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Preterm birth is a worldwide problem that a�ects infants throughout

their lives significantly. Therefore, di�erentiating brain disorders, and further

identifying and characterizing the corresponding biomarkers are key issues

to investigate the e�ects of preterm birth, which facilitates the interventions

for neuroprotection and improves outcomes of prematurity. Until now, many

e�orts have been made to study the e�ects of preterm birth; however, most

of the studies merely focus on either functional or structural perspective. In

addition, an e�ective framework not only jointly studies the brain function

and structure at a group-level, but also retains the individual di�erences

among the subjects. In this study, a novel dense individualized and common

connectivity-based cortical landmarks (DICCCOL)-based multi-modality

graph neural networks (DM-GNN) framework is proposed to di�erentiate

preterm and term infant brains and characterize the corresponding biomarkers.

This framework adopts the DICCCOL system as the initialized graph

node of GNN for each subject, utilizing both functional and structural

profiles and e�ectively retaining the individual di�erences. To be specific,

functional magnetic resonance imaging (fMRI) of the brain provides the

features for the graph nodes, and brain fiber connectivity is utilized as the

structural representation of the graph edges. Self-attention graph pooling

(SAGPOOL)-based GNN is then applied to jointly study the function and

structure of the brain and identify the biomarkers. Our results successfully

demonstrate that the proposed framework can e�ectively di�erentiate

the preterm and term infant brains. Furthermore, the self-attention-based

mechanism can accurately calculate the attention score and recognize

the most significant biomarkers. In this study, not only 87.6% classification

accuracy is observed for the developing Human Connectome Project (dHCP)

dataset, but also distinguishing features are explored and extracted. Our study

provides a novel and uniform framework to di�erentiate brain disorders and

characterize the corresponding biomarkers.
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Introduction

Preterm birth is a worldwide problem that affects infants

throughout their lives significantly. Fifteen million babies are

estimated to be born prematurely each year, and ∼1 million

children die each year due to complications of preterm birth.

The lifetime of disability, including learning disabilities, visual

problems, and hearing problems will last in many survivors

(Vogel et al., 2005; Douglas-Escobar and Weiss, 2013; Cecatti

et al., 2016; Sheinerman et al., 2017;Walani, 2020). Furthermore,

much evidence has been found for the fact that all aspects of

brain development can be affected by preterm delivery (Berger

et al., 2012). Therefore, it is urgent to further elucidate the

differences between preterm and term infant brains, which will

facilitate the interventions for neuroprotection and improve

outcomes of prematurity.

To elucidate the abnormalities of the preterm infant brain

structures, many investigations have been proposed to study

the alterations on the cortical, white matter (WM), gray matter

(GM), and deep GM volumes in preterm infant brains at

the macro-structural level. With the assistance of advanced

neuroimaging technologies, studies are proposed to characterize

the alterations at the connectome-level from the functional

or the structural perspective (Damaraju et al., 2010; Smyser

et al., 2013; Wehrle et al., 2018). A few studies revealed that

structural and functional alterations were found in preterm

infant brains predominantly in frontal, temporal, and occipital

regions, and in the cerebellum (Eikenes et al., 2011; Bjuland

et al., 2014; Nosarti et al., 2014), which represented a greater

potential of exploring their correlations. Some studies further

elucidated that most structural-based alterations were more

inclined to decrease the intensity of connectivity while the

functional-based alterations owned the opposite situations.

However, some other findings suggested that structural and

functional perspectives are quite complex to associate, and

structural and functional alterations are not always consistent

(Kelly et al., 2019; Saha et al., 2020; Sa de Almeida et al., 2021).

To further elucidate causes and relationships of functional

and structural alterations, it is important to understand those

alteration regions/connections that are directly or indirectly

connected to structural and functional perspectives, realize

whether they have common architecture, and further explore

the possible hypothesis that functional alterations can be derived

from the structural alterations. To achieve these goals, a

study solely on single modality is not enough; multi-modality

fusion is the key point. Therefore, the integration of the

preterm infant brain, structural and functional connectivity

profiles, and studying their relationship and exploring the

distinguishing features/biomarkers are extremely important

and necessary.

Advantages of the joint representation analysis are also

obvious in the field of machine learning; it has been

suggested that each different imaging technique should feedback

different brain information (Sui et al., 2012). For example,

functional magnetic resonance imaging (fMRI) measures the

hemodynamic response related to neural activity in the brain

dynamically; structural magnetic resonance imaging (sMRI)

additionally provides information about structural connectivity

among brain networks. Sui et al. (2012) believed that conjoint

analysis could maximize the use of cross-information in

the existing data, in finding important changes that are

only partially detected in each modality. Some studies have

dedicated efforts on the topic of multi-modality analysis (Qi

et al., 2018; Sui et al., 2020). For example, a multimodal

canonical correlation analysis model with joint independent

component analysis was proposed (Sui et al., 2018). It was

worth noting that in most existing methods, subjects were

usually registered to a common atlas to align data across

subjects (Chen et al., 2022). However, individual differences

will be sacrificed in these approaches because image registration

algorithms had difficulty in dealing with the anatomical

variation that existed between different brains (Ardekani et al.,

2004; Stiers et al., 2006; Thirion et al., 2006; Li et al., 2010,

2012).

