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ABSTRACT
Background  Configurational methods are increasingly 
being used in health services research.
Objectives  To use configurational analysis and logistic 
regression within a single data set to compare results from 
the two methods.
Design  Secondary analysis of an observational cohort; a 
split-sample design involved randomly dividing patients 
into training and validation samples.
Participants and setting  Patients who had a transient 
ischaemic attack (TIA) in US Department of Veterans Affairs 
hospitals.
Measures  The patient outcome was the combined 
endpoint of all-cause mortality or recurrent ischaemic 
stroke within 1 year post-TIA. The quality-of-care outcome 
was the without-fail rate (proportion of patients who 
received all processes for which they were eligible, among 
seven processes).
Results  For the recurrent stroke or death outcome, 
configurational analysis yielded a three-pathway model 
identifying a set of (validation sample) patients where 
the prevalence was 15.0% (83/552), substantially 
higher than the overall sample prevalence of 11.0% 
(relative difference, 36%). The configurational model 
had a sensitivity (coverage) of 84.7% and specificity of 
40.6%. The logistic regression model identified six factors 
associated with the combined endpoint (c-statistic, 0.632; 
sensitivity, 63.3%; specificity, 63.1%). None of these 
factors were elements of the configurational model. For the 
quality outcome, configurational analysis yielded a single-
pathway model identifying a set of (validation sample) 
patients where the without-fail rate was 64.3% (231/359), 
nearly twice the overall sample prevalence (33.7%). The 
configurational model had a sensitivity (coverage) of 
77.3% and specificity of 78.2%. The logistic regression 
model identified seven factors associated with the without-
fail rate (c-statistic, 0.822; sensitivity, 80.3%; specificity, 
84.2%). Two of these factors were also identified in the 
configurational analysis.
Conclusions  Configurational analysis and logistic 
regression represent different methods that can enhance 
our understanding of a data set when paired together. 
Configurational models optimise sensitivity with relatively 
few conditions. Logistic regression models discriminate 
cases from controls and provided inferential relationships 
between outcomes and independent variables.

INTRODUCTION
Configurational Comparative Methods 
(CCMs) have been used in a wide variety of 
disciplines since at least the 1990s and have 
recently started to gain traction in the general 
medical research literature1–4 as well as within 
implementation science.5 6 CCMs draw on 
mathematical approaches that are fundamen-
tally different from those used in regression 
modelling, which is commonly used in health 
services research. Specifically, CCMs draw 
on Boolean algebra and set theory to iden-
tify specific combinations of conditions that 
lead to an outcome of interest as well as deter-
mine if multiple solution paths yield the same 
outcome (ie, equifinality).7–9

Although CCMs and logistic regression 
offer the potential for synergistic under-
standing of complex clinical situations, few 
studies in the medical literature10 have used 
both approaches within a single data set.11–14 
The objective of the current study was to use 
both CCMs and logistic regression to inde-
pendently derive and validate two models 
(one for mortality or recurrent stroke and the 
other for quality of care) among patients who 
had a transient ischaemic attack (TIA). Two 
outcomes were chosen because they provided 
different methodological challenges. The 
combined endpoint of death or recur-
rent stroke is relatively uncommon among 
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patients who had a TIA15 16 and therefore presented the 
problem of predicting rare but important events; this 
may, for example, limit logistic regression modelling 
due to constraints on the number of outcome events 
per independent variable.17 18 The quality of care metric 
was available for the majority of patients but few robust 
predictors of quality at the patient level have been previ-
ously identified.19 In contrast, if a small set of key vari-
ables were strongly associated with an outcome, it would 
be expected that both regression and configurational 
methods would produce similar findings, limiting the 
potential insights available from comparing results across 
methods. Furthermore, if a variable is only weakly associ-
ated with an outcome, then the inconsistent relationship 
between configurations and an outcome could hinder the 
identification of a solution pathway from configurational 
methods. Across methods we sought to examine similar-
ities and differences in factor selection (ie, variables or 
configurations that were included in the final models) as 
well as compare sensitivity, specificity, c-statistics and posi-
tive and negative predictive values.

