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Diabetes and obesity have reached an epidemic status worldwide. Diabetes increases the risk for cardiovascular disease and non-
alcoholic fatty liver disease. Primary bile acids are synthesized in hepatocytes and are transformed to secondary bile acids in the 
intestine by gut bacteria. Bile acids are nutrient sensors and metabolic integrators that regulate lipid, glucose, and energy homeo-
stasis by activating nuclear farnesoid X receptor and membrane Takeda G protein-coupled receptor 5. Bile acids control gut bac-
teria overgrowth, species population, and protect the integrity of the intestinal barrier. Gut bacteria, in turn, control circulating 
bile acid composition and pool size. Dysregulation of bile acid homeostasis and dysbiosis causes diabetes and obesity. Targeting 
bile acid signaling and the gut microbiome have therapeutic potential for treating diabetes, obesity, and non-alcoholic fatty liver 
disease.
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INTRODUCTION

The global epidemic of obesity has caused the increase of the 
prevalence of type 2 diabetes mellitus (T2DM), which is pre-
dicted to increase 54% by 2030 [1]. T2DM is a complex meta-
bolic disease developed most often in middle-aged and older 
people with a family history of diabetes and obesity. Asian, 
Hispanic, American Indian, and African American popula-
tions have high prevalence of T2DM. The majority of diabetes 
patients (70%) are overweight or obese, and the obesity rate is 
expected to increase 33% in the next 20 years [2]. Diabetic and 
obese patients have increased risk for cardiovascular disease 
(CVD), the leading cause of death in western countries (Fig. 1). 
T2DM patients are insulin resistant and glucose intolerant in 
skeletal muscle, adipose tissue, and liver. Consequently, hyper-
glycemia induces vascular complications in blood vessels, kid-
ney, heart, and liver, and can cause renal and retinal disorders 

and macrovascular complications, leading to blindness, kidney 
failure, atherosclerosis, stroke, and liver diseases. 

T2DM is linked to non-alcoholic fatty liver disease (NAFLD) 
[3], which has rapidly increased worldwide and has a global 
prevalence of about 24%; the highest rates being in South 
America, the Middle East, Asia, the USA, and Europe [4]. 
NAFLD is a significant complication of obesity and diabetes 
[5] and is an independent risk factor for CVD (Fig. 1) [6-8]. 
CVD and NAFLD are the heart and liver manifestations of the 
metabolic syndrome (syndrome X) [9], a collection of five ab-
normal metabolic phenotypes: hypertension, hyperglycemia, 
hypertriglyceridemia, insulin resistance, and obesity (Fig. 1) 
[10]. NAFLD consists of a broad spectrum of liver diseases 
from simple hepatic steatosis and nonalcoholic steatohepatitis 
(NASH) to cirrhosis and hepatocellular carcinoma (HCC), the 
end stages of liver disease [11-13]. High fat, high carbohydrate, 
or high calorie diets, alcohol, starvation, drugs, and viral infec-
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tion can cause hepatic steatosis [14]. Simple steatosis is revers-
ible, about 30% of NAFLD patients progress to NASH, a 
chronic condition with liver inflammation, macrovascular bal-
looning, macrophage infiltration and fibrosis. About 2% to 5% 
of NASH patients develop liver cirrhosis and HCC. NASH has 
become the second leading cause of liver cancer and will sur-
pass viral hepatitis as the primary cause for liver transplants. 
Multiple factors, including reactive oxidizing species, visceral 
fat, viruses, cigarette smoking, insulin resistance, lipotoxicity, 
and hepatic cholesterol have been linked to the progression of 
simple hepatic steatosis to NASH [15], and there is no U.S. 
Food and Drug Administration-approved therapeutic drug for 
treating NASH. 

Bile acids are derived from cholesterol catabolism in the liver 
and are amphipathic molecules with strong detergent proper-
ties that aid in the absorption of dietary fats and steroids, lipid-
soluble vitamins, and xenobiotics, including drugs and envi-
ronmental contaminates. Bile acids are now recognized as key 
endogenous steroid molecules that play critical roles in regulat-
ing and maintaining lipid, glucose and energy metabolism, 
protecting against inflammation in the liver, intestine and heart, 

and preventing diabetes and obesity [16]. Bile acid metabolism 
is altered in T2DM [17-19] and dysregulation of lipid, glucose 
and energy metabolism causes inflammatory metabolic diseas-
es including T2DM, NAFLD, and CVD. This review will cover 
bile acid pathophysiology and signaling, recent advances in un-
derstanding the role of bile acid signaling in diabetes, and bile 
acids as drug therapies for treating metabolic diseases. 

BILE ACID BIOLOGY AND PHYSIOLOGY

Bile acid biology
Bile acids are the end products of cholesterol catabolism in the 
liver, the only organ which has all the enzymes required in the 
cascade pathway to convert excessive cholesterol to bile acids. 
Bile acid synthesis accounts for catabolism of about 50% of the 
daily cholesterol output. Biliary secretion of cholesterol in bile 
accounts for another 40% of the daily cholesterol output. The 
remaining 10% of cholesterol is utilized for membrane synthe-
sis and steroid hormone synthesis in steroidogenic tissues. 
Therefore, bile acid metabolism plays a critical role in main-
taining whole body cholesterol homeostasis.