In recent years, deep learning algorithms have shown the

superiority of automatically studying and characterizing the

distinguishing features from the medical images (Li et al.,

2014; Suk et al., 2014; Litjens et al., 2017). Thus, the advanced

learning algorithms are preferred to be adopted into the study of

differentiating and characterizing brain diseases and biomarkers

(Cole et al., 2017; Mehdipour Ghazi et al., 2019). Compared

with convolutional neural network (CNN)- and recurrent neural

networks (RNN)-based algorithms, graph neural networks

(GNN)-based algorithms (Li et al., 2019, 2021) perform the

convolution operations on the non-Euclidean data, which is

more suitable to study the topological information of the

brain networks and help identify the biomarkers from the

high-dimensional functional and structural representations of

the brain. Among existing GNN models, the self-attention

graph pooling (SAGPOOL) (Lee et al., 2019) model is

an effective model structure with fast training speed and

is suitable for small datasets. It uses a three-layer graph

convolution layer to extract features and a self-attention pooling

layer to select important dense individualized and common

connectivity-based cortical landmarks (DICCCOL) landmarks

by updating their corresponding weights. This fits well with

the purpose of classifying and analyzing relevant preterm and

term biomarkers.

To effectively capture the biomarkers of brain disorders

and diseases, e.g., disorders from preterm birth, from

multi-modality and retain the individual differences, in

this study, a novel DICCCOL-based multi-modality GNN

(DM-GNN) is proposed to differentiate the brain disorders

and characterize the corresponding biomarkers. The major

advantages of the proposed DM-GNN framework are three-

folds: (1) The DICCCOL system is introduced to initialize
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the graph nodes with correspondence and retain the

individual differences. (2) Multi-modality representations

are included in this work. DICCCOL-based functional

and structural profiles are extracted from the magnetic

resonance imaging (MRI) of the brain, which includes the

brain anatomy (from DICCCOL system), function, and

structure representations. (3) The GNN framework with

SAGPOOL is proposed to feedback the importance of

each graph node such that distinguishing biomarkers can

be identified.

Our experiment results successfully demonstrate the

effectiveness of the proposed approach. About 86.4% preterm-

term classification accuracy is achieved and 107 DICCCOL

landmarks are recognized as the biomarkers of greater

importance. Particularly, precentral, precuneus, superior

frontal, superior parietal, supramarginal, isthmus insula, and

postcentral regions are further identified as the biomarker

regions, which are studied and discussed throughout the

study. Our results shed new insights that biomarkers can be

successfully identified by the integration of multi-modality

representations. It is worth noting that our proposed DM-GNN

approach is applicable to many other brain disorders and

diseases, which can be easily transferred and applied.

The remainder of this article is structured as follows: in

Section Methods, we introduce the DM-GNN framework, and

the experiment design is described in detail; in Section Results,

the results are presented according to the experiment design, and

biomarkers are identified and discussed. In Section Conclusion

and discussion, the conclusion is drawn, and future perspective

is also discussed.

Methods

Dataset and preprocessing

Eighty-six infant subjects are selected from the dataset of

developing Human Connectome Project (dHCP) (Hughes et al.,

2017; Makropoulos et al., 2018). Of these, 43 are preterm infants

born <38 weeks, and the remainder are term infants over 38

weeks. To compare the growth of preterm and term infants in

different settings, we use data from term and preterm infants

at the same gestational age. All the subjects are scanned with

sMRI, diffusion MRI (dMRI), and resting-state fMRI (rs-fMRI)

at around 40 weeks.

The basic parameters of T2-weighted sMRI are as follows:

TR = 1,200 ms, TE = 156 ms, SENSE factor = 2.11 (axial)

and 2.60 (sagittal), image matrix = 290 × 290 × 203, and

resolution = 0.5 × 0.5 × 0.5 mm. Diffusion weighted images

consist of three shells of b = 400, 1,000, and 2,600 s/mm2

and were interspersed with an approximately equal number of

acquisitions on each shell within each run. The basic parameters

of rs-fMRI are as follows: TR = 392 ms, TE = 38 ms, total

volume = 2,300, image matrix = 67 × 67 × 45, and resolution

= 2.16 × 2.16 × 2.15 mm. The basic parameters of dMRI are as

follows: TR = 3,800 ms, TE = 90 ms, total slice = 300, SENSE

factor = 1.2, partial Fourier = 0.86, image matrix = 128 × 128

× 64, and resolution = 1.17 × 1.17 × 1.5 mm. A spherically

optimized set of directions on 4 shells (b0: 20, b400: 64, b1000:

88, b2600: 128) is split into four optimal subsets (one per phase

encoding direction).

FMRIB Software Library (FSL) FEAT (Jenkinson et al., 2012)

is adopted to process rs-fMRI data as follows: skull removal,

motion correction, slice time correction, and spatial smoothing.

It is worth noting that dMRI is used as an intra-subject

standard space, to which the other data modalities are aligned.

T2-weighted sMRI volumes are linearly warped to fractional

anisotropy (FA) map of dMRI. Then, the surface is transposed to

dMRI space by applying the transformation matrix onto it. We

reconstruct the cortical surface using T2-weighted sMRI data,

following the steps provided in the dHCP dataset: skull removal,

tissue segmentation, and surface reconstruction. We process the

dMRI data using the skull-strip and eddy current corrections of

FSL (Jenkinson et al., 2012), and then use DSI Studio (Yeh, 2020)

for fiber tracking.

Proposed DICCCOL-based
multi-modality GNN learning framework

In this study, a novel DM-GNN approach is proposed

to differentiate the differences between the brains of preterm

and term infants both at 40 weeks of gestational age and

identify the corresponding biomarkers. The major steps can

be summarized into five steps, i.e., graph generation, feature

extraction, graph pooling, graph classification, and biomarker

analysis. Please refer to Figure 1 for details. Specifically, in the

graph generation module, we construct structural connectivity

matrix and functional similarity matrix from dMRI, sMRI, and

rs-fMRI data, and further represent these two matrices sparsely,

which delegate edges and features of the graph, respectively. In

the feature extraction module, we use three graph convolution

layers to extract node features and concatenate the node features

of the three layers together for the subsequent process. In the

graph pooling module, we use the self-attention pooling to select

important nodes by updating weights to nodes. In the graph

classification module, we use global-maximum and global-

average to aggregate all node features as features of the graph

used for binary classification. In the model of our proposed

DM-GNN framework, two parameters are vitally important.