METHODS
This analysis was part of the Protocol-guided Rapid Eval-
uation of Veterans Experiencing New Transient Neuro-
logical Symptoms (PREVENT) project to improve quality 
of TIA care in Veterans Health Administration (VA) 
facilities.15 20 21 We identified patients with TIA who were 
cared for in any VA Emergency Department (ED) or inpa-
tient setting based on primary discharge codes for TIA 
(International Classification of Disease (ICD)−10 G45.0, 
G45.1, G45.8, G45.9, I67.848) during the period between 
October 2016 and September 2017. The unit of analysis 
was the patient who had a TIA.

Patient and public involvement statement
This analysis did not include patient or public involvement.

Data sources
Electronic health record data were obtained from the 
VA Corporate Data Warehouse (CDW).22 23 CDW data 
included: inpatient and outpatient data files (eg, clin-
ical encounters with associated diagnostic and proce-
dure codes) in the 5 years pre-event to identify medical 
history,24 healthcare utilisation and receipt of procedures 
(Current Procedural Terminology, Healthcare Common 
Procedures Coding System and ICD-9 and ICD-10 proce-
dure codes). CDW data were also used for vital signs, 
laboratory data, allergies, imaging, orders, medications 
and clinical consults. Mortality status was obtained from 
the VA Vital Status File.25 Recurrent stroke events were 
identified using a combination of VA CDW data and fee-
basis data (which describes healthcare services that were 
paid for by the VA but that were obtained by Veterans in 
non-VA facilities).

Outcomes
The combined endpoint of all-cause mortality or recur-
rent ischaemic stroke within 1 year post-discharge from 

the index TIA event was the primary patient outcome. 
Recurrent ischaemic stroke events included ED visits or 
hospitalisations and were identified on the basis of ICD-10 
codes (I63, I66, I67.89, I97.81 and I97.82).

The quality of care outcome was the ‘without-fail’ rate 
(also referred to as defect-free26 27 care), which is an ‘all-
or-none’ measure of care quality.28 It was calculated as 
the proportion of Veterans who had a TIA who received 
all of the processes of care for which they were eligible 
from among seven processes: brain imaging, carotid 
artery imaging, neurology consultation, hypertension 
control, anticoagulation for atrial fibrillation, antithrom-
botics and high/moderate potency statins.29 30 Processes 
of care were ascertained using electronic health record 
data using validated algorithms.30 31 The without-fail rate 
was based on guideline32 33 recommended processes of 
care and has been associated with improved outcomes.34 
Given the all-or-none nature of the without-fail rate, it can 
be a relatively difficult to change and even small improve-
ments in the absolute rate may reflect substantial changes 
in practice.28 For the regression analyses modelling the 
without-fail rate, quality measures were recoded such that 
pass=1, not eligible=0 and fail=0 to avoid reducing sample 
size by eliminating ineligible patients.

Analytical overview
We analysed this same data set with configurational analysis 
and logistic regression modelling. We randomly divided 
the overall data set (n=3079) into a ~70% training sample 
(2192/3079) and ~30% validation sample (887/3079).35 
The training sample was independently analysed by a 
configurational analyst (EJM) and a biostatistician (AJP); 
this split-sample approach was used to enhance within-
method validity. For the combined endpoint of all-cause 
mortality or recurrent ischaemic stroke within 1 year 
post-discharge from the index TIA event, we included 
both baseline patient characteristics (eg, age) as well as 
processes of care (eg, hypertension control) in the model-
ling. The without-fail model included only processes of 
care. Model performance was tested using the validation 
sample.

Configurational analysis
Configurational analyses were conducted with Coinci-
dence Analysis—a relatively new approach within the 
broader family of CCMs6—using the R package ‘cna’.36

Definitions
Variables were baseline characteristics of patients (eg, 
history of hypertension) which could be expressed with a 
dichotomous scale or a continuous scale. A configuration 
is a bundle of specific conditions (eg, a history of hyper-
tension was present). Consistency or positive predictive 
value is the number of cases covered by the solution with 
the outcome of interest versus all cases covered by the 
solution. Coverage or sensitivity is the number of cases 
covered by the solution with the outcome of interest 
versus all cases with the outcome of interest. Complexity 
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is the number of discrete conditions in a configuration. 
Ambiguity describes a situation where more than one 
model generated by the configurational analysis fit the 
data equally well.