Fig. 1. Metabolic syndrome is a collection of five phenotypes: hypertension, hyperglycemia, hypertriglyceridemia, insulin resis-
tance and obesity. Many of these metabolic phenotypes are associated with type 2 diabetes mellitus (T2DM). T2DM increases risk 
for cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). NAFLD is a spectrum of liver disease including 
simple steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatocellular carcinoma. Obesity, hepatic ste-
atosis and insulin resistance all contribute to NAFLD. 
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Bile acid synthesis in the liver
In the human liver, cholesterol 7α-hydroxylase (CYP7A1) cat-
alyzes the first and rate-limiting step in the classic bile acid 

synthesis pathway and synthesizes two primary bile acids, che-
nodeoxycholic acid (CDCA) and cholic acid (CA), the latter of 
which requires sterol 12α-hydroxylase (CYP8B1) (Fig. 2). CA 

Fig. 2. Bile acid synthesis, enterohepatic circulation of bile acids, and bile acid transport. In human hepatocytes, cholesterol 
7α-hydroxylase (CYP7A1) catalyzes the first and rate-limiting step in the classic pathway of bile acid synthesis in which cholic 
acid (CA) and chenodeoxycholic acid (CDCA) are synthesized from cholesterol. Sterol 12α-hydroxylase (CYP8B1) is required for 
synthesis of CA, and without this enzyme CDCA is synthesized. The alternative pathway is initiated by sterol 27-hydroxylase 
(CYP27A1), which catalyzes steroid side-chain oxidation, followed by oxysterol 7α-hydroxylase (CYP7B1), which synthesizes the 
oxidized sterols that form CA and CDCA in hepatocytes. CYP7A1 is liver-specific, while CYP27A1 and CYP7B1 are expressed in 
extrahepatic tissues and macrophages. Bile acids are conjugated to the amino acids taurine (T) or glycine (G) for secretion into 
bile via bile salt export pump (BSEP). Bile acids are reabsorbed in the ileum via apical sodium-dependent bile acid transporter 
(ASBT) in enterocytes, where gut bacterial bile salt hydrolase (BSH) de-conjugates bile acids and 7α-dehydroxylase removes a hy-
droxyl group to form the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA) from CA and CDCA, respec-
tively. Bile acids are effluxed to portal blood via organic solute transporter α and β (OSTα/OSTβ) dimers and are transported to 
hepatocytes via Na2+-dependent taurocholate co-transporting peptide (NTCP) where they inhibit bile acid synthesis. Bile acids 
activate hepatic farnesoid X receptor (FXR) to induce small heterodimer partner (SHP), which inhibits CYP7A1 and CYP8B1 
gene transcription. In enterocytes, bile acid activation of FXR induces fibroblast growth factor 19 (FGF19). FGF19 is transported 
to hepatocytes to activate FGF receptor 4 (FGFR4)/β-Klotho complex, which activates EKR1/2 signaling to inhibit CYP7A1 gene 
transcription. Bile acids activate Takeda G protein-coupled receptor 5 (TGR5) in intestinal L-cells, leading to secretion of gluca-
gon-like peptide-1 (GLP-1), which stimulates insulin secretion from β-cells. In adipose tissue, activation of TGR5 stimulates 
cAMP/cAMP response element binding protein (CREBP) to induce thyroid hormone deiodinase type 2 (DIO2), which converts 
thyroxine (T4) to triiodothyronine (T3) and stimulates energy metabolism. ERK1/2, extracellular regulated kinase 1 and 2; 
PPARα, peroxisome proliferator-activated receptor α; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; TCA, tauro-
cholic acid; TCDCA, taurochenodeoxycholic acid.
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has 3 hydroxyl (HO) groups at the 3α, 7α, and 12α-positions; 
thus, it is more soluble (hydrophilic) than CDCA, which has 2 
hydroxyl groups at the 3α and 7α-positions. All hydroxyl 
groups in bile acids are facing one side of the carbon skeleton, 
creating a hydrophilic side and a hydrophobic side, making 
bile acids amphipathic molecules with strong detergent prop-
erties. Mitochondrial sterol 27-hydroxylase (CYP27A1) then 
catalyzes steroid side-chain oxidation, followed by a peroxi-
somal β-oxidation reaction that cleaves a 3-carbon unit from 
the steroid-side chain to form C-24 bile acids and propionyl-
CoA. Bile acids also can be synthesized via the alternative path-
way, initiated by CYP27A1, to form 27-hydroxycholesterol and 
3β-hydroxy-5-cholestenoic acid, which is then hydroxylated at 
the 7α-position by the non-specific oxysterol 7α-hydroxylase 
(CYP7B1). CYP27A1 and CYP7B1 are expressed in most tis-
sues and macrophages and are responsible for the metabolism 
of oxysterols to steroid hormones in steroidogenic tissues; 
these oxidized steroid intermediates can be transported to the 
liver for synthesis of bile acids. The classic pathway is the major 
route for bile acid synthesis in humans. In rodents, most 
CDCA (3α, 7α) is converted to α-muricholic acid (α-MCA, 
3α, 6β, 7α) and the 7α-HO group is epimerized to 7β-HO by 
Cyp2c70 (sterol 6β-hydroxylase), forming β-muricholic acid 
(β-MCA, 3α, 6β, 7β). Addition of a 6β-HO group to CDCA 
converts hydrophobic CDCA to highly soluble and non-toxic 
α-MCA and β-MCA. In contrast to humans, CA (50%) and 
α-MCA plus β-MCAs (50%) are the predominant primary bile 
acids produced in mouse liver [20]. 

