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Abstract: Global biodiversity hotspots are areas containing high levels of species richness, endemism
and threat. Similarly, regions of agriculturally relevant diversity have been identified where many
domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives.
The agro-biodiversity in these regions has, likewise, often been considered threatened. Biodiversity
and agro-biodiversity hotspots partly overlap, but their geographic intricacies have rarely been
investigated together. Here we review the history of these two concepts and explore their geographic
relationship by analysing global distribution and human use data for all plants, and for major crops and
associated wild relatives. We highlight a geographic continuum between agro-biodiversity hotspots
that contain high richness in species that are intensively used and well known by humanity (i.e., major
crops and most viewed species on Wikipedia) and biodiversity hotspots encompassing species that
are less heavily used and documented (i.e., crop wild relatives and species lacking information
on Wikipedia). Our contribution highlights the key considerations needed for further developing
a unifying concept of agro-biodiversity hotspots that encompasses multiple facets of diversity
(including genetic and phylogenetic) and the linkage with overall biodiversity. This integration will
ultimately enhance our understanding of the geography of human-plant interactions and help guide
the preservation of nature and its contributions to people.

Keywords: agro-biodiversity; breeding; centres of origin; conservation; crop wild relatives;
domestication; geographic distribution; phylogenetic diversity; useful plants; Vavilov centres

1. Introduction

Biogeographers and conservation biologists have long been interested in identifying and
characterizing geographic regions containing a higher concentration of biodiversity and derived
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natural resources than surrounding areas, ranging from within- and among-species diversity through
to ecosystem services [1–3], at different spatial, temporal and taxonomic scales [4]. Centres (also
known as hotspots) and peripheries (coldspots) of plant diversity have been shown to be unevenly
distributed and to play a fundamental role in shaping ecosystems and delivering associated benefits to
humans and other species [5,6]. Mapping efforts contribute to a better fundamental understanding
of both biodiversity (e.g., species extinction, diversification and co-existence) [7], and the interaction
between people and nature, including the resulting socio-economic benefits and threats [8–11]. This is
a particularly urgent endeavour in the current context of a rapidly growing global human population
with increasing consumer expectations, posing a serious threat for both plant diversity and its long-term
contributions to people [12]. Factors, such as land use and climate change, pollution, direct exploitation
of species, and biological invasions have direct and indirect impacts on plant diversity [13,14],
potentially undermining current and unrealised plant-based adaptive solutions [15,16] and traditional
knowledge associated with plant uses [17]. Documenting the distribution of plant diversity and its
uses are, therefore, critical steps towards developing the transformative changes required to achieve
socio-economic sustainability, while preserving life on Earth.

Conservationists, constrained by finite resources, have used the concept of biodiversity hotspots
to advocate for the allocation of international efforts and resources in regions of the world containing
exceptionally diverse, unique and threatened biodiversity [18]. However, biodiversity hotspots often
fail to capture the multi-faceted nature of biodiversity. For example, hotspot designations may consider
a narrow range of organisms [19], and miss non-terrestrial habitats [3], phylogenetic and functional
diversity (but see [20]). The seminal definition of a biodiversity hotspot, which was based solely on plants
from tropical forests, highlights this shortcoming [21]. An additional limitation of biodiversity hotspots,
as currently defined, is that they rarely consider anthropogenic interactions as anything other than a
threat [22]. However, the sustainable and responsible use of nature, as demonstrated by traditional
small-scale livelihoods and indigenous communities around the world, presents opportunities for
resolving the current biodiversity crisis and global challenges facing humanity [12,15,23]. Finally,
although often considered implicitly [13,18], nature’s contributions to people are rarely considered
when setting global conservation priorities, except for a few regulating ecosystem services [2,3,24].