Analytic steps
We began with a multi-step data reduction approach that 
has been described previously.1 2 37–39 Briefly, we used 
the ‘minimally sufficient conditions’ function in ‘cna’ to 
examine all 48 candidate factors (eg, patient characteris-
tics, medical history, characteristics of the index cerebro-
vascular event, vital signs, laboratory data, medications 
and processes of care) in the analysis with the outcome of 
interest across all 2192 cases in the training sample and 
identify bundles of conditions with the strongest connec-
tions to the outcome condition. Factors in the analysis that 
were not already categorical or ordinal were binned; for 
example, age was categorised into 5-year increments (eg, 
55–59, 60–64, 65–69 years). We performed this process 
separately for the two outcomes of interest: mortality or 
recurrent stroke within 1 year; and the without-fail rate. 
When analysing these combinations of conditions, we 
considered all 1-condition, 2-condition and 3-condition 
bundles instantiated in the data set (meaning patients 
with these specific combinations of configurations were 
present within the sample) that satisfied the consistency 
threshold.

We used a dual minimum threshold to identify patient 
characteristics to use in model iteration: a prevalence 
threshold of ≥0.145 (via the ‘consistency’ function avail-
able in the R ‘cna’ package using multi-value cna) and a 
coverage score of ≥0.15. These cutoffs were selected to 
ensure individual configurations were clinically relevant. 
Specifically, given that the overall outcome rate of death 
or stroke at 1 year post-TIA was (349/3079) 11.3%, a prev-
alence threshold of ≥0.145 identified configurations with 
a mortality or stroke rate at least three points higher (ie, 
14.5% vs 11.3%) in absolute terms than the overall popu-
lation, or ≥25% higher in relative terms. For the without-
fail rate, the overall outcome rate was 34.4% (1058/3079) 
and the prevalence threshold was set at ≥50%, a rate that 
was at least 15 points higher in absolute terms (ie, 50% vs 
34.4%), or ≥40% higher in relative terms. In this sense, 
the configurational analysis sought to identify distinct 
‘phenotypes’ of patients who had substantially different 
outcome rates (as a group) than the overall sample. The 
coverage threshold of  ≥0.15 ensured that the config-
urations applied to at least 15% of individuals with the 
outcome and was used to avoid overfitting.

We next generated a ‘condition table’ to list and orga-
nise the output. In a condition table, rows list configu-
rations of conditions that meet a specified prevalence 
threshold, and column variables include outcome status, 
condition, consistency, coverage and complexity. We 
generated condition tables by specifying a prevalence 
threshold of 1.0 (ie, 100%). If we did not find any poten-
tial configurations that met our initial dual threshold 
(ie, prevalence threshold of 1.0 and a coverage score 

of ≥0.15), we then iteratively lowered the specified prev-
alence threshold by 0.05 (eg, from 1.0 to 0.95) and 
repeated the process of generating a new condition table. 
We continued this process until at a given prevalence 
threshold it was possible to identify at least two potential 
configurations (or ‘phenotypes’) of patient characteris-
tics that met the specified prevalence threshold as well as 
the ≥15% coverage level. Using this approach, we induc-
tively analysed the training sample and identified a subset 
of five candidate difference-making factors to use in the 
subsequent modelling phase.

We next developed candidate models with these five 
factors by iteratively applying the model-building func-
tion within the ‘cna’ software package in R using multi-
value cna. We assessed models based on their overall 
consistency and coverage, as well as potential model 
ambiguity.40 We selected a final model based on these 
same criteria.

Logistic regression
Multivariable logistic regression was conducted using SAS 
Enterprise guide V.7.11. Models were constructed using 
forward and backward selection procedures in the HPLO-
GISTIC procedure using the Schwarz Bayesian Criterion. 
Patient clinical characteristics as well as processes of care 
were included in the modelling. Final models for the 
backward and forward procedure identified the same set 
of variables for each outcome. To calculate sensitivity and 
specificity, we chose a cut-point of the estimated probabil-
ities at which the distance between (1,0) and the receiver 
operating characteristics (ROC) curve was minimised 
in the ROC diagram for the training sample. We used a 
predicted probability of 0.096 as the cut-point for the clin-
ical outcome, and 0.490 for the quality of care model. In 
this way, each patient was dichotomised as yes versus no 
for risk of the outcome.

