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Abstract
Infertility is a disease that affects one in seven couples. As male infertility affects approximately 30% of these couples with an unknown cause

in half the cases, it represents a major public health concern. The classic treatment of male infertility involves intrauterine insemination, with

modest outcome, and in vitro fertilization with intracytoplasmic sperm injection, which is known to be invasive and expensive, without treating

the specific cause of infertility. Male fertility is mainly evaluated through a semen assessment where abnormal parameters such as

concentration and motility can be associated with a decreased chance of conception. Infectious processes represent plausible candidates

for male infertility. Chlamydia trachomatis is well known to cause female infertility through tubal damage but its role in male infertility

remains controversial. The link between ureaplasmas/mycoplasmas and male infertility is also debatable. The potential negative impact of

these bacteria on male fertility might not only involve semen parameters but also, as with C. trachomatis, include important physiological

mechanisms such as fertilization processes that are not routinely assessed during infertility investigation. Basic research is important to

help determine the exact effect of these bacteria on male fertility to develop targeted treatment and go beyond in vitro fertilization with

intracytoplasmic sperm injection.
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Introduction
The World Health Organization (WHO) describes clinical
infertility as a disease of the reproductive system defined by ‘the

failure to achieve a clinical pregnancy after 12 months or more of
regular unprotected sexual intercourse’ [1]. This disease, which

affects one in seven couples, may be due to female factors, male
factors, or both. A male infertility factor with abnormal semen

parameters is found in approximately 50% of couples seeking
infertility treatment [2]. The known causes of male infertility
This is an open access arti
include endocrine diseases, malignancies and genetic anomalies,
but the cause remains unknown in 50% of cases. First-line eval-

uation of male fertility comprises a semen assessment. The
criteria include volume, total sperm number, sperm concentra-

tion, vitality, progressive motility, total motility and morphology.
In couples with infertility, the interpretation of a so-called

abnormal semen assessment result (a parameter below the 5th
centile compared withWHO reference values) remains difficult.

For example, the clinical significance of a sperm concentration
slightly under 15 million/mL versus markedly decreased (for
example below 1 million/mL) implicates a very different prog-

nosis for the couple regarding chances of conception.
Mild and severe male infertility are frequently used in the

literature to describe an abnormal semen assessment but are
purely descriptive and without clear definition and relationship

to the aetiology, which is only found in approximately 50% of
cases. Even when a diagnosis is confirmed, the treatment

administered rarely targets the exact cause. Therefore, the vast
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majority of men with male infertility are offered generic

treatment based on the severity of the anomaly observed on
the semen assessment, for example intrauterine insemination in

mild situations and in vitro fertilization (IVF) with intra-
cytoplasmic sperm injection for severe semen anomalies or

when intrauterine insemination has failed. In vitro fertilization
with intracytoplasmic sperm injection has revolutionized man-
agement of severe male infertility, but it does not treat the

exact cause of infertility. It not only mainly involves the female
partner, but is also invasive and expensive with increased risks

of multiple births and their related complications. It is time to
better understand the causes of male infertility so as to tailor

treatments that target the aetiology and so increase the chance
of natural pregnancy and decrease the need for invasive

procedures.
The infectious hypothesis
Adequate sperm production and function require a healthy

urogenital tract to allow normal fertility. Inflammatory pro-
cesses and bacterial infections have been associated with male
infertility, but the exact mechanisms remain poorly under-

stood [3]. The effect of an acute infection might not be as
deleterious as a chronic infection where a silent/asymptomatic

inflammatory process might have long-lasting negative impact
on sperm function, on spermatogenesis, and on permeability

of the vas deferens and/or ejaculatory duct. Pathogens that
chronically colonize the male urogenital tract could have a

negative impact on fertility by affecting the parameters of the
semen assessment (count or motility) or even by inducing

apoptosis [4]. In that regard, microorganisms such as Chla-
mydia trachomatis, ureaplasmas and mycoplasmas represent
interesting candidates to understand a link between infection

and male infertility.
Chlamydia trachomatis
Chlamydia trachomatis is the most common sexually transmitted

disease, affecting millions of men and women annually, but the
true prevalence of Chlamydia is difficult to determine because

the infection is asymptomatic in up to 85%–90% of infected
individuals [5].

