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Germinal centers (GCs) are essential sites for the production of high-affinity antibody
secreting plasma cells (PCs) and memory-B cells (MBCs), which form the framework of
vaccination. Affinity maturation and permissive selection in GCs are key for the production
of PCs and MBCs, respectively. For these purposes, GCs positively select “fit” cells in the
light zone of the GC and instructs them for one of three known B cell fates: PCs, MBCs
and persistent GC-B cells as dark zone entrants. In this review, we provide an overview of
the positive selection process and discuss its mechanisms and how B cell fates
are instructed.
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INTRODUCTION

Germinal centers (GCs) are sites where antibody affinity for the antigen (Ag) is improved and Ag-
activated B cells differentiate, hence they are important for host defense and clearance of exogenous
pathogens. This specialized microstructure transiently forms within the B cell follicles of secondary
lymphoid organs during the course of T cell-dependent immune responses. The process of
increasing antibody affinity is known as affinity maturation (1, 2) and results from somatic
hypermutation (SHM) of immunoglobulin (Ig) genes in GC-B cells and clonal selection (3). GCs
include two distinct regions, light zone (LZ) and dark zone (DZ) (4). SHM is mediated by
activation-induced cytidine deaminase (AID) (5) and occurs in the DZ where GC-B cells extensively
proliferate. In the LZ, GC-B cells are selected in an Ag and T cell-dependent manner. LZ-B cells
retrieve Ag on follicular dendritic cells (FDCs) that can uniquely retain and display Ag in the form
of immune complex (ICs) (6). B cell receptor (BCR) binding of Ag by LZ-B cells results in
internalization of BCR-Ag and subsequent presentation of Ag in the form of Ag-specific-peptide-
major histocompatibility II (pMHCII), which enables them to receive help from T follicular helper
cells (TFHs). These positively selected LZ-B cells induce cMyc, a critical regulator for GC
maintenance and proliferation, and cMyc positivity transiently marks “licensed” GC-B cells (7,
8). cMyc+ GC-B-cells in the LZ re-start the cell cycle and travel to the DZ for further cell division (7–
9). GC-B cells undergo iterative rounds of mutation and selection through a migration cycle
between LZ and DZ. Eventually, GC reactions produce high-affinity antibody secreting plasma cells
(PCs) and memory-B cells (MBCs). In this review, we summarize and discuss studies illustrating
how positive selection of GC-B cells are triggered, what molecular and cellular events that GC-B
cells undergo during the process of positive selection, and how B cell fate decisions are coordinated
during positive selection.
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MECHANISMS BY WHICH GCs
POSITIVELY SELECT LZ-B CELLS

Current Models for Affinity-Dependent
Positive Selection
In response to signals from BCR engagement and TFHs, a
fraction of LZ-B cells are positively selected and results in
evasion of apoptosis partially in a microRNA-155-dependent
manner (10, 11). cMyc is induced upon positive selection and its
expression effectively defines positively selected GC-B cells (7, 8).
In the currently favored model, positive selection occurs in an
affinity-dependent manner (12, 13). LZ-B cells capture FDC-
bound Ags through their BCRs, process and present them in the
form of pMHCII and signals downstream of BCR-Ag
engagement allow survival. Higher-affinity GC-B cells more
effectively receive helper signals from TFHs because they
acquire more Ag, present pMHCII at higher levels and thereby
induce greater TFH activation, this is in line with studies from
early B cell responses in vivo (14) and in vitro (15). For
promoting efficient positive selection, recycling GC-B cells
reset their BCRs and MHCII before reentering the LZ (16, 17).
Contact duration between cognate T cells and GC-B cells is
shorter than that between T cell and Ag-activated B cells before
GC formation (12, 18, 19). Moreover, only a limited proportion
of T cells in GCs appear to actively interact with GC-B cells that
are significantly more numerous than TFHs within the time
window of confocal microscopic analysis (12, 18). These
observations suggest that interactions between GC-B cells and
TFHs are strictly controlled and therefore GC-B cells may
compete for cognate T cell help. Together with a mathematical
simulation model (20), these findings support that T cells are a
limiting factor and positive selection can occur in a T cell-driven
selection mechanism (12, 21). This selection mechanism is
further supported by studies using a DEC-205-antibody-based
Ag delivery approach (22). DEC-205 is an endocytic receptor
that is primarily expressed in dendritic cells but also in B cells
and directs captured Ag to Ag-processing compartments (23).
Administration of Ag coupled to anti-DEC205 antibody allows
delivering the Ag to endosomal compartments independently of
BCR via a DEC205 receptor in GC-B cells (24) and results in
greatly enhanced presentation of Ag peptide regardless of the
nature of BCR (25). DEC-205-antibody-mediated Ag delivery
prolongs interactions between GC-B cells and TFHs (26) and
enables GC-B cells to gain more help from TFHs (9, 13, 24).
Consequently, transcript levels of cMyc are considerably
increased in the DEC205 agent-treated GC-B cells in a dose
dependent manner (7, 27). The series of experiments
demonstrate that providing strong T cell help to the total GC-
B cell population during GC responses greatly potentiates
positive selection process and resultant proliferation (24, 27–
29). These findings underscore essential roles of T cell help in
positive selection. However, a recent report has shown that by
interrogating NP-specific GC-B cell responses in MHCII
haploinsufficient mice in which both MHCII and pMHCII are
halved compared to WT mice, the density of pMHCII is not as
critical for selection in established GCs as in naive B cells (30).
Frontiers in Immunology | www.frontiersin.org 2
This finding suggests that other factors also play a role in an
affinity-dependent positive selection, such as BCR signaling.