Model comparisons
The sensitivity (coverage), specificity, positive predictive 
value, negative predictive value and the c-statistic were 
examined and compared between the methods for both 
outcomes. For the logistic regression, the first area under 
the ROC (c-statistic) was calculated with all the vari-
ables in the model and used the continuous predicted 
probability. As described above, for the comparison of 
the two methods, we used a cut-point on the probability 
that maximised the sensitivity and specificity. We created 
a new variable describing the predicted outcome (1 if 
p>cut-point; 0 otherwise). We then performed logistic 
regression using only that variable as the independent 
variable. This variable was also used to calculate sensi-
tivity and specificity. Similarly, for the configurational 
analysis, we created a predicted outcome variable based 
on the configurational groupings and use that as the 
independent variable in the logistic regression to obtain 
a c-statistic.
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RESULTS
The overall sample consisted of 3079 Veterans between 
the ages of 24 and 99 years (median age, 70 years; IQR 
64–78) who presented at a VA medical facility with a TIA 
between October 2016 and September 2017. The base-
line characteristics of the patients within the training and 
validation samples are provided in online supplemental 
file 1 and the process of care data are provided in online 
supplemental file 2. All patients had complete data both 
for the outcomes and potential explanatory factors, 
which included specific TIA processes of care as well as 
risk factors for recurrent stroke or death.

Patient outcome: death or recurrent stroke at 1 year
Configurational results
Among the training sample patients, the prevalence of the 
combined endpoint of death or recurrent stroke at 1 year 
post-TIA was 11.5% (251/2192). Configurational analysis 
yielded a three-pathway model comprised of five condi-
tions, where the prevalence of death or stroke was 14.5% 
(193/1330). The configurational analysis identified the 
following three pathways: (1) having a history of TIA 
AND a history of hypertension AND not being prescribed 
a non-steroidal anti-inflammatory drug (NSAID); (2) 
having a HAS-BLED score41 (a measure of bleeding risk) 
of ≥3; or (3) having a history of dementia (table 1).

Among patients in the validation sample, the death or 
stroke rate 1 year post-TIA was 11.0% (98/887) overall, 
and 15.0% (83/552) for patients within the three-pathway 
configurational model, 36% relatively higher than the 
overall rate. This performance in the validation sample 
was better than in the training sample, where the same 
configurational three-pathway model rate was 26% rela-
tively higher than the overall rate (ie, 14.5% compared 
with 11.5%). The configurational model had a coverage 
(sensitivity) of 84.7% in the validation sample, iden-
tifying 83 out of 98 patients with the outcome of death 
or recurrent stroke at 1 year; this outperformed the 
76.9% coverage score (193/251) in the training sample 
(table 1). The configurational model had a specificity of 
41.4% in the training sample and 40.6% in the validation 
sample (table 2).

Logistic regression results
The logistic regression model identified six factors that 
were associated with the combined endpoint of death 
or recurrent stroke at 1 year post-TIA (table  1): age, 
Charlson Comorbidity Index,42 the modified APACHE 
(Acute Physiology And Chronic Health Evaluation) 
score,43 current smoking status, palliative care or hospice 
and history of stroke. None of these six factors were 
elements of the configurational model. The c-statistic 

Table 1  Modelling results for death or recurrent stroke at 1-year post-TIA

Patient characteristic or process of care
Training sample
Sample prevalence: 11.5%