Agro-biodiversity is a sub-component of biodiversity that accounts for the variety of life that
contributes to food and agriculture [25]. In the broadest sense, it can be broken down into two
components: (a) Planned agro-biodiversity, which refers to the diversity within and across species
(domesticated or undomesticated) that are used by people, and (b) associated agro-biodiversity,
which refers to species that surround and/or enhance planned agro-biodiversity [26]. In order to
identify species and forms of high potential for improving and sustaining agriculture, research efforts
have generally focused on mapping centres of origin and diversity of major domesticated plant
species (mostly food crops) and associated wild relatives [27,28]. While the distribution of plants of
highest importance for commodity production and human nutrition is now widely studied [6,29],
much uncertainty remains about the large fraction of neglected and underutilized species that
contribute to a wide array of provisioning, support, regulation and cultural services [30]. Moreover,
although recent international treaties incentivized the preservation of plant genetic resources in the
face of major global challenges [30], the distribution of useful plant genetic diversity is mainly studied
through proxies (e.g., taxonomy, geographic distribution and environmental data) [28]. Likewise,
the drivers and spatial patterns of decline in agro-biodiversity remain poorly understood [15,17].

Here we explore the relationship between hotspots of wild plant diversity and regions containing
high levels of agro-biodiversity by (i) reviewing the history of the two concepts, (ii) characterizing the
degree to which they overlap in space and the human and biological drivers of these geographic (in-)
congruencies, and (iii) considering how to better integrate the multi-faceted aspects of useful plant
diversity, including genetic and phylogenetic diversity. Finally, we propose a new general framework
and discuss future avenues for obtaining an improved understanding and preservation of global
hotspots of useful plant diversity [31,32].
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2. The History of Diversity Hotspots

2.1. Biodiversity Hotspots

The distribution of life on Earth has long been investigated by naturalists aiming to understand,
preserve and exploit the natural world [33–35]. These influential observations were followed by a
more systematic documentation of the potential distribution of plant diversity globally based on
the compilation of data from regional checklists and pioneering modelling efforts [36–38]. It was
only in 1988 that British environmentalist Norman Myers (1934–2019) coined the term “hotspot” to
define 10 tropical forest areas considered to be both irreplaceable (i.e., due to high concentrations of
endemic plant species) and vulnerable (i.e., due to high rates of deforestation) [21]. Eight hotspots were
added subsequently, including four in Mediterranean regions [39]. Later, the definition of a hotspot
underwent a major update by considering strict quantitative criteria to designate areas containing at
least 0.5% of the world’s flora, but less than 30% of its original vegetation—resulting in the addition of
seven additional hotspots [40]. A recent major update incorporated new data and took account of both
terrestrial vertebrates and plants to delineate a total of 35 global biodiversity hotspots (Figure 1) [18].
Besides their importance for biodiversity, hotspots are home to more than two billion people and
encompass some of humanity’s highest population growth, as well as poverty rates [22].
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Figure 1. Global distribution of biodiversity hotspots and Vavilov centres. Biodiversity hotspots were
first defined by Myers in 1988 [21], and now comprise 35 regions of high species richness, endemism
and threat, as last updated in 2011 by Mittermeier and colleagues [18]. Islands constituting biodiversity
hotspots are highlighted by outer hotspot limits. Vavilov first defined centres of origin of cultivated
species and wild relatives in 1924; he provided an update in 1935, comprising eight primary and three
secondary centres [27].

Since the definition of the hotspot concept by Myers, several other approaches have been
explored to define and refine important biodiversity areas. Alongside terrestrial plants and vertebrates,
other taxa have been considered to date, including marine mammals [41], phytoplankton [42] and
soil invertebrates [43]. Conservationists have also argued for the protection of remaining wilderness,
considered to be the most ecologically intact areas of the world, as these have been shown to experience
substantially fewer threats, and thus, contribute more to the persistence of biodiversity [44]. Whereas,
early work focused on species richness, recent studies have also advocated for the consideration
of functional traits and evolutionary history, which may permit a better understanding of nature’s
contribution to both people and nature itself [45]. Incorporating knowledge across various disciplines
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is of particular importance as the multiple facets of biodiversity that they represent often do not overlap
in space [20,46,47]. Spatial congruencies between biodiversity and direct measures of ecosystem
services, such as carbon and water, are also increasingly being investigated [2,3].