Most bile acids are conjugated to glycine (G) and taurine (T) 
in a ratio of about 3:1 in humans. In mice, most bile acids 
(>95%) are taurine-conjugated. The conjugated bile acids are 
secreted into bile and stored in the gallbladder, and after meal 
intake, bile acids are secreted into the intestinal tract. Bile acids 
are reabsorbed, mostly in the terminal ileum and colon, and 
are secreted into portal blood circulation back to the liver to 
inhibit bile acid synthesis. This enterohepatic circulation of bile 
acids from the liver to intestine and back to the liver occurs six 
to eight times a day and is highly efficient in reabsorbing about 
95% of bile acids in a pool of about 10 g in an average human. 
Small amounts of bile acids lost in feces (5%, 0.5 g/day) are re-
plenished by de novo synthesis in the liver (Fig. 2) [20]. 

Bile acid biotransformation in the gut
The gut bacteria metabolize primary bile acids to secondary bile 
acids, which were once considered “damaged” bile acids that 

were excreted into feces or cleared in urine. In the intestine, a 
portion of conjugated CA and CDCA are de-conjugated by gut 
bacterial bile salt hydroxylase (BSH) to free bile acids, then 
bacterial 7α-dehydroxylase activity removes a 7-HO group 
from CA and CDCA to form deoxycholic acid (DCA) and 
lithocholic acid (LCA), respectively (Fig. 2) [21]. LCA is a toxic 
and highly insoluble bile acid, most of which is excreted into 
feces, though small amounts of LCA (approximately 2%) are 
circulated to the liver and sulfoconjugated for secretion into 
urine. DCA is a potent bactericide that controls bacterial over-
growth, but also is a promoter of colon cancer. Small amounts 
of CDCA (1% to 2%) are converted to its 7β-epimer, ursode-
oxycholic acid (UDCA) by gut bacterial 7β-hydroxysteroid de-
hydrogenase in humans. Epimerization of the C7-HO group 
from the α- to the β-position converts toxic CDCA to hydro-
philic and non-toxic UDCA. In humans, the circulating bile 
acid pool is highly hydrophobic, consisting of CA, CDCA, and 
DCA in a ratio of about 40:40:20, and the ratio of glycine to 
taurine-conjugated bile acids is about 3 to 1 [20]. 

BILE ACID SIGNALING IN METABOLIC 
REGULATION 

Extensive research in the last three decades has identified bile 
acids as signaling molecules that activate several nuclear recep-
tors: farnesoid X receptor (FXR) [22-24], vitamin D receptor 
(VDR) [25], pregnane X receptor (PXR) [26]; and the mem-
brane G protein-coupled receptors: Takeda G protein-coupled 
receptor 5 (TGR5) [27], sphingosine-1 phosphate receptor 2 
(S1PR2) [28], and muscarinic M2 receptor [29]. These bile ac-
id-activated receptors play critical roles in liver metabolism 
[30]. This section will focus on the roles of FXR and TGR5 in 
the regulation of metabolism and pathophysiology of liver-re-
lated metabolic diseases. 

Farnesoid X receptor
FXR is mainly expressed in the digestive system, including liv-
er and intestine. FXR is activated by bile acids in the order of 
potency CDCA>LCA=DCA>CA. FXR knockout mice have 
increased hepatic triglycerides, cholesterol and a proathero-
genic lipid profile, and reduced bile acid pool and increased fe-
cal bile acid secretion, indicating FXR plays a major role in bile 
acid and lipid metabolism [31]. FXR also regulates the entero-
hepatic circulation of bile acids and feedback homeostasis [32]. 
In the liver, bile acids activate FXR to induce the expression of 
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the major hepatic bile acid efflux transporter, bile salt export 
pump which secretes conjugated bile acids into bile, and inhib-
its the sinusoidal hepatic bile acid uptake transporter, Na+2-de-
pendent taurocholate co-transport peptide (Fig. 2). These two 
major bile acid transporters regulate hepatic bile acid homeo-
stasis. In hepatocytes, bile acid activation of FXR induces a 
transcriptional repressor, small heterodimer partner, to inhibit 
transcription of the CYP7A1 and CYP8B1 genes (Fig. 2). In the 
ileum, bile acids are reabsorbed into enterocytes via apical so-
dium-dependent bile acid transporter, whose function is in-
hibited by bile acids. Bile acids activate intestinal FXR to in-
duce the release of the intestinal hormone fibroblast growth 
factor 19 (FGF19) in humans or FGF15 in mice (Fig. 2). FXR 
also induces the bile acid efflux transporters organic solute 
transporter α and β (OSTα/OSTβ) to secrete bile acids into 
portal blood circulation. FGF19 released from enterocytes is 
transported via portal blood circulation to hepatocytes and 
binds to the membrane FGF receptor 4/β-Klotho complex, 
which activates mitogen-activated protein kinase (MAPK) and 
extracellular regulated kinase 1 and 2 (ERK1/2) signaling to 
inhibit CYP7A1 and CYP8B1 gene transcription (Fig. 2). The 
intestinal FXR/FGF19 to hepatic FGFR4 pathway may be the 
major physiological mechanism for bile acid feedback regula-
tion of bile acid synthesis. 