Acute chlamydial infection in men causes urethritis, epidid-
ymitis (-orchitis) and prostatitis [6]. Inflammation of the

epididymis can induce infertility through sperm tract obstruc-
tion, especially when both testes are infected [7]. The evidence

of a potential deleterious effect of Chlamydia on male fertility
comes from animal models of infection and in vitro experiments.
© 2018 The Author(s). Published by Elsevier Ltd, NMNI, 26, 37–41
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Destruction of male germ cells and Sertoli cells was observed in

a murine model of Chlamydia infection [8]. Electron microscopy
studies have demonstrated that Chlamydia can interact with

sperm cells and can induce apoptosis through lipopolysaccha-
ride [9,10]. The mechanism involves interaction of lipopoly-

saccharide with sperm cell CD14 receptor and consequently
release of reactive oxygen species that can induce apoptosis
through caspases [11]. Motility, an important parameter of male

fertility, has also been shown to be altered by Chlamydia [4].
Interestingly, another Chlamydia-related bacterium, Waddlia

chondrophila, which was strongly associated with miscarriage in
humans, was able to adhere and penetrate inside human sper-

matozoa and decrease viability, as well as mitochondrial
membrane potential [12].

An alternative impact of Chlamydia on fertility might involve a
state of subclinical chronic infection. Upon exposition to
stressors, such as increased interferon-γ levels or antibiotics,

bacteria might form aberrant bodies that represent a persistent,
non-replicative and non-infectious form of Chlamydia [13].

When the stressors are removed, Chlamydia can re-enter a
normal life cycle and recover its infectious potential.

Retrospective epidemiological data have failed to demon-
strate that past Chlamydia infection is associated with altered

sperm characteristics [14]. In a study where 284 male partners
of infertile couples were screened for C. trachomatis infection,

there was no statistical difference between infected and non-
infected male partners in terms of semen parameters and
function [15]. In another study including 104 asymptomatic

infertile men attending a Tunisian infertility clinic, detection of
C. trachomatis in semen was not associated with abnormal

classic semen parameters [16]. These results are in contrast
with a study involving 627 sperm donors, in which the Chla-

mydia-positive group had significantly reduced morphology
(14.4%), volume (6.4%), concentration (8.3%), motility (7.8%)

and velocity (9.3%) compared with the control group [17].
Moreover, an association between C. trachomatis IgG antibodies
and subfertility (defined as time to conceive �12 months) was

observed in Finland [18]. Similarly, in couples referred to a
Swedish infertility clinic, decreased pregnancy rates were

correlated with the presence of C. trachomatis IgG antibodies in
the male partner independently of tubal infertility factor [19].

However, presence of C. trachomatis IgG in the male partner
was not associated with an abnormal parameter of the semen

assessment. These data suggest that the potential detrimental
effect of C. trachomatis on male fertility might not involve the

semen parameters assessed routinely, but may potentially affect
attachment of the sperm to the oocyte or later steps of cell
division or implantation. Therefore other mechanisms involved

in sperm function might give clues on how C. trachomatis might
affect male fertility. Acrosome reaction, which represents an
nses/by-nc-nd/4.0/).
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essential step of fertilization, was compared between three

groups (Chlamydia-infected infertile men, Chlamydia non-
infected infertile men and healthy controls) [20]. A significant

lower acrosome reaction was observed in the infected infertile
group compared with the non-infected infertile group. There

was no difference in the semen parameters between these two
groups (count, motility and morphology) reinforcing the
concept that the in vivo effect of C. trachomatis on male fertility

might not affect the classic semen parameters. Alternatively,
chronic C. trachomatis inflammation might negatively impact the

vas deferens and ejaculatory duct in a similar pathogenic
mechanism at play in tubal infertility.
Mycoplasmas and ureaplasmas
The Mycoplasmataceae represent a family of bacteria with two
genera, Mycoplasma and Ureaplasma, which are among the

smallest self-replicating known organisms. They are considered
as facultative intracellular pathogens, having the ability to

replicate outside and inside host cells.
Genital mycoplasmas (Mycoplasma genitalium and Myco-

plasma hominis) are known to colonize the female and male

genital reproductive systems, contaminating the semen during
ejaculation and also causing pathologies [21,22]. In females,

M. genitalium has been shown to be associated with endome-
tritis, cervicitis, pelvic inflammatory disease and infertility as

well as perinatal morbidity and mortality [23,24]. Mycoplasma
hominis has been linked to chorioamnionitis [25]. In men,

M. genitalium is recognized as a cause of non-gonococcal ure-
thritis, as it was first isolated from men with urethral discharge

[26]. Genital ureaplasmas (Ureaplasma urealyticum and Ure-
aplasma parvum), like mycoplasmas, are commensals of both
the female and male reproductive tract, also contaminating

sperm during ejaculation. They have been associated with
chorioamnionitis, pelvic inflammatory disease, urethritis, pros-

tatitis, epididymitis, and infertility [27–29]. There is a scarce
knowledge on the exact impact of ureaplasmas on the male

genital system, as the majority of the studies do not differentiate
between U. urealyticum and U. parvum. Of note, treatment of

genital mycoplasmas in colonized pregnant women is associated
with a lower rate of premature labour and neonatal compli-
cations [25].