Plants have been central to the definition of biodiversity hotspots since the pioneering work of
Myers. Regions of high plant diversity have been investigated in multiple ways in the last decades,
mainly by attempting to obtain finer continuous maps of (rare) plant species richness, as opposed to
considering categorical hotspots. Barthlott and colleagues produced an influential estimate at the scale
of ecoregions [5,48,49]. In contrast, researchers at the Royal Botanic Gardens, Kew gathered information
at a semi-administrative scale [50,51], and adapted and expanded the concept of Important Plant Areas
to the tropics [52], a programme that remains under development [53]. More recently, vascular plant
species richness has been interpolated globally based on ~1000 local estimates [54], extrapolated
based on the relationship between the occurrences of ~200,000 species and their environment [3],
or investigated through the examination of commonness-rarity patterns [55]. Hotspots of high plant
richness and endemism include Mesoamerica, the tropical Andes, the Amazon, Brazil’s Atlantic
rainforest, Central Africa, the western Ghats, South-East Asia, and many islands (e.g., Madagascar,
New Guinea), mountainous regions (e.g., Alps, Caucasus) and Mediterranean areas (e.g., Cape floristic
region). Despite their international recognition, most of these regions have become increasingly
depleted under ongoing human pressures, whereas richness may increase at their periphery through
repeated introductions in gardens and disturbed habitats [56]. These processes are leading to a global
loss of diversity and increasing biotic homogenisation [57]. In this context, mapping priority areas and
taxa for conservation remain, at least, as crucial and urgent as when hotspots were initially identified
more than three decades ago.

2.2. Agro-Biodiversity Hotspots

Starting some 150 years ago, global botanical, geographic, linguistic, and archaeological
evidence were combined to identify the geographic origins of crops, including distinctions among
Old versus New World species [58]. These works were largely built on developments in plant
systematics (e.g., Linnaeus (1707–1787), Alefeld (1820–1872), de Candolle (1806–1893)), phytogeography
(e.g., Willdenow (1765–1812), von Humboldt (1769–1859), Wegener (1880–1930)), and evolution by
natural and artificial selection (e.g., Darwin (1809–1882)). A number of these scientists were extensive
travellers, whose contributions to their fields were catalysed by their voyages. However, none travelled
as much as Nikolaï I. Vavilov (1887–1943). Informed by previous phytogeographic research and
the rediscovery of Gregor J. Mendel’s primary works in genetics, the Russian agricultural scientist
pursued genetic variation in crops and their wild relatives, exploring five continents over several
decades. Through his field experiences, Vavilov came to propose a set of independent “centres of
origin” of cultivated food plants around the world, based fundamentally on where he saw a maximum
concentration of diversity of traditional varieties of a wide range of crops, along with their wild
relatives. Vavilov initially proposed three centres of origin of forms (1924), progressing to as many as
eight primary centres, and including several sub-centres (Figure 1). These putative centres, which later
in his tragically curtailed life he called hearths of origin, included Mesoamerica; parts of the Andes,
Chile and Brazil-Paraguay; the Mediterranean; the Near East; Ethiopia; Central Asia; India; China;
and Indo-Malaysia [27].

Since Vavilov, the regions of origin and diversity of different crops have been debated, investigated
and refined, benefiting from an expanding body of archaeological, linguistic, genetic, and taxonomic
information [6,59–66]. “Centres of diversity” came to be the preferred term over “centres of origin”,
to account for the difficulty in assigning an exact place of origin for most crops, and due to the
understanding that high concentrations of crop varieties and related wild species are not in every case
located where crops were initially domesticated [62]. “Regions” (also “megacentres” per Zhukovsky
and “non-centres” per Harlan) rather than “centres” became preferred to reflect the large size of
many of these geographic areas, and again, the difficulty of pinpointing exact locations where crops
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were domesticated [6,67]. At the present time, multidisciplinary evidence supports the identification
of ca. 24–28 different areas around the world where crop domestication occurred independently,
mostly beginning in the early to middle Holocene (approximately 11,700–6000 years ago), and in a few
cases more recently [66,68,69]. Not all of the identified areas would be considered by most researchers
as a “centre” or “region” of origin or diversity, as only a limited number of crops were domesticated in
some of these.