In the biomarker analysis module, we extract some DICCCOL

landmarks as biomarkers and analyze the brain regions to which

they belonged. They are number of layers and number of the

hidden units, respectively. To explore the proper parameters,

several experiments are applied using different parameters.
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FIGURE 1

Framework of proposed dense individualized and common connectivity-based cortical landmarks (DICCCOL)-based multi-modality graph

neural network (GNN). (A) Graph generation. (B) Feature extraction. (C) Graph pooling. (D) Classification. (E) Biomarker analysis.

Description of DICCCOL-based
multi-modality GNN

In the DM-GNN model, first, we utilize DICCCOL

landmarks to process multi-modality data into the input data of

the model and use three graph convolutional layers to extract

high-level features. Next, the features operated by the three

graph convolution layers are spliced, and the attention score

of those graph nodes is measured to reveal the contributions

from each node for the task of differentiation. Finally, we input

the features of DICCCOL landmarks with higher attention

scores into two fully connected layers to classify preterm and

term infants.

Graph generation

Generate nodes of graph

As shown in Figure 1, we predict 358 DICCCOL landmarks

on each subject using the cortical surface and nerve fibers

of the brain (Zhu et al., 2013). To be self-contained, the

pipeline of calculating the trace-map vector and then optimizing

the DICCCOL landmarks on each individual is proposed.

Specifically, we use a trace-map approach to describe the shape

of nerve fibers. An example of a fiber bundle is visualized in

Figure 2A. As shown in Figure 2B, we divide each fiber into

three parts evenly, obtain the main direction of each part (from

the starting point to the end point), and project the starting

point of each part to the center of the sphere and the end point

to the sphere. The sphere is divided into 122 equal regions

to describe the location of the end point (Chen et al., 2013)

(Figure 2D). According to the position of the end point on the

sphere, each part of a fiber generates a 122-dimensional vector,

and these vectors of a bundle of fibers are accumulated to obtain

a representative 122-dimensional vector to describe the shape

of the fiber bundle that finally passes through the landmark

(Figure 2C). Zhu et al. (2013) provide 10 DICCCOL templates

which contain locations of 358 DICCCOL landmarks and

corresponding trace-map feature vectors, respectively. When

predicting DICCCOL landmarks on a new subject, we first

register the cortical surface of the subject to a DICCCOL

template and then localize the initial location of each DICCCOL

landmark based on the registered surface. Second, we choose the

landmarks of the initial location of nearby five-rings as potential

candidates for optimizing each of the final DICCCOL landmarks

(Figure 2E). Further, for optimizing DICCCOL landmark i on

a new subject, correlation coefficient of the trace-map vectors

between the potential candidates of DICCCOL landmark i and

corresponding landmarks on 10 DICCCOL templates is utilized

for optimization; thus DICCCOL landmark i can be identified

with the highest correlation coefficient among those potential
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FIGURE 2

(A) A bundle of fibers passing through the DICCCOL landmark. (B,C) Trace-map approach. (D) Sphere containing 122 regions. (E) Initial location

and potential candidates of DICCCOL landmark. (F) DICCCOL landmarks on one term subject visualized from three perspectives of the left

hemisphere, medial view, and right hemisphere.

FIGURE 3

(A) Curve of train loss and ACC for the fourth group. The red curve represents ACC of the training set, and the green curve represents ACC of

the test set. (B) ACC, SEN, and SPE for all groups.

candidates (Zhu et al., 2013). In this way, the corresponding

DICCCOL landmark i can be obtained across all the subjects.

Additionally, all the DICCCOL landmarks can be identified by

repeating such processes for every initial location of each subject.

We show DICCCOL landmarks on a term subject in Figure 2F.

The advantage of the DICCCOL system is that DICCCOL
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landmarks can provide consistency and correspondence across

subjects. Therefore, DICCCOL system can overcome the huge

individual differences among the subjects and provide the

same dimension and one-to-one correspondence data for

each subject.

Generate feature of graph nodes

Features of graph nodes are generated from the functional

MRI data. Specifically, we use the functional similarity between

DICCCOL landmarks as features of nodes in the graph. Based

on the coordinates of DICCCOL landmarks, the functional time

series of DICCCOL landmarks are extracted from the rs-fMRI

data, resulting in 358 vectors in length of 2,300 for one subject.

We calculate the Pearson correlation coefficient of functional

time series between pairs of DICCCOL landmarks to obtain a

functional similarity matrix Fi ∈ R
358×358 for one subject.

To make the matrix more effective and representative, we set

the significant threshold fs to make the matrix much sparser.

Then, for all preterm subjects, we extract the elements of the ith

row and jth column of matrix F on each individual to obtain a

vector Vp of length 43 (number of all preterm subjects) and use

the same method to obtain the vector Vt for term subjects. We

perform a t-test (two-sample) onVp andVt under the significant

difference threshold fs in the training set. If there is a significant

difference, we keep the element at the corresponding position

of the matrix F; otherwise, we set it to 0. The new matrices

of all the subjects obtained are stacked, and the obtained fF ∈

R
(358×N)×358 is used as an input to the first convolutional layer,

where N represents the number of subjects.

Generate graph edges

Structural representations of the brain are utilized to

represent the graph edges. Specifically, we use nerve fiber

bundles as edges of the graph. We reconstruct the nerve fiber

tracts of the brain from the dMRI data. We count the number of

nerve fibers between all DICCCOL landmark pairs and generate

a 358∗358 structural connection matrix, S ∈ R
358×358 for each

individual. The value of the node Sij represents the number of

nerve fibers passing through both DICCCOL i and DICCCOL j.

Likewise, we set the threshold, ts to make the matrix sparse. We

set the value above threshold, ts to 1 in the matrix S, and zero

in the others to generate the edge matrix, E. The main diagonal

element of matrix E is also 1. Matrix E is used as the edge matrix

input of the algorithm.