The role of FXR in glucose metabolism is controversial. It was 
reported that FXR expression was reduced in streptozotocin-
induced diabetic rats, and insulin and glucose induced FXR 
expression [33]. Activation of FXR has been shown to improve 
glucose and lipid metabolism and reduce inflammation in dia-
betes [34-36]. Surprisingly, other studies reported that Fxr-/- mice 
had improved hyperglycemia and insulin sensitivity, and activa-
tion of FXR induced obesity and diabetes by reducing energy 
expenditure [37]. In pancreatic β-cells, activation of FXR stimu-
lates glycolysis to increase the adenosine triphosphate:adenosine 
diphosphate (ATP:ADP) ratio and results in closing KATP-
channels and depolarizing the plasma membrane, which sub-
sequently opens Ca2+ channels, increasing Ca2+ influx and 
stimulating insulin secretion from β-cells [38]. 

Takeda G protein-coupled receptor 5
In the liver, TGR5 is expressed in sinusoidal endothelial cells, 
Kupffer cells (hepatic resident macrophages), stellate cells, and 
biliary epithelial cells in bile ducts, but not in hepatocytes [39-
41], and the secondary bile acids LCA and DCA are potent en-
dogenous TGR5 agonists (LCA>DCA>CDCA>CA). TGR5 

is expressed in the epithelium of human gallbladder and con-
trols gallbladder refiling [42]. TGR5 also plays a key role in bile 
acid metabolism and fasting-induced hepatic steatosis [43]. In 
the colon, TGR5 mediates bile acid-induced gastrointestinal 
motility, transit time and defecation [44]. In the intestine and 
macrophage, activation of TGR5 protects against inflamma-
tion [45]. TGR5 also plays a critical role in the control of glu-
cose homeostasis [46]. Activation of TGR5 stimulates the re-
lease of glucagon-like peptide-1 (GLP-1) from enteroendo-
crine L-cells to stimulate insulin secretion from β-cells and in-
crease insulin sensitivity. In adipose tissue, activation of TGR5 
induces thyroid hormone deiodinase type 2 (DIO2), which 
converts thyroid hormone thyroxine (T4) to triiodothyronine 
(T3) to stimulate energy metabolism and white adipose tissue 
browning (Fig. 2). CDCA increases brown adipose tissue in 
humans, likely through TGR5-mediated increase of uncou-
pling protein and DIO2 expression [47]. TGR5 knockout mice 
are protected from cholesterol gallstone disease and high fat 
diet (HFD) induced obesity [48,49]. FXR and TGR5 are co-ex-
pressed in L-cells, and activation of intestinal FXR stimulates 
TGR5 gene transcription via an FXR response element located 
in the TGR5 gene promoter; this crosstalk stimulates GLP-1 
secretion [50]. It is therefore likely that some of the reported 
FXR effects on glucose metabolism may be due to TGR5 sig-
naling in the gut.

BILE ACID SIGNALING IN DIABETES

Bile acids are nutrient sensors and metabolic regulators
Bile acid synthesis and CYP7A1 expression exhibit circadian 
rhythms, which are modulated by fasting and feeding. Sleep 
disruption, alcohol, and HFD disrupt these rhythms and cause 
altered bile acid homeostasis, contributing to the pathogenesis 
of insulin resistance and obesity [20,51-54]. Bile acids are met-
abolic sensors that aid in dietary nutrient absorption to ulti-
mately provide fuel for energy metabolism and biosynthesis.

Post-prandial regulation
Feeding rapidly stimulates the release of bile acids stored in the 
gallbladder and de-represses CYP7A1 expression to stimulate 
bile acid synthesis during the postprandial state. Feeding inhibits 
CYP8B1 expression, reducing CA and increasing CDCA, which 
is a more potent FXR agonist than CA. In the postprandial 
state, bile acids activate FXR to inhibit hepatic lipogenesis by 
stimulating insulin and insulin receptor substrate 1 (IRS1)-
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AKT-phosphoinositide 3-kinase (PI3K) signaling, which inhib-
its mechanistic target of rapamycin complex 1 (mTORC1) and 
induces autophagy (Fig. 3) [55,56]. mTORC1-pS6K promotes 
maturation and nuclear localization of steroid regulatory ele-
ment binding protein 1c (SREBP1c) to stimulate lipogenesis 
[57]. FXR inhibition of the mTORC1-SREBP1c pathway may 

be the most plausible mechanism for bile acid inhibition of li-
pogenesis. 