There was an acceleration in the movement of crop plants across the globe between 1500–1700,
as they were introduced to colonizing countries, their colonies and other regions with emerging
export-oriented production [9,70]. Agricultural development and globalisation have made a
number of crop species available to consumers worldwide, but in turn, increased homogeneity
in global agriculture [71,72]. Added to the geographic decoupling of agricultural production and
consumption [73,74], this homogenisation has deteriorated the connection between crops and their
geographic origin [6]. Nevertheless, these areas of origin continue to hold foremost importance with
regard to crop genetic diversity as their crops diversified for thousands of years under natural and
human selection, including via further introgression with wild relatives [75,76]. During Vavilov’s
voyages a century ago, it was already apparent that the diversity of crops that people grew and
consumed was changing as a result of globalisation. Major efforts commenced, particularly during the
1970s and 1980s, to collect traditional crop landraces and wild relatives for safeguarding in genebanks,
and to also support in situ conservation, often in collaboration with subsistence agriculturalists [77].
Such efforts continue today, often linked to seed banking and germplasm collections, based on the
recognition of persisting gaps in conservation of agro-biodiversity [28,78].

The history of agro-biodiversity was primarily written by colonial powers and white male
explorers, conferring little or no room to traditional knowledge holders [79]. Moving ahead in tackling
the challenges of mapping, understanding, protecting and further exploring the potential of crop plants
and associated wild relatives, it is crucial that benefits of this work are shared in equitable ways [80].
In particular, access must be ensured in low-income countries to new or neglected crops, especially
those that offer climate resilience, nutritious contents and other desirable traits.

3. From Biodiversity to Agro-Biodiversity Hotspots: A Geographic Continuum

The geographic distribution of biodiversity and agro-diversity hotspots has long been investigated,
but rarely together. Very little is known about their spatial intricacies despite recent calls for their
integration [31]. Several areas of high plant diversity do not include primary regions of agro-biodiversity
(e.g., California, Caribbean, Brazilian Cerrado, South Africa, Madagascar, Pacific islands) and a few
agro-biodiversity regions are not recognized as diversity hotspots (e.g., large parts of Eastern Asia
and India) (Figure 1). Although human activities are altering this pattern [12,14], global plant species
richness generally decreases with increasing latitude [5,54], reflecting past environmental changes,
land configuration and the evolutionary histories of species [81,82]. On the other hand, the history
of global human migrations, civilisations, economy and cultural preferences have been profoundly
intertwined with the distribution and availability of natural resources (species richness, abundance
and properties) to shape regions of agro-biodiversity [9]. Here, we present a new set of analyses
to explore, illustrate and discuss the spatial congruence between biodiversity and agro-biodiversity
hotspots, and its relationship with two important processes—human selection of species and species
evolutionary history.

3.1. From Popularity to Anonymity

Vavilov provided an early spatial representation of the origins of cultivated plants by mapping
the distribution of major food species. However, by restricting (justifiably) his focus mainly to selected
food plants encountered in his field experiences, Vavilov was unable to produce a comprehensive
assessment of the distribution of all plant species selected for use by humans across the world.
Identifying which plant species are most selected by humans for a broader range of uses in addition
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to food, and characterizing their geographic distribution is, thus, key for defining agro-biodiversity
hotspots and for relating their variation to the wider context of biodiversity.

In our currently globalized world and big data era, it is now possible to investigate human
preferences for species more extensively. Here we assessed the popularity of most vascular plants on
the free online encyclopaedia Wikipedia (www.wikipedia.org), using search data as a proxy for cultural
preference, knowledge of plant species, use by humans and domestication intensity. As Wikipedia can
be edited by anyone at any given time, it cannot be considered a reliable source of information without
critical evaluation. However, our analysis remains independent from the quality of Wikipedia articles
as it only examines the interaction between users and the web platform by quantifying numbers of
page views. Species names and occupied geographic regions were retrieved for 339,924 species from
the World Checklist of Vascular Plants (WCVP) [51]. Wikipedia uses the taxonomic backbone of the
WCVP, so no additional name matching was performed. Geographic regions were retrieved at the
national or sub-national level (finest level three) of the World Geographical Scheme for Recording Plant
Distribution (WGSRPD), which was developed by the International Working Group on Taxonomic
Databases for Plant Sciences [83]. We retrieved species popularity on Wikipedia as measured by the
number of page views over the period 1 January 2016 to 1 January 2020 using the R package pageviews.
This information relates to English Wikipedia pages only as it is the language with the highest number
of pages overall and often the source of translations into other languages. We ranked these data
according to three categories: (1) The 1000 most popular species; this includes plants used as food,
medicine, timber, ornamentals and cosmetics (Supplementary Materials), (2) the remaining species
covered by Wikipedia (i.e., those with an available page), (3) the remaining species not documented in
Wikipedia (i.e., those without a page).