As ureaplasmas and mycoplasmas can colonize the male
reproductive tract, their involvement in male infertility can be

suspected, but remains controversial. In infertile males, Gdoura
et al. failed to demonstrate a relationship between altered

semen parameters and the presence in semen of these bacteria
[16]. In a meta-analysis comparing positive sample (semen,

urethra, first-void urine) between infertile men and controls, an
This is an open access artic
association with the risk of infertility could be demonstrated

with presence of M. hominis and U. urealyticum whereas no
association was present with M. genitalium and U. parvum [30].

Nevertheless, the observation of M. genitalium attachment to
human spermatozoa and the demonstration that the bacteria

can be carried by motile sperm suggest a potential role in
infertility [31]. The role played by U. urealyticum and M. hominis
infections in semen quality was further investigated [32]. A

significant difference in prevalence was observed for
U. urealyticum (10.22% versus 3.65%) and M. hominis (3.16%

versus 0.89%) between infertile individuals and controls.
Moreover, a significant difference in progressive motility, total

motility and normal forms was demonstrated when comparing
the infertile individuals with or without U. urealyticum infection.

These results, which suggest a negative impact ofM. hominis and
U. urealyticum on male fertility, are somewhat reminiscent of
C. trachomatis where a deleterious effect on fertility might not

(only) be associated with abnormal semen parameters but also
with negative impact on other reproductive mechanisms.

Presence of U. urealyticum was associated with a significantly
higher production of semen reactive oxygen species and

malondialdehyde [33]. Oxidative stress through production of
reactive oxygen species and malondialdehyde is known to cause

DNA damage [34]. The pathophysiological mechanisms
involved in the deleterious effect of U. urealyticum on male

fertility were further investigated [35]. The expression of P34H
(a protein necessary for sperm–zona pellucida interaction
incorporated on the spermatozoa as it crosses the epididymis)

and the activity of hyaluronase (an important enzyme for the
acrosome reaction) were significantly lower in the Ureaplasma-

positive group, in addition to an increased higher DNA frag-
mentation. These data might help us to understand how bac-

terial infection might impair reproduction by interfering with
subtle mechanisms that are not part of routine male infertility

investigation.
There are very limited and contradictory data on the effect

of mycoplasmas and ureaplasmas on assisted reproductive

technology success rate. Two early studies have suggested that
Ureaplasma might have a detrimental effect on pregnancy rates

during IVF as a reduction in pregnancy rate was demonstrated
in the infected group [36] and treatment of Ureaplasma infec-

tion improved pregnancy rates [37]. The effect of U. urealyticum
on IVF outcome was further investigated in 191 asymptomatic

male partners of women undergoing an IVF cycle [38]. There
was no difference, however, in fertilization rates and pregnancy

rates between the infected and non-infected groups. Never-
theless, a higher risk of miscarriage was present in the infected
group, potentially related to maternal infection. More data are

certainly needed to better characterize the effect of ure-
aplasmas on IVF outcome.
© 2018 The Author(s). Published by Elsevier Ltd, NMNI, 26, 37–41
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Conclusion
The negative effect of bacterial infections caused by Chlamydia,

ureaplasmas and mycoplasmas on male fertility remains
controversial. Their potential deleterious effect might not be
apparent on classic male infertility investigation, such as semen

assessment, as they might affect fertility through subtle effects
on essential reproductive mechanisms. It is time to go back to

basic research, to go beyond IVF with intracytosplasmic sperm
injection and to offer targeted treatments to infertile couples

with male infertility. Moreover, it is also time to investigate
other intracellular bacteria including Coxiella burnetii, Listeria

monocytogenes and Waddlia chondrophila, which are intracellular
bacteria already known to negatively impact pregnancy [13,39].

Bacterial infections or colonization might represent good can-
didates to explain some causes of male infertility, as other ae-
tiologies still need to be unravelled.
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