Strong BCR signaling through soluble Ag binding eliminates
Ag-specific GC-B cells by inducing apoptosis predominantly in
LZ-B cells within hours of engagement (31–33), thus enhanced
BCR signaling is deleterious for GC-B cells. In agreement with
this, canonical BCR signaling pathways are attenuated in GC-B
cells compared to those in naïve B-cells (34–37) due to negative
feedback by the activation of negative regulators for BCR
signaling in a phosphate and tensin homolog (PTEN)-
dependent manner (38). Nonetheless, GC-B cells can transmit
PI3K-mediated signaling through BCR in a Syk-dependent
manner to restrict the activity of forkhead Box O1 (FoxO1)
(39), a critical transcription factor for the DZ transcriptional
program (25, 40, 41). This occurs through synaptic interactions
between GC-B cells and FDCs in which GC-B cells can respond
to membrane-bound Ags more efficiently than naïve B cells in an
affinity-dependent manner (36, 37, 42). Using an adoptive
transfer system, the propagation of donor derived GC-B cells is
investigated upon restimulation with sub-saturating T cell help
provided by DEC205 agent in the presence or absence of
simultaneous Ag injection. Restimulation with Ag in the
presence of T cell help enhances GC responses compared to T
cell help only (29), suggesting that BCR signaling could
potentiate positive selection synergistically with T cell help.
Transient BCR signals prime B cells and alter their nature for
forthcoming contact with T cells prior to GC formation (43, 44).
Similar alterations might occur in GC-B cells upon reception of
BCR signals.

Potential Alternative Mechanisms of
Permissive Positive Selection and the
Beyond.
The permissive environment of GCs confers clonal breadth in
MBCs that is effective for viral clearance (45, 46). Recent findings
underpin that GCs permit retaining cells with varied affinities for
the antigen (47–49). Permissive positive selection cannot be well
explained only by affinity-dependent models and there could be
an alternative mechanism that is not well understood. We
recently identified cMyc+ LZ-B cell subpopulations that arise at
different times following the reception of positive selection
signals. Analysis of the cMyc+ LZ-B cell subpopulations
revealed that a significantly large fraction of low-affinity cells is
initially positively selected, but are mostly outcompeted by more
proliferative higher-affinity cells before DZ migration (50). This
mechanism partially explains how low-affinity GC-B cells can be
retained in GCs because positively selected GC-B cells can avoid
apoptosis in GCs (10, 50). In our observations, rather than
selecting only higher-affinity cells from the beginning of
positive selection, GCs permit selection of low-affinity cells at
the beginning of each round of positive selection, thus selection is
relatively independent of BCR affinity. This mode of positive
selection continues for a period of time during the height of GC
reactions (50). However, the differential strength of signals
between low-affinity and higher-affinity cells eventually leads to
differential proliferation rate of positively selected cells. As a
March 2021 | Volume 12 | Article 661678
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result, higher-affinity cells proliferate better and are enriched in
cMyc+ LZ-B cells compared to cMyc- LZ-B cells (7, 50).
Following Ag-mediated activation, over time Ag may become
more limited with GC-B cells having more competition for
antigen-induced survival signals. If GC-B cells are fit enough
despite carrying low-affinity BCRs, they could compete
effectively for Ag and acquire Ag successfully.