The global richness distribution of the 1000 most popular species is strikingly similar to the Vavilov
primary centres with particularly high richness in subtropical regions of the Northern hemisphere
(Figure 2a). There are also expansions towards temperate areas (i.e., Eastern North America, Europe and
Central Asia), while the Northern Andes, Eastern Africa and the Indo-Malayan regions have relatively
low crop richness at a global scale, but high richness within their respective continents. Richness
generally increases towards the tropics for species that are documented in Wikipedia but fall outside
of the 1000 most popular category, with particularly high concentrations in the Mediterranean and
subtropical regions that are characterized by high plant species endemism but low richness in major
crops (e.g., Western North America, South Africa, Australia) [5] (Figure 2b). In contrast, richness in
species not documented in Wikipedia tends to follow a latitudinal gradient similar to that observed for
total plant diversity and most similar to biodiversity hotspots (Figure 2c) [18,84]. These findings
highlight the relationship between the spatial structure of biodiversity and agro-biodiversity,
and people’s knowledge, perception and use of nature. Indeed, we observe the existence of a geographic
continuum between popular plant diversity that may be more intensively used by humanity (based on
the existence of a Wikipedia page; 2A) and anonymous plant diversity that may be less heavily
used (based on the lack of a Wikipedia page; 2C). One artefactual limitation in our assessment of
the distribution of plant popularity is the general over-representation of English-speaking regions
(e.g., United States, Canada, Australia) given that our data extraction came from English Wikipedia
pages only. This also likely explains relatively low values of popular species richness in regions, such as
the Andes or Ethiopia (Figure 2a), although those are still visible at the continental scale.

www.wikipedia.org
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(c) 280,905 species not documented in Wikipedia. Popularity was measured as the number of views
of the Wikipedia webpage of each species. Native distribution data was retrieved from the World
Checklist of Vascular Plants at the national or sub-national level of the World Geographical Scheme for
Recording Plant Distribution (WGSRPD) [51].
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3.2. From Domesticates to Wild Relatives

Alongside major crops, Vavilov was also interested in documenting, mapping, collecting, using,
and preserving wild ancestors and closely related species [27]. By considering less known and
undomesticated (or less domesticated) parent and sister species, Vavilov directly connected his
definition of regions of origin/diversity with wild plant diversity. Recent studies illustrate this link
between biodiversity and agro-biodiversity hotspots; these assessed the distribution of the closest and
more distant relatives of major crops and found high species richness in plant diversity hotspots, such
as the Brazilian Cerrado and Atlantic Forest or South-East Asia [28,85].

Here we assessed the current distribution of 222 major international crops and 2,731 of their
wild relative species using comprehensive lists from the USDA ARS GRIN-Global Taxonomy and
geographic data from the World Checklist of Vascular Plants, again retrieved at the national and
sub-national level (level three) of the WGSRPD [51]. Crop wild relatives are classified across three gene
pools based on both their relatedness (using phylogenetics and systematics) and crossing ability with
the crop [86,87]: gene pool one comprises the most closely related (even conspecific) wild species that
are generally fully interfertile with the crop; gene pool two includes more distant relatives that may
be crossed to the crop with more difficulty; and gene pool three typically contains the most distantly
related and least compatible species within the genus to which the crop belongs (sometimes including
other genera). Here, we assess changes in geographic patterns across a gradient from cultivated species
to their closest wild relatives to their more distant wild relatives, by mapping richness for crops and
each associated gene pool separately. When more than one species was identified in a gene pool for
a given crop, we merged their distribution to assign the same weight to each crop, thus, avoiding
overrepresentation of genera with many wild relatives. Geographic data were not available at the
infra-specific level (i.e., sub-species, varieties, forms) for all taxa, and so we performed analyses at the
species level.