Feature extraction

As shown in Figure 1B, the feature extraction module is

designed with three graph convolutional layers, and Layer

Normalization is used for normalization in the middle of

every two layers. Graph convolution is similar to convolution

on image, where Fourier transform is used to transform the

convolution into the product of the spectral domain. The

TABLE 1 Classification performance of di�erent number of graph

convolutional layers.

Layer number 2 3 4

ACC 0.719 0.864 0.688

SEN 0.700 0.882 0.789

SPE 0.739 0.851 0.586

transformation matrix can then be used as the convolutional

kernel. We obtain the feature output fh of the graph

convolutional layer by Equation (1). Convolution operations

are performed on both functional and structural networks since

structural information is utilized as the edges of the graph and

functional information is utilized as the features of the nodes of

the graph.

fh = ẼfinW

Ẽ =3−
1
2 (E+ I)3−

1
2

(1)

where fin is the input of the graph convolution layer, W is

the transformation matrix, 3 is the degree matrix of E, and the

diagonal matrix of 3ii =
∑

j Eij + 1.

Graph pooling

In the graph pooling module, we use the SAGPOOL

architecture to accomplish graph pooling. In details, we calculate

the attention score Z of each node according to Equation (2).

The node score Z represents the potential contribution of the

corresponding DICCCOL landmark in the classification. We

reserve nodes with higher node scores Z to complete the graph

pooling process. We concentrate the outputs of the three graph

convolutional layers in the feature extraction module together

into the graph pooling layer to obtain the pooled graph nodes.

fc = concatenate(f1, f2, f3)

fm = Self Attention Pooling(fc)

Z = σ
(

ẼfcWs
)

Zm = Zindex
index = top

(

Z,
[

kN
])

(2)

where fc is the feature matrix obtained by concatenating the

features from three graph convolution layers and fi is the output

of the ith convolutional layer.WsǫR
F×1 is a weight matrix, kǫ(0,

1] is a hyper-parameter that determines whether the nodes are

eliminated or not. In this experiment, k is set as 0.2. The value

of Z is obtained from the convolutional layer with the size of

1 × N; according to the value of Z, top[kN] nodes are remained

as important nodes, and top is a function defined to return the

indices of those most important nodes. Zm is the final top rank

nodes that need to be reserved for the further analysis.
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TABLE 2 Classification performance of di�erent hidden units.

Hidden units 32 48 52 56 60 64 68 72 76 80 96

ACC 0.640 0.708 0.735 0.768 0.801 0.864 0.815 0.806 0.757 0.769 0.660

SEN 0.575 0.608 0.724 0.825 0.754 0.882 0.835 0.778 0.668 0.817 0.744

SPE 0.706 0.808 0.742 0.728 0.835 0.851 0.801 0.825 0.821 0.722 0.575

FIGURE 4

(A) Visualize the important DICCCOL landmarks of preterm subjects, term subjects, and all the subjects on a random subject. (B) Visualize the

important DICCCOL landmarks on preterm and term subjects.

Graph classification

In the graph classification module, we feed the node feature

of different subjects into the graph readout layer to obtain

the features of different graphs and use two fully connected

layers to classify them. After the graph pooling layer, due to

the reduction of graph nodes, the number of features of each

node is correspondingly reduced. In the graph readout layer,

we compute the mean and maximum of features of each graph

nodes and concentrate them together. The fully connected layer

outputs a value for each category of preterm birth and full

term, and the category with the highest value is used as the

classification result. We obtain the graph feature fG from the

graph readout layer by Equation (3).

fGE = globalaverage
(

fm
)

fGM = globalmaximum
(

fm
)

fG = concatenate
(

fGE, fGM
)

(3)

where fGE and fGM are graph features obtained after the

global average and the global maximum of nodes, and fG is

obtained by concatenating fGE and fGM .

Di�erentiating preterm and term infant
brains via DM-GNN

Based on the proposed DM-GNN framework, experiments

are designed to differentiate preterm and term infant brains.

Totally, 86 infant brains are adopted, including an equal number

of preterm and term infants. The ratio of training data and

testing data is 4:1 and a 5-fold cross-validation strategy is

utilized. It is worth noting that our input is shuffled. That is,

the input node feature matrix, fin and adjacency matrix, A are

reconstructed based on the sample ordinal numbers in a random

order. We use accuracy (ACC), sensitivity (SEN), specificity

(SPE), and receiver operator characteristic (ROC)-area under
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FIGURE 5

(A) Distribution of DICCCOL landmarks in important brain regions for both schemes. For each pair of columns, the left side represents the

distribution follow registration priority scheme, and the right side represents the distribution follow average priority scheme. (B) Important brain

regions on the UNC infant cortical surface atlas, and the color of the brain regions corresponds to that in (A).

curve (AUC) to measure the performance of the framework.

In particular, we combine the results of 5-folds of test data to

calculate the value of ROC-AUC.

ACC =
TP + TN

TP + FN + TN + FP

SEN =
TP

TP + FN
(4)

SPE =
TN

TN + FP

where TP is the number of preterm infants judged to be

preterm, FP is the number of term babies judged to be preterm,

TN is the number of term babies judged to be full term, and FN

is the number of preterm babies judged to be full term.

To verify the value of multimodal fusion, we adopt the single

modality GNN model as the ablation experiment. Specifically,

instead of using functional similarity matrix as the input for

the feature of nodes of DM-GNN model, we adopt DICCCOL

landmarks as the graph nodes and their structural trace-map

vectors to represent the feature of the graph nodes. In this way,

the input of the ablation experiment uses structural profiles

sorely. The comparison between the proposed DM-GNN and

the ablation experiment can reveal the improvement of the

multi-modality fusion.