Post-absorptive regulation
During the late postprandial state or post-absorptive, intestinal 
FXR induces human FGF19 production and secretion from 

Fig. 3. Nutrient regulation of bile acid synthesis, insulin signaling, and mechanistic target of rapamycin complex 1 (mTORC1) 
signaling. Feeding induces cholesterol 7α-hydroxylase (CYP7A1) but inhibits sterol 12α-hydroxylase (CYP8B1), while fasting in-
hibits CYP7A1 but induces CYP8B1. Feeding and fasting cycles affect bile acid synthesis and composition, which in turn regulate 
hepatic lipid and glucose metabolism. After feeding and during the postprandial state, bile acids are released from the gallbladder 
to aid in nutrient absorption. In hepatocytes, CYP7A1 and bile acid synthesis are stimulated to activate farnesoid X receptor 
(FXR) signaling and insulin/insulin receptor substrate 1 (IRS1)-AKT-phosphoinositide 3-kinase (PI3K) signaling. Insulin signal-
ing inhibits mTORC1/protein S6 kinase (S6K) signaling and steroid regulatory element binding protein 1c (SREBP1c)-mediated 
lipogenesis. During the late post-prandial state, FXR induces fibroblast growth factor 19 (FGF19) to inhibit CYP7A1 and bile acid 
synthesis via FGF receptor 4 (FGFR4)/β-Klotho/extracellular regulated kinase 1 and 2 (ERK1/2) signaling. During fasting and 
prolonged starvation, free fatty acids released from adipose triglycerides activate peroxisome proliferator-activated receptor γ 
(PPARγ) in adipose tissue and PPARα in hepatocytes, and induce FGF21. FGF21 induces peroxisome proliferator-activated 
receptor-γ coactivator 1α (PGC-1α) to stimulate mitochondrial oxidative phosphorylation and energy production. FGF21 also 
inhibits mTORC1 signaling to stimulate insulin signaling. In enterocytes, FXR induces ceramides, which activate mTORC1/S6K 
signaling and stimulate processing of full length SREBP1c to its nuclear form (nSREBP1), stimulating lipogenesis. During fasting, 
CYP8B1 is induced and increases synthesis of cholic acid (CA) and deoxycholic acid (DCA). DCA activates intestinal FXR and 
ceramide synthesis. CYP8B1 inhibits FGF21 and activates mTORC1 signaling via inhibition of PPARα. CDCA, chenodeoxycho-
lic acid; TCA, taurocholic acid; TGR5, Takeda G protein-coupled receptor 5; CREBP, cAMP response element binding protein; 
DIO2, deiodinase type 2; T, taurine; TCDCA, taurochenodeoxycholic acid; LCA, lithocholic acid; DCA, deoxycholic acid.
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enterocytes to regulate bile acid synthesis in the liver via 
FGFR4/βKlotho/ERK1/2 signaling [58], which inhibits CY-
P7A1 and bile acid synthesis [59]. 

Fasting and starvation
During fasting, serum insulin and glucose levels decrease while 
glucagon increases to induce gluconeogenesis and release glu-
cose from glycogen to prevent hypoglycemia. Glucagon stimu-
lates hormone sensitive lipase A to release free fatty acids from 
triglycerides in adipose tissue (Fig. 3). During prolonged fast-
ing and starvation, free fatty acids activate peroxisome prolif-
erator-activated receptor α (PPARα) to induce FGF21 and per-
oxisome proliferator-activated receptor-γ coactivator 1α (PGC-
1α) in liver and adipose tissue [60,61]. FGF21 is a nutrient sen-
sor that stimulates insulin sensitivity and regulates glucose and 
energy metabolism in adipose tissue. It also reduces serum tri-
glycerides in diet-induced obese mice [60,62-64] and inhibits 
mTORC1 signaling in hepatocytes (Fig. 3) [63]. Fasting induc-
es CYP8B1, resulting in increased CA and DCA in the bile 
acid pool, which induces ceramide synthesis via FXR and acti-
vates hepatic mTORC1 signaling to stimulate lipogenesis and 
cause hepatic insulin resistance (Fig. 3) [65]. 

Hyperglycemia
In hyperglycemia, glucose is converted to acetyl-CoA, which 
stimulates histone acetylation. Glucose and insulin are known 
to stimulate CYP7A1 gene transcription by increasing histone 
acetylation of CYP7A1 chromatin [66,67]. This effect is re-
ferred to “glucose memory”. In diabetic and obese patients, 
stimulation of bile acid synthesis increases serum bile acids, 
with a higher ratio of 12α-hydroxylated bile acids (CA and 
DCA) to non-12α-hydroxylated bile acids (CDCA) [18,19]. 
Increased CYP8B1 and CA stimulates dietary fat and choles-
terol absorption and may contribute to dyslipidemia, diabetes, 
and obesity. Inhibition of CA synthesis improves glucose ho-
meostasis and prevents diet-induced obesity and atherosclero-
sis in mouse models [68-70]. 