Geographic patterns in major crop species richness strongly overlap with the Vavilov centres
(Figure 3a) and are also similar to the 1000 most popular plant species on Wikipedia (Figure 2a).
Given that gene pool one is composed of the closest crop wild relatives, including progenitors and/or
wild types of the crop species, the distribution of gene pool one species richness is very similar to
that of the crops (Figure 3b). Slight increases and decreases are respectively observed inside and
outside Europe, which may be explained by more extensive documentation of European crop wild
relatives compared to those that occur in other regions [88]. Gene pools two and three provide a
more diffuse representation of the Vavilov centres: species richness decreases in most of the Vavilov
centres, but increases in surrounding regions, particularly (but not exclusively) towards the tropics
and plant diversity hotspots (Figure 3c,d). Although centres of crop diversity remain visible when
mapping secondary and tertiary gene pools, the geographic signal diminishes as we move further
away from the most explored and popular branches of the tree of life. In contrast, areas of high
biodiversity start to emerge, which is even more striking when species richness mapping does not
account for the over-representation of genera with many wild relatives [28,85]. This reinforces the
existence of a geographic continuum between agro-biodiversity (i.e., widely used and cultivated crops)
and biodiversity (i.e., non-domesticated and less used sister species of crops) related to the strength of
the interaction between humans and plants, but also plant evolutionary history.
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of (a) 222 major crops, (b) 361 wild relative species in gene pool one, (c) 1040 wild relative species in gene
pool two and (d) 2358 wild relative species in gene pool three; see text for gene pool characterisation.
Species identities and gene pool classifications were retrieved from the USDA ARS GRIN Global
Taxonomy. Distribution data was retrieved from the World Checklist of Vascular Plants at level three of
the World Geographical Scheme for Recording Plant Distribution (WGSRPD) [51]. When more than
one wild relative species was identified for a crop in a gene pool, we merged their distribution to assign
the same weight to each crop and avoid genera with many wild relatives to be overrepresented.

4. Integrating Genetic and Phylogenetic Diversity into Agro-Biodiversity Hotspots

The designation of hotspots of plant species richness and rarity has provided a way to focus
attention on the intrinsic value of biodiversity at a global scale. However, the contributions of plants to
livelihoods are rarely considered in this context, despite the predominance of utilitarian arguments
in conservation. Going beyond species counts (i.e., taxonomic diversity) to describe and understand
structural and/or chemical properties of species and their diversity is of critical importance. The wide
range of plant properties cannot currently be quantified across all species but is often related to genetic
variation within and among species [89]. Characterizing genetic and phylogenetic diversity and their
geographic distribution may, therefore, provide a useful framework for identifying other currently
unknown forms of diversity and associated usages, and for preserving plant genetic resources.

4.1. Hotspots of Phylogenetic Diversity

Some species are the sole remaining representative of ancient lineages, while others are part of
recent and rapid radiations (i.e., increases in species richness related to elevated speciation rate) that
may comprise hundreds of closely related species. Therefore, conservation biologists now account
for the fact that the evolutionary histories of species are not equivalent when setting priorities [90].
To address this inconsistency, phylogenetic diversity (PD) was proposed as an approach based on
evolutionary information [91]. The PD of a given area is equal to the sum of all the branches on a
phylogenetic tree linking the set of species that occur in this area. Areas containing high PD will,
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therefore, reflect higher concentrations in distantly related species. While previous studies have cast
doubt on the ability of PD to provide a different answer to species richness for prioritisation [92,93],
the decoupling of biodiversity patterns, based on taxon richness and evolutionary history, have since
been clearly demonstrated (e.g., Reference [94]). Phylogenetic diversity and associated metrics have
been widely used to explore biodiversity patterns among and within biodiversity hotspots [95–97].