Analysis of the di�erentiable brain
regions and identification of the
biomarkers

In Section Graph pooling, according to the self-attention

pooling layer of the SAGPOOL model, we obtain the Z scores

of all DICCCOL landmarks when training the DM-GNNmodel,

which represents the contribution of DICCCOL landmarks

to the classification performance. We normalize the score

Z on each subject and obtain the mean of the score Z of

each DICCCOL landmark on preterm subjects, term subjects,

and all the subjects as the classification contribution of this

DICCCOL landmark. Those DICCCOL landmarks with high

contribution extracted according to a certain proportion, are the

candidates for the biomarkers to differentiate the preterm and

term infant brains.
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TABLE 3 The literature review of the proposed brain biomarker regions.

Region References Description

Pre central 1. Ouyang et al., 2019 1. Mean kurtosis (MK) is low at 33 weeks and decrease significantly at 33–40 weeks. (Preterm and structure)

2. Bouyssi-Kobar et al., 2018 2. The values of AD, RD, MD, and FA are significantly higher. (Preterm compared with term and structure)

3. Yu et al., 2016 3. FA values are higher at 20 weeks and lower at 35 weeks. (Structure)

4. Fouladivanda et al., 2021 4. This region is identified as a higher-order rich-club. (Term, structure, and function)

5. Xu et al., 2019 5. The variance of FC of preterm around 40 weeks is significantly lower than preterm around 34 weeks.

(Preterm and function)

6. Cao et al., 2017 6. This region is a functional hub and can be used brain maturity prediction. (Preterm and function)

Pre cuneus 1. Sa de Almeida et al., 2021 1. The connection strength of preterm subjects is lower than that of term subjects. (Preterm compared with

term and structure)

2. Fouladivanda et al., 2021 2. This region is identified as a higher-order rich-club. (Term, structure, and function)

3. Cao et al., 2017 3. This region can be used brain maturity prediction. (Preterm and function)

Superior frontal 1. Ouyang et al., 2019 1. MK decreased significantly and is low at 40 weeks. (Preterm and structure)

2. Ball et al., 2013 2. High MD values for cluster containing in this region. (Preterm compared with other clusters and structure)

3. Fouladivanda et al., 2021 3. This region is identified as a higher-order rich-club. (Term, structure, and function)

Superior parietal 1. Ball et al., 2013 1. It has fast decreasing FA value (preterm at 27–38 weeks) and high MD value for cluster containing this

region. (Preterm and structure)

2. Fouladivanda et al., 2021 2. This region contains rich-club nodes. (Term, structure, and function)

3. Stoecklein et al., 2020 3. The FC of it show significant differences from adults. (Preterm and function)

Post central 1. Ouyang et al., 2019 1. MK is low at 33 weeks and decreased significantly. (Preterm and structure)

2. Bouyssi-Kobar et al., 2018 2. The values of AD, RD, MD, and FA are significantly higher. (Preterm compared with term and structure)

3. Yu et al., 2016 3. FA is high at 20 weeks and low at 35 weeks. (Structure)

4. Xu et al., 2019 4. The variance of FC of preterm around 40 weeks is significantly lower than preterm around 34 weeks.

(Preterm and function)

5. Cao et al., 2017 5. This region is a functional hub and can be used brain maturity prediction. (Preterm and function)

Supra marginal 1. Ball et al., 2013 1. The value of FA decreases significantly during 28–38 weeks. (Preterm and structure)

2. Fouladivanda et al., 2021 2. This region contains rich-club nodes. (Term, structure, and function)

3. Stoecklein et al., 2020 3. The FC of it show significant differences from adults. (Preterm and function)

Isthmus insula 1. Ouyang et al., 2019 1. The values of MK and FA decreased slowly. (Preterm and structure)

2. Bouyssi-Kobar et al., 2018 2. The lower diffusion rates (MD, AD, RD) in this region. (Preterm compared with term and structure)

3. Sa de Almeida et al., 2021 3. In both preterm and term, it contains brain hubs. (Both preterm and term and structure)

4. Fouladivanda et al., 2021 4. This region contains rich-club nodes. (Term, structure, and function)

Further interpretation of the biomarkers
based on the UNC infant cortical surface
atlas

To better interpret those identified biomarkers (important

DICCCOL landmarks), UNC infant cortical surface atlas (Li

et al., 2015; Wang et al., 2019; Wu et al., 2019) is utilized as

the template for all the infant brains. The UNC infant cortical

surface atlas is a spatiotemporal cortical surface atlas for infant

brains, which is the first spatiotemporal (4D) high-definition

cortical surface map.

Two schemes are provided here to further interpret the

biomarkers based on the UNC infant cortical surface atlas

(i.e., registration priority scheme and average priority scheme).

For registration priority scheme, we register the important

DICCCOL landmarks on each subject obtained in Section

Analysis of the differentiable brain regions and identification

of the biomarkers to the standard UNC infant cortical surface

atlas to obtain the distribution of these nodes over the brain

regions. We then investigate the average of these distributions

among subjects. For the average priority scheme, we count

the mean of the normalized Z score of each DICCCOL

landmark across all the subjects and select the serial number

of the important DICCCOL landmarks. Similarly, we register

the corresponding DICCCOL landmarks on each subject to

obtain the mean distribution of nodes on brain regions.

We compare these two distributions to analyze differences

for preterm vs. term infants and obtain most important

brain regions. We extract the DICCCOL landmarks in these

regions, count the number of nerve fibers passing through

the DICCCOL landmarks in different regions, and finally

visualize them.
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FIGURE 6

Structural connection patterns among important brain regions.

Using the infant cortical functional parcellation map

provided by the UNC infant cortical surface atlas, we analyze

the potential impact of preterm birth on brain function. We

use the parcellation maps for infants at 3, 6, 9, and 12 months

provided by the UNC infant cortical surface atlas, with 7

functional partitions for 3 months, 9 partitions for 6 months,

and 10 partitions for others. We calculate the mean value of the

distribution ratio of important DICCCOL landmarks among the

functional partitions over all the subjects.