We noted that CD40 expression is elevated in the cMyc+ LZ-B
cell subpopulation emerging soon after positive selection
compared to the cMyc- LZ compartment that contains GC-B
cells before positive selection; although this subpopulation largely
comprises low-affinity cells at a similar level to that of cMyc- LZ-B
cells (50). Increased CD40 expressionmight allow these GC-B cells
to gain more T cell help by these two mechanisms; i) inducible T
cell co-stimulator ligand (ICOSL), a ligand for ICOS that is one of
the co-stimulatory receptors expressed on TFHs, is induced on
GC-B cells through CD40 engagement with CD40L on TFHs and
potentiates GC-TFH interactions (51, 52); ii) these cells may have
an increased chance of interacting with IL-4 expressing TFHs that
express CD40L at a higher level than IL-21/IL-4 expressing TFHs
or IL-21 expressing TFHs (53). Alternatively, reduction of the
engagement of Herpesvirus entry mediator (HVEM) on GC-B
cells with a ligand, B- and T-lymphocyte attenuator (BTLA) on
TFHs leads to increased expression of CD40L in TFHs (54). Thus,
reduced expression of negative regulators such as HVEM onGC-B
cells can also lead to an increased amount of T cell help. The
underlying mechanisms for upregulation of CD40 in these GC-B
cells are unknown, but they perhaps receive additional signals
prior to, or at the initiation of, receiving cMyc-inducing signals to
upregulate the molecule. CD40 expression on B cells is shown to
be enhanced in vitro by B cell-activating factor (BAFF) (55) which
can be secreted by FDCs (56, 57). Under the condition that only a
limited amount of Ag is available, GC-B cells that successfully
acquire Ag could receive survival signals from FDCs via contact-
based interaction and/or via trophic factors independently of BCR
affinity. This could provide an advantage for GC-B cells to
undergo positive selection [functions of FDCs during GC
responses are extensively discussed elsewhere (58–60)]. In such
case, modulation of FDCs’ functions by other factors, such as Toll-
like-receptor (TLR) 4 ligands (61), may play a role in
permissive selection.

The concept that higher-affinity cells are favorably selected
from the beginning of the positive selection process is supported
by in vitro microscopic observations that the higher-affinity cells
can formmore stable contacts with the membrane, better resist the
pulling force required to capture Ag without causing cell rupture,
transmit stronger BCR signals and acquire a larger amount of Ag
to present to T cells compared to low-affinity cells (36, 37, 42, 62).
However, the proportion of higher-affinity cells in the cMyc+

subpopulation that appears soon after positive selection is similar
to that of cMyc- LZ compartment before positive selection (50).
This suggests that low-affinity cells can be selected at a comparable
level as higher-affinity cells at the beginning of positive selection.
The discrepancy could be caused by the method of Ag
presentation by FDCs, since multimerized Ag on FDCs can
impact the GC selection process (59, 63) and also by the
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availability of complement proteins (such as C3d) that are
required for bridging the Ag bound to BCR and the BCR
coreceptor complex. The BCR co receptor complex consisting of
CD19, CD21 (a.k.a. complement receptor type 2, CR2) and CD81
can augment BCR signaling and Ag processing, to lower the Ag
threshold and quicken Ag presentation (64–66). Potentially, the
differential expression of BCR coreceptor complexes and/or
negative regulators such as HVEM on low-affinity cells may
allow them to be more competitive with higher-affinity cells by
enhancing BCR signaling and T cell help (Figure 1). More
investigation is required to elucidate mechanisms allowing low-
affinity B cells to be positively selected.