INTERACTIONS BETWEEN BILE ACIDS AND 
THE GUT MICROBIOTA	

Bile acids in the gut-to-liver axis
The gut-to-liver axis plays a critical role in the regulation of he-
patic metabolism via the interactions between bile acids and 
the gut microbiota [71-73]. Bile acid biotransformation by gut 

bacteria determines bile acid composition in the circulating 
bile acid pool and total bile acid pool size. Bile acids control gut 
bacterial growth, gut microbial composition, gut barrier func-
tion, and production of bacterial metabolites. Interactions be-
tween bile acids and gut bacteria significantly impact the health 
of the host and contribute to the pathogenesis of metabolic dis-
eases, i.e., liver disease, obesity, and diabetes [74]. Dietary fac-
tors affect gut microbial growth and metabolism depending on 
protein, saturated or unsaturated fat, fiber, cholesterol, sucrose, 
fructose, and carbohydrate content [75]. Diet shapes the gut 
microbiota to alter host energy metabolism and contributes to 
diabetes and obesity. HFDs can cause gut dysbiosis and impair 
intestinal barrier function (leaky gut) by altering the gut micro-
biome. Gut microbes utilize short-chain fatty acids, mostly ac-
etate, butyrate and propionate, for energy metabolism. Butyrate 
improves insulin sensitivity and energy metabolism [76] and 
Chinese T2DM patients had decreased butyrate-producing 
bacteria compared to healthy control subjects [77].

The gut microbiota in diabetes
The human gut microbiome consists of 3 trillion microorgan-
isms in four major phyla, Firmicutes (60%), Bacteroidetes 
(22%), Actinobacteria (17%), and Proteobacteria (1%) [74]. A 
high ratio of Firmicutes to Bacteroidetes enables the gut micro-
biota to extract energy more efficiently from HFDs, increasing 
adiposity and obesity in humans. Animal-based diets increase 
the abundance of the bile-tolerant bacteria Bilophila wadswor-
thia and decreases Firmicutes [78]. High saturated fat diets or 
low fat diets supplemented with taurocholic acid (TCA) in-
crease B. wadsworthia to promote a proinflammatory response 
and inflammatory bowel disease [79]. Increased abundance of 
Lactobacillus is associated with T2DM in humans [77] and in 
type 1 diabetes mellitus (T1DM) patients, Bacteroidetes in-
creases and Firmicutes decreases. Higher Bacteroides species 
abundance is associated with autoimmunity, with increase of 
B. ovatus and B. uniformis, and decrease of B. fragilis in T1DM 
patients [75]. Interestingly, mucin-degrading Akkermansia 
muciniphila improves glucose tolerance in T1DM and HFD-
fed mice [75]. 

Intestinal FXR in diabetes
T-α-MCA and T-β-MCA have been identified as antagonists 
of intestinal FXR that reduce bile acid feedback regulation and 
increase bile acid synthesis [71]. In germ-free mice, bile acid 
pool size is increased, with increased T-α-MCA and T-β-MCA 
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and reduced TCA. Cyp8b1 deficiency also increased the bile 
acid pool in mice, with higher T-α-MCA and T-β-MCA, which 
antagonize intestinal FXR. These mice also had decreased he-
patic lipogenesis, improved insulin tolerance, and altered gut 
microbiota [80,81]. Intestinal FXR plays a critical role in meta-
bolic disease via modulation of the microbiome [82]. Antibiot-
ics, the antioxidant tempol, the FXR antagonist Gly-MCA, and 
deficiency of intestinal FXR all increase conjugated bile acids 
and T-β-MCAs, and suggest that inactivating intestinal FXR 
signaling decreases hepatic triglycerides in HFD-fed mice 
[83,84]. Tempol decreases Lactobacillus, which has high BSH 
activity, and increases T-β-MCA content, which antagonizes 
intestinal FXR signaling and increases bile acid synthesis. An-
tagonizing intestinal FXR signaling also decreases circulating 
ceramides and inhibits de novo lipogenesis and hepatic gluco-
neogenesis [84,85]. Fecal transplant of cecum microbiota from 
HFD-fed Fxr-/- mice and wild type mice into germ-free mice 
caused obesity [86]. These experiments indicate that FXR sig-
naling may contribute to increased adiposity by altering the 
gut microbiota. A recent study reported that the anti-diabetic 
effect of metformin involved the reduction of B. fragilis and 
BSH activity [87]. This results in increased taurine (T)-UDCA 
and glycine (G)-UDCA, which antagonize intestinal FXR and 
improve hyperglycemia in diabetic patients. On the other 
hand, the intestine-specific FXR agonist fexaramine promotes 
adipose tissue browning and insulin sensitivity in mice [88,89]. 
Fexaramine increases the LCA-producing gut bacteria Acetati-
factor and Bacteroides, with both 7α- and 7β-dehydroxylase 
activities, to convert CDCA and UDCA to LCA. LCA stimu-
lates TGR5/GLP-1 signaling to improve hepatic metabolism, 
and adipose tissue browning and energy metabolism [89]. An-
other study reported that gut commensal Bacteroides acidifa-
ciens improved obesity and insulin sensitivity by increasing 
GLP-1 and decreasing intestinal dipeptidyl peptidase-4 (DDP-
4) in mice [90]. This effect is apparently mediated by TGR5. 
Pro-hormone convertase 1/3 (PC1/3) cleaves preproglucagon 
to GLP-1, which is degraded by DDP-4. GLP-1 receptor ago-
nists have been used to treat T2DM [91] and DDP-4 inhibitors 
(gliptins) reduce glucagon and increase serum GLP-1 levels 
and insulin sensitivity [92]. In contrast, another study indicat-
ed that activation of FXR in both enteroendocrine secretin tu-
mor cells (STC-1) and in mice decreased proglucagon gene ex-
pression and GLP-1 secretion by interfering with carbohydrate 
responsive element binding protein gene expression and inhib-
iting glycolysis [93]. Therefore, intestinal FXR signaling can ei-