Results

We train and test the algorithm on Pytorch (1.8.0) in a

Python (version 3.7.12) environment using an NVIDIA Geforce

GTX 3090 with 24GB GPU memory. The order of subjects

entered in the algorithm is randomly shuffled. We use the

adaptive moment estimation (Adam optimizer) in the model

and set the learning rate of the model to 0.0003, and the weight

decay to 0.002. We use 5-folds cross validation for experiments.

We divide the data into 5 sets equally, and each experiment is

performed in a total of 5 times. One set of data is used as the

test set in each experiment, and the other four sets are used

as the training set. All subjects are used as test subjects once.

Considering the actual training performance, we fix the training

model for 800 epochs.

Classification performance between
preterm and term infants

In this section, classification performance of DM-GNN (5-

folds cross validation) for binary classification is shown in

Figure 3. The curve of training loss and testing ACC for 1-fold is
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TABLE 5 Classification performance of term and preterm infants in

fine-grained division.

Group 1

vs. term

Group 2

vs. term

Group 3

vs. term

ACC 0.800 0.767 0.733

SEN 0.767 0.733 0.767

SPE 0.833 0.800 0.700

ROC-AUC 0.875 0.806 0.667

shown in Figure 3A. Mean and standard variation of the 5-folds

are 0.864 and 0.084 for ACC, 0.882 and 0.079 for SEN, 0.851 and

0.098 for SPE, and 0.860 for ROC-AUC. ACC, SEN, and SPE of

5-folds is shown in Figure 3B. As shown in Figure 3B,most of the

ACC of 5-folds is higher than 0.80, the SPE and SEN of 3-folds

are equal, and the difference between SPE and SEN of the other

2-folds is 0.11. Considering that our dataset is not large, and

the test set is lightweight, such fluctuations are acceptable. This

shows that the classification performance is stable between 5-

folds. These results demonstrate the stability and effectiveness of

our proposed method and confirm the existing and predictable

differences between preterm and term infant brains.

As mentioned in Section Description of DICCCOL-based

multi-modality GNN, we conduct supplementary experiments

for different values of the number of layers and the number

of hidden layer units, which are summarized in Table 1. Three

convolutional layers yield the best classification performance

and significantly outperforms the others. To determine the

number of the hidden units, 5 different scales are chosen: 32,

48, 52, 56, 60, 64, 68, 72, 76, 80, and 96. Their classification

performance is reported in Table 2. As shown in Table 2, the

effect of the number of hidden units on the results is gradual

and 64 hidden units yield the best classification performance.

Therefore, the number of the graph convolutional layers is fixed

as 3 and the number of the hidden units is set to 64.

As mentioned in Section Differentiating preterm and term

infant brains via DM-GNN, we conduct ablation experiments

using purely structural data as the input to the SAGPool model.

The mean ACC of the experiment is 0.758, SEN is 0.769, SPE

is 0.747, and ROC-AUC is 0.833. Although the experimental

result is not as good as the original experiment, which is around

10% drop, we think this result is reasonable. The reasons are as

follows. First, this experiment uses the overall attention (at group

level) as the basis of selecting DICCCOL landmarks, while the

original experiment uses the attention of each subject. Therefore,

our expectations for the results of this experiment are slightly

lower than those of the original experiments. Second, parameters

are not fine-tuned, such as selecting DICCCCOL with the

highest attention 30%; the performance of this experiment still

has some space for further improvement. Finally, how to use

those biomarkers for the best differentiation are still under
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FIGURE 7

Fiber shapes of DICCCOL landmarks and registered landmarks.

investigation; for example, whether generating the significant

brain network based on those biomarkers (selected DICCCOL

nodes) can bring the best differentiation performance. We will

work on those issues in our future work.

Discriminable biomarkers obtained from
proposed method

As mentioned in Section Analysis of the differentiable

brain regions and identification of the biomarkers, SAGPOOL

reveals the distinguishing ability of all the graph nodes. Top

30% important DICCCOL landmarks are retained and shown

in Figure 4. For group-level, we obtain group-wise important

DICCCOL landmarks from all preterm infants, all term infants,

and all individuals separately and visualize on a subject as

shown in Figure 4A. For individual-level, we obtain important

DICCCOL landmarks from each individual and visualize them

in Figure 4B on 3 preterm and term subjects. Interestingly, the

overlap of most important DICCCOL nodes between preterm

and term subjects is 98/107, and 103/107 between all the

subjects and preterm subjects, 102/107 for all the subjects and

term subjects. This suggests that most important DICCCOL

landmarks, which contribute significantly to the classification

with respect to functional and structural representations, are

stable between preterm and term subjects, and thus could serve

as potential biomarkers of preterm and term infant brains. Due

to the huge inter-individual variability, we also evaluate the

individual differences of our results. On average, the overlap

of important DICCCOL landmarks between a single preterm

subject and group-wise ones on all preterm subjects is 68.07 /107

(about 64%), and the corresponding value for term subjects is

69.16/107 (about 65%), suggesting that the important DICCCOL

landmarks on the group level are relatively close to those on

individual level.

Investigate biomarkers/regions based on
the UNC infant cortical surface atlas

As mentioned in Section Further interpretation of the

biomarkers based on the UNC infant cortical surface atlas,

we extract the most important DICCCOL landmarks using

the proposed two schemes at a ratio of top 30%. The region-

level distribution of the brain of these important DICCCOL

landmarks is obtained after being registered onto the UNC

infant cortical surface atlas. We compare the two distributions

of two schemes and pick out the brain regions with the

highest importance from 36 brain regions, which should be

considered as biomarker regions. They are precentral (0.069,
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FIGURE 8

Illustration of functional consistency between DICCCOL landmark and registered landmark.