Validation sample
Sample prevalence: 11.0%

Configurational analysis

Pathways Prevalence* Coverage Prevalence Coverage

History of TIA AND history of hypertension AND not 
taking NSAID†

14.8% 55.8% 14.2% 57.1%

HAS-BLED‡ score of ≥3 18.5% 54.2% 16.3% 50.0%

History of dementia 21.9% 15.9% 20.0% 17.3%

Overall model results 14.5% 76.9% 15.0% 84.7%

Logistic regression

 �  OR (95% CI) P value

Age 1.03 (1.02 to 1.05) <0.001 §

Charlson Comorbidity Index 1.2 (1.1 to 1.2) <0.001

APACHE¶ 1.04 (1.02 to 1.06) <0.001

Current smoker 1.8 (1.3 to 2.4) <0.001

Palliative care/hospice 2.9 (1.7 to 5.1) <0.001

History of stroke 1.8 (1.3 to 2.6) 0.001

C-statistic for overall model 0.747 0.691

*Prevalence refers to the outcome rate for a specific pathway or the overall model.
†NSAID refers to non-steroidal anti-inflammatory medications.
‡The HAS-BLED score describes the risk of major bleeding.
§We did not refit the model in the validation sample, but rather, we use estimates from the training model to estimate the probabilities in the 
validation model.
¶APACHE refers to the Acute Physiology And Chronic Health Evaluation measure of physiological disease severity.
TIA, transient ischaemic attack.
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for the primary model on training sample was 0.747 and 
0.691 for the validation sample (table 1). The c-statistics 
for logistic models used to calculate sensitivity and spec-
ificity (table 2) were 0.6888 for the training sample and 
0.632 for the validation sample. The sensitivity was 75.3% 
in the training sample and 63.3% in the validation sample 
(table 2). The specificity was 62.3% in the training sample 
and 63.1% in the validation sample.

Quality of care outcome: the without-fail rate
Configurational results
Among the training sample patients, the prevalence of 
the without-fail rate was 34.6%. The configurational 
analysis (table  3) yielded a single-pathway model with 
the conjunct of two processes—discharged on a high 
or moderate potency statin AND neurology consulta-
tion—where the without-fail rate was 67.3% (567/843). 
The final configurational model included 567 of the 759 
patients with the outcome (ie, 74.7% coverage; table 3).

Among the validation sample patients, the without-fail 
rate was 33.7%. When applied to the validation sample, 
the single-pathway configurational model yielded a 

without-fail rate of 64.3% (231/359), which was nearly 
twice the observed sample prevalence. This model 
covered 231 of the 299 cases with the outcome (ie, 77.3% 
coverage; table 3). The configurational model had a spec-
ificity of 80.7% in the training sample 78.2% in the valida-
tion sample (table 4).

Logistic regression results
The logistic regression model identified seven factors 
that were associated with the without-fail rate: carotid 
artery imaging, hypertension medication intensification, 
hypertension control, discharged on statin, discharged 
on high or moderate potency statin, antithrombotics by 
hospital Day 2, and neurology consultation (see table 3). 
Two of these factors were also identified in the config-
urational analysis: discharged on a high or moderate 
potency statin and neurology consultation. The c-statistics 
were higher for this model of quality than for the patient 
outcome model. In the primary model the c-statistic for 
the training sample was 0.842 and 0.841 in the validation 
sample (table 3). In the model used to calculate sensitivity 
and specificity the c-statistic was 0.823 for the training 

Table 2  Test characteristics of the logistic regression and configuration models for death or recurrent stroke rate at 1-year 
post-TIA

Training sample
Recurrent stroke or 
death at 1-year (11.5%)

Sensitivity Specificity

Positive 
predictive 
value

Negative 
predictive 
value C-statistic

n/N
% (95% CI)

n/N
% (95% CI)

n/N
% (95% CI)

n/N
% (95% CI) (95% CI)

Configurational analysis 
classification

No Yes Totals 193/251
76.9 (71.2 to 
82.0)

804/1941
41.4 (39.2 to 
43.7)

193/1330
14.5 (12.7 to 
16.5)

804/862
93.3 (91.4 to 
94.9)

0.592
(0.563 to 0.620)

 � No 804 58 862

 � Yes 1137 193 1330

 � Totals 1941 251 2192

Logistic regression 
classification

No Yes Totals 189/251
75.3 (69.5 to 
80.5)

1209/1941
62.3 (60.1 to 
64.4)

189/921
20.5 (18.0 to 
20.3)

1209/1271
95.1 (93.8 to 
96.2)

0.688
(0.659 to 0.717)

 � No 1209 62 1271

 � Yes 732 189 921

 � Totals 1941 251 2192

Validation sample
Recurrent stroke or 
death at 1-year (11.0%)

Configurational analysis 
classification

No Yes Totals 83/98
84.7 (76.0 to 
91.2)

320/789
40.6 (37.1 to 
44.1)