Recent reports have shown that DEL-OVA (duck egg
lysozyme-ovalbumin) ex vivo pulsed DEL-specific HyHEL-10 B
cells can join existing GCs elicited by OVA (i.e., DEL has not been
deposited on FDCs) and contribute to GC responses at a
comparable level to DEL-OVA-immunized recipients (44, 67).
In these experiments, the HyHEL-10 B cells that were exposed to
DEL-OVA ex vivo for 5 min were transferred into recipient mice
that had been immunized with OVA for 3 or more days. This may
be interpreted as single Ag acquisition by B cells is sufficient for
them to participate in GC responses without any further Ag
acquisition; alternatively, the HyHEL-10 B cells pulsed for 5 min
might somehow deliver un-internalized Ag to FDCs and the
deposited Ag may have been used for robust GC responses. It
has been controversial whether retention of immune complex
(ICs) on FDCs is essential for GC formation and positive selection
(68–71), while reports have shown that ICs deposited on FDCs
during GC responses contribute to optimum affinity maturation
(72–74). Nonetheless, the results using HyHEL10 B cell adoptive
transfer system suggest two possibilities; i) GC-B cells can survive
and proliferate with very little Ag if B cells have taken up Ag
adequately during initial activation; and ii) B cells activated by a
dissimilar Ag to the original GC initiating Ag may take over the
GC if the newcomer B cells receive cognate T cell help (in this case,
transferred DEL-specific B cells can present OVA-peptide and
thus can receive T cell help from OVA-specific T cells in OVA-
elicited GCs). Inter-GC trafficking of B cells into neighboring GCs
is suggested by long-term observations of single GCs using
intravital microscopy technique (47). Since GCs are dynamic
open structures and TFHs can emigrate into neighboring GCs
(75, 76), it is still possible that a GC-B clone recognizing an Ag re-
seeds in neighboring GCs whose reactions are elicited by another
Ag (or cryptic epitopes) if cognate T cells also migrate. A recent
report has shown that GCs elicited by complex Ags somehow
permit B cells that do not detect the original Ag (48). Retention of
varied clones in GCs may be attained by a combination of inter-
GC trafficking and intra-clonal permissive selection.
MOLECULAR EVENTS DURING POSITIVE
SELECTION AND B CELL FATE
INSTRUCTION

The cMyc+ GC-B cell compartment is suggested to be
heterogeneous due to differential signal activation (25, 41) and
March 2021 | Volume 12 | Article 661678
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as a result gives rise to heterogeneous populations containing
future PBs/PCs, DZ-entrants and future MBCs (24, 50, 77).

Fate 1: Plasmablasts/Plasma Cells
(PBs/PCs)
Increased TFH help drives GC-B cells to differentiate into PBs/
PCs (24, 29, 77) with enhanced NF-kB signaling via CD40-
CD40L ligation (39, 78, 79). Consistent with these findings, PB/
PC precursors in GCs defined as cMyc+ CD69hi Bcl6lo LZ-B cells
express relatively high levels of IRF4 (50, 77) which is a critical
transcription factor for PC differentiation and induced by NF-kB
signaling (80). These distinct precursors consist of high-affinity
GC-B cells in agreement with previous findings (81, 82) and
become detectable soon after positive selection (50, 77). Stable
contact between TFHs and GC-B cells as a consequence of
greater pMHC presentation in GC-B cells induces Ca2+

-dependent expression of IL-21 and IL-4 in TFHs (26). Thus,
stronger T cell help inducing signals promote PB/PC
differentiation from GC-B cells by producing cytokines that
support PC differentiation (53). However, some GC-B cells
persistently remain as GC-B cells (i.e., become DZ-entrants)
instead of differentiating into PBs/PCs upon receiving
Frontiers in Immunology | www.frontiersin.org 4
exogenous strong T cell help by DEC205 agent (24, 28),
suggesting that there is still a missing component for the PB/PC
fate instruction other than TFH help. Recent reports have shown
that signaling induced by Ag-BCR engagement contributes to PB/
PC differentiation from GC-B cells (29, 44, 81, 83, 84). Strong
BCR signaling in conjunction with CD40 signaling can upregulate
IRF4 by degrading the E3 ubiquitin ligases Cbl that ubiquitinates
IRF4 for degradation in GC-B cells (84). PB/PC output is largely
influenced by Ag valency that reduces Ag affinity threshold in
extrafollicular PC responses (85, 86), thus multivalent Ag
presentation on FDCs may also play a role in PB/PC
differentiation from GC-B cells.