One of the most important characteristics of PD is its potential to act as a surrogate for feature
diversity (i.e., the diversity of characters or traits of species), which encompasses the qualities of plants
that are beneficial for humans. While the relationship between PD and feature diversity remains
contentious [45,98], it is nevertheless an attribute that is of particular importance for the identification
of areas rich in crop wild relatives and species with unexplored uses for humans. Assuming that PD is
a suitable surrogate for feature diversity, maintaining PD would not only help retain the evolutionary
potential of species, but also maximise the potential unanticipated benefits that biodiversity may have in
the future for humans (i.e., biodiversity option values), particularly in the face of global change [99,100].
In the context of agro-biodiversity hotspots and the identification of new sources of plant properties,
PD as a metric of choice has a key role to play (Figure 4a). Ultimately, however, the identification of
hotspots of agro-biodiversity would be best served by the integration of various metrics capturing
the multiple facets of biodiversity [101], and also by considering the human dimension for better
understanding the portion, intensity and modes of use of biodiversity by humanity.
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Figure 4. A proposed general framework for the further inclusion of genetic information into the
mapping of agro-biodiversity hotspots. (a) A relationship between species evolutionary history and
their physical or chemical properties (i.e., features or phenotype) would use phylogenetic diversity as
a proxy for feature diversity, the latter being less readily quantifiable across wide ranges of species,
regions and features. Combined with species distribution data, phylogenetic diversity could ultimately
identifies hotspots of feature diversity and priority areas for the conservation of species’ contribution to
people; (b) By considering phylogenetic information together with population genomics, cytology, life
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history and/or ecological data, an Estimated Breeding Value (EBV) could be computed for crop wild
relative species and/or populations. Combined with distribution data, hotspots of EBV could then be
mapped to identify areas containing high concentrations in valuable wild gene sources for preservation
and crop improvement.

4.2. Hotspots of Breeding Value

Genetic diversity represents the raw material that humans have relied upon for millennia for
the maintenance and improvement of crops. Plant breeding is a long-term process [102] aimed at
enhancing traits of interest (e.g., yield, quality, disease tolerance, abiotic stress tolerance) using extant
variation [103]. There is tremendous genetic and phenotypic diversity in crop wild relatives distributed
across the plant tree of life [69,104]. Identifying the top priority branches (from species to populations)
that will generate the largest changes in trait values, while having the closest form to current
crops is of great interest to plant breeders and agriculturalists. Populations that exist at the edges of
distribution ranges may have great utility for breeding as these often occur in more isolated and extreme
ecological conditions and display high levels of genetic and phenotypic differentiation [1,66,78,105].
Identification of potentially useful crop wild relatives is generally based on heuristic approaches
(e.g., place X has a similar environment to place Y, so translocation is expected to lead to positive
results), or by using large-scale germplasm collections to search for specific traits of interest [106,107].
However, these approaches, as currently applied, may not fully explore available plant genetic diversity
(e.g., Reference [108]) and are often not available for crops that are less economically important.

There have been recent efforts to identify the geographic regions where crop wild relative species
are concentrated [28]. Characterisation of the distribution of populations that are most compatible
with existing crops and exhibit phenotypes of interest has somewhat lagged behind. Nevertheless,
there are now concerted efforts to identify and incorporate these taxa into breeding programmes for
producing viable new cultivars by using integrative approaches that leverage large amounts of data
from phylogenetics, population genomics, cytology, life history, ecological niches, and predictions of
future environmental conditions that crops may experience [78,109–111].

Building on historic advancements, it may be possible to incorporate the data currently used
in heuristic approaches for crop wild relative identification into a more general framework to help
the decision-making within breeding programmes. Such a framework could potentially be modelled
from the Estimated Breeding Value (EBV), a common breeding programme metric that could expedite
selection of donor species. An EBV is the potential of an individual as a genetic parent, considering
the heritability of a given trait under selection [103]. Typically, EBVs are obtained from narrow
breeding populations of a single species by multiplying the narrow-sense heritability (calculated
either by variance decomposition or parent-offspring regression) by the difference between the parent
performance and population mean, which provides an estimate of how the progeny of a specific parent
will perform relative to an average parent. We propose that EBVs could also be calculated for crop
wild relative species and populations, as long as the phenotype of interest is clearly defined. Applied
to species and populations instead of individuals, the EBV could go beyond heritability to additionally
incorporate biological factors (e.g., ploidy, mating system), evolutionary factors (e.g., phylogenetic
relationship), and ecological factors (e.g., species environmental niche) in a hierarchical way for
prioritizing species that may be of greater potential use to plant breeding. Functionally, this proposed
use of EBV would produce a ranking of species for an individual breeding programme, based on the
desired phenotype by crossing interaction. Ultimately, characterizing this variation in utility across
species (and populations) may help identify priority areas for in- and ex-situ conservation related to
specific breeding targets (Figure 4b).