83/552
15.0 (12.2 to 
18.3)

320/335
95.5 (92.7 to 
97.5)

0.626
(0.587 to 
0.666) � No 320 15 335

 � Yes 469 83 552

 � Totals 789 98 887

Logistic regression 
classification

No Yes Totals 62/98
63.3 (52.9 to 
72.8)

498/789
63.1 (59.6 to 
66.5)

62/353
17.6 (13.7 to 
21.9)

498/534
93.3 (90.8 to 
95.2)

0.632
(0.581 to 
0.683) � No 498 36 534

 � Yes 291 62 353

 � Totals 789 98 887

TIA, transient ischaemic attack.
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sample, and 0.822 for the validation sample (table 4). The 
sensitivity was 76.7% in the training sample and 80.3% in 
the validation sample. The specificity was 87.9% in the 
training sample and 84.2% in the validation sample.

DISCUSSION
This study analysed one of the largest sample sizes used to 
date in a published configurational analysis, is one of the 
first to use a split-sample design featuring training and 
validation samples and is also one of the first to directly 
compare configurational and logistic regression results 
using identical data. The models developed by applying 
logistic regression and configurational analysis within 
the training sample were confirmed when tested against 
the validation sample. This was true for both the 1-year 
death or recurrent stroke outcome and the without-fail 
quality-of-care outcome. The results of this study demon-
strate that configurational analyses and logistic regres-
sion, when applied to the same data set, can expand our 
understanding of the data. Key differences in the findings 
from the two methods as they were applied in the current 
study included: the focus of optimisation; the goal of 
making stochastic inferences versus empiric insights; and 
the possibility of conjunctivity.

Logistic regression models include variables to infer 
the absence and presence of the outcome and maximises 
the likelihood for the observed data in a parametrically 
well-structured model. The configurational models, by 
contrast, identified ‘phenotypes’ where particular groups 
of individuals sharing a specific bundle of characteristics 
had outcome rates substantially different from that of the 
overall sample. The logistic regression model is useful in 

making statistical inference for variables’ effects on the 
binary outcome of interest, though it can be applied to 
predict the outcome if a cut-off probability threshold 
is provided. In contrast, the configurational models 
pinpointed specific combinations of factor values that 
linked directly to the positive outcome of interest.

An expected pattern in results is that configurational 
analysis has an advantage over logistic regression in 
prediction of a dichotomous outcome when prevalence 
is low. This pattern was evident in the model of recur-
rent stroke or death at 1 year post-TIA (with a prevalence 
of 11.5% in the training sample), where the sensitivity in 
the validation sample was higher in the configurational 
model (84.7% (95% CI: 76.0% to 91.2%)) than in the 
logistic regression model (63.3% (95% CI: 52.9% to 
72.8%)). Both approaches had equivalent c-statistics 
(configurational model, 0.626 (95% CI: 0.587 to 0.666); 
logistic model, 0.632 (95% CI: 0.581 to 0.683)). However, 
this advantage may diminish if the prevalence of the 
outcome is not rare, which was evident in the model using 
the quality outcome (with a prevalence of 34.6% in the 
training sample), where the sensitivity in the validation 
sample was similar in both approaches (configurational 
model, 77.3% (95% CI: 72.1% to 81.9%); logistic model, 
80.3% (95% CI: 75.3% to 84.6%)), and the c-statistics 
were also similar (configurational model, 0.777 (95% CI: 
0.748 to 0.801); logistic model, 0.822 (95% CI: 0.795 to 
0.849)).

The models of the 1-year recurrent stroke or death rate 
differed dramatically with no overlap between the factors 
included in the logistic regression model and the condi-
tions in the configurational model. This observation 

Table 3  Modelling results for without-fail rate

Process of care
Training sample
Sample prevalence: 34.6%

Validation sample
Sample prevalence: 33.7%

Configurational analysis

Pathway Prevalence Coverage Prevalence Coverage

 � High or moderate potency statin AND neurology consultation 67.3% 74.7% 64.3% 77.3%
 � Overall model results 67.3% 74.7% 64.3% 77.3%

