD-BC models.

Discussion

We have developed a microarray-based gene signature in

benign breast tissue that accurately discriminates between

patients that will and will not develop breast cancer within

10 years. Specifically, the signature pertains to women

with sclerosing adenosis, a common proliferative finding

present in about 25 % of all benign biopsies. The signature

also performed well in an independent validation set of

women with sclerosing adenosis. This molecular-based

model, based in a specific subtype of BBD, performs

substantially better than traditional models containing

clinical and histologic features only; in the validation set,

the TTC10 signature provided an improvement in AUC of

0.07 above the BBD-BC model alone and 0.23 above

BCRAT alone.

There are multiple advantages to a microarray-based

signature based on FFPE tissue. The risk signature is not

dependent on pathology interpretation and provides risk

information that is independent of risk stratification

resulting from standard clinical models. Furthermore, the

use of FFPE biopsy tissue ensures widespread applicability

of this model, as FFPE is the most common method for

tissue preservation and is the standard for tissue archiving.

Compared to assays requiring fresh/frozen tissue, an FFPE-

based assay will facilitate clinical implementation since no

changes in sample collection and processing are needed.

Analysis of the 35 individual probes that compose the

TTC10 model revealed a number of genes that have been

previously implicated in breast cancer progression.

NDRG3, encoding the N-Myc Downstream-Regulated

Gene 3 Protein, had a negative coefficient, indicating that

increased relative expression was associated with reduced

BC risk; NDRG3 has been identified as activated by the

estrogen receptor-b (ERb) and as a component of an

antiproliferative response induced by ERb in the T47D

breast cancer cell line [15, 16]. Other probes with a neg-

ative coefficient include NPNT1, encoding the protein

nephronectin, which has been found to be downregulated in

breast cancer cells that acquire the ability to metastasize to

the liver [17], and PSMB1, encoding the proteasome

macropain subunit-b1, has been identified as a component

of a protein interaction network prognostic for BC outcome

[18]. GEMIN2, encoding gem (nuclear organelle) associ-

ated protein 2, also designated as SIP1, has a positive

coefficient and thus increased expression of this gene was

associated with increased BC risk; GEMIN2/SIP1 has been

extensively studied as a mediator of the epithelial-mes-

enchymal transition and as a suppressor of the differenti-

ated epithelial phenotype [19–21]. Other probes with a

positive coefficient include MTHFD2, encoding

methylenetetrahydrofolate dehydrogenase-2, a metabolic

regulator associated with poor prognosis for BC patients

and as an inducer of BC cell invasion and metastasis [22–

25], and UFL1, encoding UFM1-specific ligase 1, recently

identified as a component of a protein complex critical for

ERa transactivation and breast cancer development [26].

Strengths of our study include our focus on a common

proliferative lesion, use of a large cohort as a sampling

frame for cases and controls, use of FFPE tissues which

should translate well to current clinical practice, and vali-

dation in an independent dataset. The threshold used to

determine case status from the predicted score can be

optimized in future studies to minimize false positives and

false negatives while balancing the consequences of each.

We chose to use whole tissue sections rather than laser-

microdissected lesions, since SA reflects perturbations in

both the epithelial and stromal compartments, and thus, a

model incorporating both contains information about how

elements of the tumor microenvironment contribute to

cancer development. As a weakness, our focus on SA

limits the application of our signature to this particular

patient group, but we estimate that about 250,000 women

per year receive a diagnosis of SA on their benign breast

biopsies; molecular predictive models for patients with

BBDs containing other common proliferative lesions can

also be studied.

Furthermore, our sample selection procedure included

over-sampling cases in order to improve power to dis-

criminate between patients that would go on to develop

breast cancer from those that would not. As a result, the

prevalence of breast cancer events within the development

and validation samples do not reflect the population

prevalence of breast cancer, and therefore, this gene sig-

nature cannot be directly used to obtain individualized risk

predictions, which will be the subject of future studies.

However, this study importantly provides a proof of prin-

ciple, where we have now identified genes that discriminate

with a high level of accuracy, which will form the basis of

a future risk prediction model combined with clinical

information, as in (Ref [4]). Additionally, the use of the

endpoint of time-to-cancer within 10 years provided

improved discriminative ability relative to previously

developed models. Unsurprisingly, this suggests that a

molecular signature derived from a benign biopsy will be a

better predictor of earlier cancer occurrences.

In conclusion, this is the first predictive transcriptional

model derived from benign breast tissue that can distin-

guish between patients that developed BC within 10 years

from those who did not. We show that this molecular-based

692 Breast Cancer Res Treat (2015) 152:687–694
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profile, focused on patients with SA, provides improvement

over previous models that do not include molecular data.

We now plan to conduct studies designed to accurately

estimate risk with this model and to develop additional

signature models for other categories of BBD. By identi-

fying higher risk women among those with SA, this model

can help to stratify women into groups who would benefit

from more intensive surveillance strategies. Additionally,

as our results demonstrate that transcriptional features

associated with BC are present in SA-containing biopsies

more than a decade before cancer development, our study

provides insight into novel potential targets for chemo-

prevention specific for patients with SA.
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