TABLE 6 Similarity comparison between DICCCOL-based and traditional registration method.

Landmark type Similarity type Emotion Gambling Language Motor Relational Social Working memory

DICCCOL Signals 0.0041 0.0116 0.0083 0.0139 0.0149 0.0242 0.0158

Similarity matrix 0.1853 0.2689 0.2415 0.2391 0.2206 0.2373 0.1866

Registered Signal 0.0041 0.0085 0.0053 0.0120 0.0117 0.0194 0.0125

Similarity matrix 0.1853 0.2647 0.2396 0.2355 0.2174 0.2314 0.1835

0.095), precuneus (0.049, 0.059), superior frontal (0.061, 0.046),

superior parietal (0.057, 0.082), postcentral (0.069, 0.095),

supramarginal (0.044, 0.062), and isthmus insula (0.073, 0.041).

Their importance level and locations are visualized in Figure 5.

We investigate the abovementioned biomarkers through

a literature review, summarized in Table 3. In general,

precentral, postcentral, and isthmus insula are more studied

and mentioned, and preterm and term infants have greater

differences in these regions, which can be considered as more

important biomarkers. Other important conclusions from the

literature are summarized as follows: (1) Preterm infants have

lower axial diffusivity (AD), radial diffusivity (RD), mean

diffusivity (MD), and FA in the precentral and postcentral

regions, indicating that these regions are less mature than other

cortical regions. Conversely, the lower diffusivity (MD, AD,

and RD) of isthmus insula indicates a higher maturity. (2) The

precentral, postcentral, and isthmus insula regions contain brain

hubs, and the precentral, precuneus, and post central regions

can predict brain age in preterm infants using functional data.

(3) Precentral, precuneus, and superior frontal are identified as

higher-order rich-clubs, and superior parietal, supramarginal,

and isthmus insula contain rich-club nodes. These reports

demonstrate that our method to find biomarkers is effective.

On this basis, other less concerned regions, including precuneus

and supramarginal, could also deserve a further attention, even

though fewer reports on them are available.

To further analyze the relationship between these identified

brain biomarker regions, we investigate the structural

connectivity of the biomarkers (important DICCCOL

landmarks) in those brain regions. As shown in Figure 6,

postcentral, isthmus insula, and supramarginal have much

more connections to other regions, suggestive of the greater

importance of those brain regions as the “connector” of

brain regions. In contrast, superior frontal and precuneus

are less connected to other regions. Also, the connections

among postcentral, isthmus insula, and supramarginal are

strong, while postcentral, superior frontal, and isthmus insula

have a relatively balanced proportion of connections among

each other.

We also use longitudinal UNC infant cortical surface atlas

to further study the brain functions of those identified brain

biomarker regions. After the mapping between our identified

brain biomarker regions and UNC infant cortical surface atlas

at different time points are done, we obtain the functional

networks with the proportion of the biomarkers participated at

different time points (Table 4). It is worth noting that certain

brain functions have not developed at early months, so some

elements in Table 4 is not applicable. It is found that biomarkers

are largely involved in the functional networks of central visual,

anterior default mode, and superior temporal lobe, suggesting

that those brain functions may include huge differences between

preterm and term infant brains.
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Conclusion and discussion

In this work, a novel DICCCOL-based multi-modality

GNN framework is proposed to differentiate preterm and term

infant brains and characterize the corresponding biomarkers.

Classification accuracy is 86.4% and 7 important brain regions

with 107 landmarks are identified as the biomarkers. Our

experiment results demonstrate the effectiveness of the proposed

framework to differentiate the brain disorders or diseases, as

well as the validity of the identified biomarkers. Our results shed

the new insight that DM-GNN framework owns the superiority

for differentiating brain functional states and identifying the

biomarkers. Particularly, utilizing both functional and structural

profiles, the DICCCOL system initializes the graph nodes with

correspondence but retains the individual differences. As so,

multi-modality GNN can better capture the brain functional

states and extract meaningful features.

Connectome-level study from the
functional and structural perspective

In recent years, research on preterm birth has gradually

shifted from volume-based analysis to connectome-level analysis

and we summarize some related studies. With regard to volume-

based analysis, more specifically, quantitative MRI studies

can be used to explore both WM and GM abnormalities

in preterm birth brains. Besides, many studies reported that

volume reductions have been described in the hippocampus

(Nosarti et al., 2002; Cheong et al., 2013), caudate nucleus

(Abernethy et al., 2002; Nosarti et al., 2008), thalamus (Giménez

et al., 2006; Cheong et al., 2013), corpus callosum (Nosarti

et al., 2004; Narberhaus et al., 2008; Taylor et al., 2011), and

cerebellum (Allin et al., 2001; Taylor et al., 2011). Additionally,

many related works focused on using voxel-based morphometry

to explore the widespread GM and WM alterations of preterm

birth, especially in frontal and temporal lobes, which mediated

cognitive impairment (Nosarti et al., 2008). Diffusion tensor

imaging (DTI) has also been adopted to characterize WM

microstructure in the developing brain (Allin et al., 2011).

Studies are proposed to explore the functional or structural

alterations at the connectome-level. For example, preterm

infants with moderate to severe WM injuries were found to

show greater loss of connectivity than very preterm infants

without WM injuries and term-born infants (Smyser et al.,

2013). Reductions in the functional connectivity between resting

state networks (RSNs) had been reported to persist throughout

the early childhood (Damaraju et al., 2010). Wehrle et al.