Fate 2: Memory-B Cells (MBCs)
In contrast to PBs/PCs, MBC precursors predominantly contain
lower-affinity cells and appear to require only minimal amount
of help from TFHs (87, 88). Together with the observations that
MBC precursors are relatively quiescent (87–89), it is broadly
assumed that MBCs arise from “non-positively-selected” LZ-B-
cells. However, this concept cannot explain these three points; i)
how the specificity of the BCR can be checked before positive
selection, ii) how cell survival can be assured without positive
FIGURE 1 | Proposed model of permissive positive selection in GCs. GC-B cells compete for antigen when only limited amount of antigen (Ag) is available. Fit cells
retrieve Ag deposited on follicular dendritic cells (FDCs) relatively independently of BCR affinity and receive survival signals from FDCs through contact-based
interaction and/or trophic factors. Both high and low-affinity cells process Ag and present differing levels of Ag in the form of peptide-MHCII complex (pMHC) in
proportion to its affinity. Low-affinity cells may augment the level of signaling above a threshold with potentially undefined mechanisms, such as favorably augmented
signals and/or less negative feedback. GC-B cells received sufficient signals for positive selection proliferate mainly based on their BCR affinity. Their fates are also
instructed, generally depending on their BCR affinity. cMyc+ GC-B cells divide in the LZ and cMyc expression in GC-B cells is reduced accordingly. The width of the
arrows in GC-B cells and TFH depicts the signal strength.
March 2021 | Volume 12 | Article 661678
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selection, and iii) how high-affinity clones can be selected for
MBC differentiation from a pool of GC-B cells with varied
affinity. To understand the origin of MBCs, extensive single cell
transcriptomic analysis identified a preMBC subset in mouse
spleens (90) and human tonsils (91). These preMBC subsets are
characterized by the expression of Ccr6 (90, 91) as expected
from a previous report (88). Unexpectedly the mouse preMBC
subset has relatively higherMki67 expression than MBC subsets
(90) and the human preMBC subset exhibits a similar level of
Myc expression to subsets containing positively selected cells
(91), which is counter-intuitive considering the relatively
quiescent nature of MBC precursors as previously reported
(87–89). These findings suggest that CCR6+ preMBCs could
receive sufficient signals from TFHs to induce cMyc and divide
before fully differentiating into MBCs. In agreement with these
findings, we identified MBC precursors within cMyc+ positively
selected GC-B cells that are less proliferative than other cMyc+

LZ-B cells but still dividing (50). Stronger TFH help induces
differentiation of CD80hi MBCs whose Ig genes accumulate
mutations compared to those of CD80- MBCs (92, 93), and
resultantly CD80hi MBCs comprise relatively high-affinity
clones (93). A very small fraction of high-affinity cells within
the cMyc+ MBC precursor subpopulation (defined as cMyc+

CD23hi CCR6+ LZ-B cells) (50) might differentiate into CD80hi

MBCs following reception of robust T cell help. For the MBC
fate instruction, interplay between transcription factors exerts
functions that regulate MBC differentiation from cMyc+ GC-B
cells. Myc-interacting zinc finger protein-1 (MIZ-1) is
expressed in most cMyc+ LZ-B cells and the transcriptional
activator Miz-1 switches to a transcriptional repressor upon
cMyc binding (94, 95). The cMyc/Miz-1 complex represses
Miz-1 target genes and results in restricting positively selected
GC-B cells from forming MBCs to favor GC-B cell fate as DZ-
entrants (94). A transcription factor, hematopoietically-
expressed homeobox protein (Hhex) that is expressed in MBC
precursors and promotes MBC differentiation (50, 90) can
interact with cMyc to decrease its activity, including cell
proliferation and metabolism in tumors (96). Reception of
differential signals for positive selection induces these
transcription factors at varied levels in positively selected
GC-B cells (97), which most likely play a part in MBC
differentiation. However, the overall nature of the signaling
ne twork for t rans i t ion f rom GC-B ce l l to MBCs
remains unknown.
Frontiers in Immunology | www.frontiersin.org 5
Fate 3: DZ Entrants
The remaining positively selected LZ-B cells other than cells
instructed to PB/PC and MBC fates transit to the DZ for further
proliferation as DZ-entrants. BCR signals downregulate FoxO1
and cyclin D3, which are essential for maintenance and
proliferation of DZ-B cells, respectively (25, 39–41, 98, 99).
Strongly induced cMyc expression in positively selected LZ-B
cells in turn activates activating enhancer binding protein 4 (AP-
4) that contribute to the induction of cyclin D3 (100). Hence,
positively selected cells are likely to turn on the DZ-proliferation
program when BCR-induced signals are weakened in the LZ,
which is concordant with previous observations about the co-
expression of FoxO1 and/or cyclin D3 together with cMyc in
positively selected LZ-B cells (41, 98, 100).
CONCLUDING REMARKS

Clonal breadth achieved by permissive selection is particularly
useful for protection from viruses that constantly mutate.
Understanding the underlying mechanisms of permissive
selection followed by B cell differentiation will guide vaccine
design and improve their efficacy in the future.
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