Logistic regression

 �  OR (95% CI) P value

Carotid artery imaging 5.0 (3.7 to 6.7) <0.001 *

Hypertension medication intensification 0.4 (0.3 to 0.6) <0.001

Hypertension control 1.5 (1.2 to 1.8) 0.001

Discharged on any statin 0.7 (0.5 to 0.9) 0.002

High or moderate potency statin 5.9 (4.5 to 7.7) <0.001

Antithrombotic by Day 2 0.2 (0.2 to 0.3) <0.001

Neurology consultation 8.3 (6.1 to 11.3) <0.001

C-statistic for overall model 0.842 0.841

*We did not refit the model in the validation sample, but rather, we use estimates from the training model to estimate the probabilities in the 
validation model.
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may be attributed to correlations between variables. For 
example, the finding that increasing age was negatively 
correlated with taking NSAIDs (r=−0.215, p<0.0001; 
online supplemental file 3) may partially account for why 
age was a variable that was included in the logistic model 
whereas not taking NSAIDs was a configuration that was 
included in one of the pathways in the configurational 
model. In contrast, the models of the without-fail rate 
were overlapping. The configurational results were more 
parsimonious, though the logistic regression models 
could be further developed if parsimony was of particular 
interest.

The configurational results for the quality outcome 
(table  3) provide an example of Boolean conjunctivity, 
where a bundle of conditions that jointly appear together 
are sufficient for the outcome. Conjunctivity is an attrac-
tive characteristic of configurational methods and partic-
ularly relevant to studies in healthcare settings given the 
inherent complexity within clinical medicine and health 
services research. In other words, it is expected that for 
some complex phenomena that it is a combination of 
conditions—rather than a single factor alone—which can 
explain the outcome.

As described above, configurational methods differ 
from regression methods in terms of the underlying 
mathematical foundations, the focus on configurations 
of conditions (ie, factor values) versus variables, and 
the results in the output.44 The use of configurational 
methods is increasing within health services research in 
general and in implementation science in particular.37 
The pairing of logistic regression and configurational 
methods may be particularly fruitful for implementation 
science in terms of describing difference-making patterns 
and identifying factors associated with an outcome at a 
particular site, especially if the outcome is uncommon 
or when there are few sites. Configurational methods are 
also increasingly used in mixed methods analyses; given 
the focus on cases, the persistent link to cases present 
throughout configurational analysis allows investigators 
to examine qualitative data from key illustrative cases.45

Because regression methods have been widely used 
in health services research, investigators have experi-
ence in applying them and best practices have emerged 
to address common methodological difficulties. Future 
research, conducted either on real-world data or in simu-
lations,46 should compare findings from configurational 

Table 4  Test characteristics of the logistic regression and configuration models for without-fail rate at 1-year post-TIA

Training sample
Without-fail rate 
(34.6%)

Sensitivity Specificity

Positive 
predictive 
value

Negative 
predictive 
value C-statistic

n/N
% (95% CI)

n/N
% (95% CI)

n/N
% (95% CI)

n/N
% (95% CI) (95% CI)

Configurational analysis 
classification

No Yes Totals 567/759
74.7 (71.5 to 
77.8)

1157/1433
80.7 (78.6 to 
82.8)

567/843
67.3 (64.0 to 
70.4)

1157/1349
85.8 (83.8 to 
87.6)

0.777
(0.759 to 0.796)

 � No 1157 192 1349

 � Yes 276 567 843

 � Totals 1433 759 2192

Logistic regression 
classification

No Yes Totals 582/759
76.7 (73.5 to 
79.6)

1259/1433
87.9 (86.1 to 
89.5)

582/756
77.0 (73.8 to 
79.9)

1259/1436
87.7 (85.9 to 
89.3)

0.823
(0.805 to 0.840)

 � No 1259 177 1436

 � Yes 174 582 756

 � Totals 1433 759 2192

Validation sample
Without-fail rate 
(33.7%)

Configurational analysis 
classification

No Yes Totals 231/299
77.3 (72.1 to 
81.9)

460/588
78.2 (74.7 to 
81.5)

231/359
64.3 (59.1 
to 69.3)

460/528
87.1 (84.0 to 
89.9)

0.777
(0.748 to 0.801)

 � No 460 68 528

 � Yes 128 231 359

 � Totals 588 299 887

Logistic regression 
classification

No Yes Totals 240/299
80.3 (75.3 to 
84.6)