ther aggravate or alleviate diabetes and obesity. It appears that 
FXR agonists and antagonists reshape the gut microbiota to 
exert differential effects on diabetes and obesity.

METABOLIC AND BARIATRIC SURGERY 
IMPROVES OBESITY AND DIABETES

Metabolic and bariatric surgery (MBG), such as Roux-en-Y 
gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), 
is the most effective way to reduce weight in overly obese pa-
tients [94]. Many recent studies report rapidly improved insu-
lin sensitivity and diabetes 1 or 2 weeks following MBG, prior 
to weight loss, suggesting that metabolic changes are involved 
in improving glycemic control after gastric bypass. Serum total 
and primary bile acids, GLP-1, and FGF19 levels increase after 
MBG [95-99], though the underlying mechanism for diabetes 
remission after MBG is not clear. Increased fasting serum bile 
acids, especially conjugated bile acids, implies a role for the gut 
microbiota in improving glycemic control and serum lipid 
profile in patients after gastric bypass [98]. 

The metabolic benefits of MBG may be mediated by FXR/
FGF19 signaling and TGR5/GLP-1 signaling [100]. The in-
creased serum bile acids and FGF19 in T2DM patients after 
RYGB may indicate a dysregulation of the CYP7A1-FGF19 
negative feedback pathway [101]. In obese human patients, 
circulating FGF21 is paradoxically induced, indicating FGF21 
resistance, and bariatric surgery reduces serum FGF21 [102].

In Fxr-/- and Tgr5-/- mice, the effect of VSG on glucose toler-
ance was reduced [103,104]. Biliary diversion to the ileum also 
resulted in metabolic effects similar to RYGB in Tgr5-/-, but not 
intestine-specific Fxr-/- mice, suggesting a role of intestinal FXR 
in bile acid- and GLP-1-mediated metabolic improvement fol-
lowing bariatric surgery [105]. This study also suggested that 
intestinal bile acids and A. muciniphila may mediate these 
metabolic changes. It has been reported that A. muciniphila 
improves metabolism, inflammation, and outcomes of calorie 
restriction in obese patients [106,107]. MBG may alter the en-
terohepatic circulation of bile acids, the gut microbiota, circu-
lating bile acid composition, and bile acid pool size to improve 
metabolism in diabetes and obesity.

BILE ACID-BASED THERAPY FOR DIABETES

Bile acids as therapeutic drugs
Bile acids have been used directly to treat diabetes and obesity. 
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Rectal taurocholate administration increased GLP-1 secretion 
from L-cells, insulin secretion from β-cells, and decreased se-
rum glucose and food intake in diabetic patients [108]. TCA is 
converted to DCA, which activates intestinal FXR and TGR5 
signaling to improve glucose and insulin tolerance. CDCA in-
creased adipose tissue browning in humans [47], while UDCA 
was used to treat obese patients in a small cohort study of mor-
bid obesity [109]. Short term UDCA administration stimulat-
ed bile acid synthesis and reduced circulation of FGF19 by in-
activating FXR. Bile acid and cholesterol synthesis was en-
hanced, though serum and liver triglycerides were increased, 
and stearoyl-CoA was induced in white adipose tissues, gener-
ating less toxic monosaturated fatty acids. Metformin alters the 
gut microbiota to increase TUDCA and GUDCA, which an-
tagonize intestinal FXR to improve hyperglycemia in diabetic 
patients [87].

Targeting FXR
Targeting the bile acid receptors FXR and TGR5 has therapeu-
tic potential for treating metabolic liver diseases [21]. Obeticho-
lic acid (OCA, 6α-ethyl-CDCA) is a semisynthetic bile acid 
that activates FXR with 30-fold greater efficacy than CDCA. 
OCA inhibits bile acid synthesis, improves liver function, and 
reduces liver inflammation in primary biliary cirrhosis [110]. 
OCA is effective in improving NASH scores in clinical trials 
and is a promising drug therapy for NASH [111]. OCA inhibi-
tion of bile acid synthesis also induced the gram-positive bac-
teria Firmicutes and alleviated NASH in humans [112].