(2018), proposed that assessing the functional connectivity of

the resting brain should provide valuable insight into underlying

mechanisms of impaired cognitive development after preterm

birth. Further, a series of machine learning algorithms had

been proposed to better characterize the alterations on the

connectome-level, e.g., voxel-wise statistical analysis of the

diffusion data was performed using tract-based spatial statistics

(TBSS, part of FSL) (Eikenes et al., 2011); an artificial neural

network (ANN) framework for early prediction of cognitive

deficits in very preterm infants based on fMRI connectome data

(He et al., 2018); a deep learning convolutional neural network

had been proposed to identify preterm infants at the risk of

a later motor impairment and to identify brain regions with

predictors of adverse outcome (Saha et al., 2020).

Based on these connectome-level analyses, a variety of

different opinions and observations about the alterations caused

by the preterm birth are obtained. On the one hand, studies

on the structural connectivity proposed that the brains of

preterm infant show increased modularity, weakened rich-

club connectivity, and diminished global efficiency compared

to term infants, suggesting a delayed transition from a local

architecture, i.e., focused on short-range connections, to a more

distributed architecture with efficient long-range connections

(Sa de Almeida et al., 2021). On the other hand, studies on

the functional connectivity had largely focused on connections

involved in language and attention, which reported profound

alterations in the functional connectivity within and between

language areas and language-related areas, and other parts of

the brain, such as visual attention and working memory areas

(Finke et al., 2015). However, dissenting opinion was also found,

e.g., two types of relationship are possible: (i) the more attention

is impaired, the more intrinsic connectivity is changed from

that of healthy controls, reflecting detrimental effects of preterm

birth; (ii) the less attention is impaired, the more intrinsic

connectivity is changed from that of healthy controls, reflecting

compensatory response on effects of preterm birth (Finke et al.,

2015). Eikenes et al. (2011), also stated that structural and

functional alterations were not always consistent, and different

trajectories in brain connectivity could exist. Therefore, the joint

analysis of function and structure is extremely important.

Experiment of more fine-grained division
of preterm birth data

Preterm birth is a dynamic process that also varies among

preterm infants of different gestational ages. We try to do a

more fine-grained division of the preterm birth data. We further

divide the data of preterm infants into three subcategories:

“Group 1”: 18 infants younger than 32 weeks of gestational age;

“Group 2”: 12 infants between 32 and 35 weeks of gestational

age; “Group 3”: 13 infants older than 35 weeks of gestational

age. Three binary classification experiments are then designed;

they are “Group 1” vs. term infants, “Group 2” vs. term infants,

and “Group 3” vs. term infants. To keep the balance of the input

data, for each binary classification, the number of the term infant
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brains we used is exactly the same as the preterm infant brains.

The results are shown in Table 5.

The ACC for classification between Group 1 and term

infants is 0.800, and the ROC-AUC is 0.875, which is the

best among the three groups of experiments. The ACC for

classification between Group 2 and term is 0.767, and the

ROC-AUC is 0.806, which is slightly worse than the previous

experiments. The ACC for classification between Group 3 and

term is 0.733, and the ROC-AUC is 0.667. These results suggest

that the differences between preterm and term infant brains are

much more significant in preterm infants at younger gestational

age. The overall classification performances of these three

experiments are lower than that of the original experiments,

due to the relatively small number of subjects used in the

experiments resulting in a low generalization ability of the

features learned by the model. This is why we prefer not to split

the preterm data into a finer granularity. Our follow-up research

will pay more attention on this issue and try to include more

available data into consideration.

Discussion on the e�ectiveness of the
DICCCOL system

Since both functional information and structural

information are carried by the DICCCOL landmarks that

construct the graph nodes, the functional and structural

consistency of DICCCOL landmarks across the subjects is

crucial. Two experiments are designed to demonstrate the

effectiveness of functional and structural correspondence of

DICCCOL across the subjects. For the structural perspective, we

randomly select 4 preterm subjects as category 1 and four term

subjects as category 2, respectively. For each category, we select

one subject as a template, and register the DICCCOL landmarks

of the template to the other three subjects. As shown in Figure 7,

for each category, we visualize the shape of fibers passing

through 4 DICCCOL landmarks and registered landmarks. It

is clear that the shapes of fibers passing through the DICCCOL

landmarks are much more similar, illustrating the advantages of

the DICCCOL system on structural consistency over traditional

registration algorithm.

For the functional perspective, to use the task fMRI data,

we use the Human Connectome Project (HCP) S900 dataset

(Van Essen et al., 2013) for the experiment. We select 86

subjects to conduct experiments using their fMRI data for 7

tasks including emotion, gambling, language, motor, relational,

social, and working memory. We randomly select one subject

as a template and register its DICCCOL landmarks to the other

85 subjects as registered landmarks. Two functional similarities

are calculated: (1) between the DICCCOL landmarks on the

template and other subjects; (2) the DICCCOL landmarks on

the template and the registered landmarks on other subjects

(Figure 8). The functional consistency of DICCCOL landmarks

is demonstrated by comparing the functional similarities. The

functional similarity is represented by the similarity of the

functional signals and similarity matrices. The results are shown

in Table 6. The functional signal similarity between the two

DICCCOL landmarks in Figure 8 is 0.3418, and the functional

signal similarity between the DICCCOL landmark on the

template and the registered landmark is 0.3027, which is lower

than that between the DICCCOL landmarks. As shown in

Table 6, similarities between DICCCOL landmarks are slightly

higher in six functions than the results of the registration, and

equal in the other one. Overall, it shows that the function

between DICCCOL landmarks is more stable than using the

traditional registration method.

In general, we are clear about the performance and

limitations of DM-GNN. It is worth noting that our proposed

DM-GNN is not only designed for the study of preterm and

term infant brains, but also established as a standard framework

which can be effectively applied to other brain disorders,

such as Alzheimer (Parisot et al., 2018), Schizophrenia (Du

et al., 2021), and Autism (Du et al., 2021). In the future, we

will continuously improve the DM-GNN framework, including

the architecture of GNN and the integration of the multi-

modality representations.
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