495/588
84.2 (81.0 to 
87.0)

240/333
72.1 (66.9 
to 76.8)

495/554
89.4 (86.5 to 
91.8)

0.822
(0.795 to 0.849)

 � No 495 59 554

 � Yes 93 240 333

 � Totals 588 299 887

TIA, transient ischaemic attack.

https://dx.doi.org/10.1136/bmjopen-2022-061469
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methods with regression analyses to advance our under-
standing of how configurational methods will perform 
in the following situations which are common in health-
care data: (1) the strength of the association between a 
variable and an outcome depends on the presence of 
another variable (eg, if implementation success is related 
to champion characteristics only in the presence of lead-
ership support for a programme); (2) a rare character-
istic is robustly associated with an outcome (eg, patients 
presenting with coma are at markedly increased risk of 
mortality, however, coma is an uncommon clinical presen-
tation); (3) variables that are at least modestly associated 
with an outcome are correlated; (4) missing data, espe-
cially for factors that are at least modestly associated with 
an outcome; (5) limited diversity, especially for configura-
tions that are related to an outcome (eg, few older persons 
included in a data set where the outcome is mortality); 
and (6) nested data (eg, patients within sites). Although 
regression analyses identify the same variables as being 
associated with an outcome whether modelling the pres-
ence or absence of an outcome, configurational methods 
can produce different results depending on whether a 
positive or negative outcome is being modelled.45 Future 
research should evaluate situations when this key differ-
ence between methods is most pronounced and hence 
most likely to provide novel insights.

Several limitations of this study should be noted. First, 
the results are based on data from the Department of 
Veterans Affairs, and therefore may not generalise to 
other healthcare systems.

Second, the outcomes used in this study were chosen 
to provide variation in prevalence rates and associations 
between variables and outcomes; however future studies 
could consider data sets with different characteristics (eg, 
varying sample sizes).

Third, the process of care variables were originally 
coded as pass among those eligible, fail among those 
eligible and ineligible. However, patients who were not 
eligible for processes of care were generally the most crit-
ically ill patients (eg, hospice); being not eligible for a 
process was a strong predictor of mortality. By combining 
the fail among eligible and ineligible categories in the 
regression analyses we were able to retain all patients and 
as expected hospice was associated with the combined 
endpoint of death or recurrent stroke.

Fourth, to calculate sensitivity and specificity, we chose 
a cut-point of the estimated probabilities at which the 
ROC curve was minimised; different thresholds could 
have been used (eg, to optimise sensitivity). For example, 
one option would have been to use the observed prob-
abilities as a cut-point. Another approach would have 
been to use 0.5 which would be unlikely to perform well 
with rare outcomes. An alternative would have been to 
target a specific sensitivity (ie, 80%) in which case we 
would have used higher cut-points for both outcomes; 
this approach would have been at the expense of sensi-
tivity. In contrast, we could have targeted a given speci-
ficity (ie, 80%); in which case we would have used a lower 

predicted probability cut-point and sensitivity would have 
been reduced.

Fifth, previous work has demonstrated that conjuncts in 
configurational methods are not synonymous with inter-
actions in regression.44 We did not systematically explore 
interactions within the logistic regression modelling.

Finally, we presented an example of how logistic regres-
sion and configurational methods could be used on the 
same data to glean different information. The analyt-
ical approaches are fundamentally different; we do not 
intend to suggest that one method is better than another. 
Future studies should consider both circumstances where 
other methods (eg, decision-tree analysis) can be used 
with configurational methods, and situations when alter-
native methods might be used in series rather than in 
parallel (eg, for variable selection or for dichotomising 
continuous variables).

CONCLUSIONS
Configurational analysis and logistic regression repre-
sent fundamentally different analytical methods. Config-
urational models optimise sensitivity with relatively few 
conditions and allow for equifinality. Logistic regression 
models provide inferential relationships between binary 
outcomes and independent variables as well as clinically 
useful measures to interpret effects (ie, OR). Pairing 
these two diverse approaches offers a major new analytical 
option to health services researchers interested in lever-
aging multiple methodological perspectives to explore 
and model complex phenomena with greater nuance and 
understanding.
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