Targeting TGR5
TGR5-selective agonists have been shown to improve glucose 
homeostasis and metabolic diseases [113,114]. Activation of 
TGR5 by a semisynthetic bile acid, INT-777 (6α-ethyl-23(S)-
methylcholic acid), reduces macrophage inflammation, lipid 
loading and atherosclerosis by inhibiting nuclear factor κB 
(NF-κB) and proinflammatory cytokine production in low-
density lipoprotein (LDL) receptor deficient mice [115]. TGR5 
reduces NF-κB activation of proinflammatory cytokine pro-
duction and reduces inflammation [116]. The TGR5-selective 
agonist INT-777, and FXR and TGR5 dual agonist INT-767 
(6α-ethyl-3α, 7α, 23-trihydroxy-24-nor-5β-cholan-23-sulfate, 
sodium salt) promotes adipose tissue browning in mice [50]. 
Activation of both FXR and TGR5 also promotes GLP-1 secre-
tion, improves glucose and lipid metabolism and reverses he-
patic steatosis, insulin resistance, and CVD [50,117-120]. 

However, activation of TGR5 stimulates gallbladder prolifera-
tion and deficiency of TGR5 protects against cholesterol gall-
stone disease in mice [48]. Still, the negative effect of TGR5 ac-
tivation in gallbladder in humans has not been reported. Intes-
tine-selective TGR5 agonists could be developed for treating 
inflammatory bowel disease and diabetes.

Bile acid sequestrants
Bile acid sequestrants bind bile acids in the intestine to prevent 
bile acid reabsorption, thus reducing the bile acid pool size. 
This results in reduced FGF19 and increased CYP7A1 gene 
transcription and hepatic bile acid synthesis [121]. Bile acid se-
questrants may increase DCA in the colon to stimulate TGR5-
mediated secretion of GLP-1 [122]. By increasing bile acid 
synthesis, bile acid sequestrants increase hepatic LDL-choles-
terol uptake, reducing hypercholesterolemia, but increase se-
rum triglycerides and cause dyslipidemia [123]. Cholestyr-
amine and colestipol are classic bile acid sequestrants used to 
treat cholesterol gallstone disease and hypercholesterolemia in 
human patients, while colesevelam, a second-generation bile 
acid sequestrant, improves glycemic control in T2DM patients 
[121,124,125].

Targeting FGF19 and FGF21
Patients with metabolic syndrome and obesity have reduced 
circulating FGF19 levels but increased FGF21 [102]. FGF19 
increases energy metabolism and metabolic rate, reduces 
weight and improves glucose tolerance and insulin sensitivity 
in diet-induced obese mice [126]. Engineered FGF19 without 
tumorigenic activity may be useful to treat diabetes and obesity 
[127-129]. Conversely, serum FGF21 is increased in obese, dia-
betic and NAFLD patients [130,131]. FGF21 is a metabolic 
regulator that also affects nutrient preference in humans and 
may be used to treat metabolic diseases [64,132-134]. DPP4 is 
increased in islets of T2DM patients and DDP4 inhibitor-
based therapies have had moderate success in reducing glucose 
intolerance and insulin resistance [135], while GLP-1 receptor 
agonists have shown promise for the management of T2DM 
and reducing weight [136].

CONCLUSIONS 

Emerging research in bile acid metabolism in the last three de-
cades has contributed to identifying bile acids as endogenous 
ligands for FXR and TGR5 which mediate glucose, lipid, and 
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energy metabolism and maintain whole body metabolic ho-
meostasis. Overnutrition, high fat and high calorie diets, sleep 
disruption, drugs, and alcohol reshape gut microbiome to alter 
bile acid homeostasis and lead to dyslipidemia, hyperglycemia, 
insulin resistance and pathogenesis of diabetes, obesity, and re-
lated liver and heart diseases. Basic research in bile acid me-
tabolism has contributed enormously to our current under-
standing of the molecular mechanisms and pathogenesis of 
liver-related metabolic diseases. However, most research has 
been focused on mouse models. Many of the results regarding 
FXR regulation of glucose, lipid, and energy metabolism are 
contradictory and remained to be resolved. Bile acid synthesis 
pathways are remarkably similar between mouse and human, 
but bile acid composition is very different. Thus, results from 
mouse studies cannot be extrapolated to humans without veri-
fication, and it is difficult to study bile acid metabolism in hu-
man subjects. Many metabolomic and microbiomic studies are 
limited to correlational analysis of serum and fecal samples be-
tween apparently healthy age- and sex-matched controls and 
patients diagnosed with diseases. Nevertheless, results from 
mouse studies have been translated to bile acid-based drugs 
targeting FXR, and to a lesser extent TGR5 for treating diabe-
tes and obesity. Bile acid-based drugs are being developed for 
treating NASH, diabetes and obesity. However, bile acid-based 
FXR drugs cause pruritus and decrease serum high-density li-
poprotein, and TGR5 drugs inhibit gallbladder emptying. Tis-
sue selective FXR and TGR5 agonists and antagonists may be 
developed to circumvent the undesired side effects of drugs on 
other tissues. It is anticipated that bile acid-based drugs will be 
approved for treating diabetes, and treatments for NASH and 
fibrosis are expected in the near future.
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