5. Towards a Unified Concept of Agro-Biodiversity Hotspot

Hotspots of both biodiversity and agro-biodiversity have long relied on counting numbers of
species (i.e., species richness; Figure 5a) and assessing threats (Figure 5b). While biodiversity scientists
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have mainly focused on numbers of rare species (including many narrowly distributed taxa) for
conservation, agronomists have been interested in diversity within gene pools (i.e., numbers of
domesticated species and wild relatives) [27,28,85] and within crops (e.g., numbers of landraces) [112].
Although taxon counts remain extremely useful, new approaches are now proposed to account for the
multi-faceted nature of (agro-)biodiversity, such as functional diversity accounting for the diversity in
species chemical properties and eco-/agri-system functions [113], phylogenetic diversity as a potential
proxy for functional and property diversity (Figure 5c) or for identifying gene sources for breeding
programmes (Figure 5d). As highlighted by their seminal definition from N. Myers and recent
publications [114], biodiversity hotspots are also deeply related to the distribution of a wide range of
threats, many of which are shared with agro-biodiversity (e.g., land use and climate change, pollution,
biological invasions, over-harvesting), but less formally included in the geographic assessments of
the latter (Figure 5b) [12,16]. Although the different facets and threats of agro-biodiversity are not all
expected to overlap geographically, our paper proposes to assess them jointly rather than separately.Plants 2020, 9, x FOR PEER REVIEW 13 of 19 
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Figure 5. The conceptual framework for the identification of agro-biodiversity hotspots, including
(a) plant species richness (applicable to infra-specific levels as well); (b) threats; (c) species
(or infra-specific taxa) evolutionary and features diversity; (d) crop wild relatives estimated breeding
value; and accounting for (e) the geographic continuum between hotspots of wild species diversity
and regions containing high concentrations in major crops (i.e., highly domesticated species), and its
environmental and human drivers. The map does not provide a new estimate of the distribution
of agro-biodiversity hotspots, but rather illustrates a combination of the potential two ends of the
domestication spectrum: Major crop species richness (Figure 3a) and species richness undocumented
in Wikipedia (Figure 2c). High to low species richness is represented from red to blue.

Primary regions of agro-biodiversity have focused on relatively few important crops selected
by researchers, whereas they have mainly explored wild relatives of these domesticated species,
which are not always considered for other uses than crop improvement. Given the existence of a
wide domestication spectrum, ranging from major global crops (i.e., highly domesticated species) to
those harvested in the wild [16], we believe that further work on regions of agro-biodiversity should
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expand the focus to better include the long list of plants that provide food and other cultural benefits
to humanity (Figure 5e). This will be made effective through the documentation of the tremendous
diversity of neglected and under-utilized species of the world (with more than 30,000 useful plant
species known to date [115]). Many of these species occur naturally in low-income countries, including
already established biodiversity hotspots, which are also often home to large human populations and
cultural diversity [22,116]. Understanding the drivers of the distributions of nature’s contribution
to people across the domestication spectrum (from climate and land use to socio-economic factors;
Figure 5e) is also fundamental to define hotspots and design conservation and development efforts to
sustain socio-environmental sustainability.

The recognition of biodiversity hotspots and agro-biodiversity (Vavilov) centres have played
important roles to raise public awareness, foster research and attract political action to preserve and use
natural resources sustainably. Given the urgency and magnitude of the global challenges outlined by
the United Nations’ Sustainable Development Goals and the recent report on biodiversity loss by the
intergovernmental science-policy platform on biodiversity and ecosystem Services (IPBES) [12], it is
more important than ever to refine, integrate and disseminate such powerful concepts. Failing to protect
hotspots of natural resources, and especially agro-biodiversity, would have damaging consequences on
nature and human livelihoods, both at those centres and in their peripheries. Our paper calls for the
further development and integration of a range of commonly used and more recently proposed indices,
while accounting for the key interaction with biodiversity, into the agro-biodiversity hotspot concept.
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