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Tuberculosis (TB) is a life-threatening infectious disease caused by Mycobacterium 
tuberculosis (M. tuberculosis). Timely diagnosis and effective treatment are essential in 
the control of TB. Conventional smear microscopy still has low sensitivity and is unable 
to reveal the drug resistance of this bacterium. The traditional culture-based diagnosis is 
time-consuming, since usually the results are available after 3–4 weeks. Molecular biology 
methods fail to differentiate live from dead M. tuberculosis, while diagnostic immunology 
methods fail to distinguish active from latent TB. In view of these limitations of the existing 
detection techniques, in addition to the continuous emergence of multidrug-resistant and 
extensively drug-resistant TB, in recent years there has been an increase in the demand 
for simple, rapid, accurate and economical point-of-care approaches. This review 
describes the development, evaluation, and implementation of conventional diagnostic 
methods for TB and the rapid new approaches for the detection of M. tuberculosis.

Keywords: tuberculosis, Mycobacterium tuberculosis, early detection, diagnostic approaches, improved 
conventional methods

INTRODUCTION

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis. Delayed 
TB diagnosis causes the infected individuals to act as a reservoir for M. tuberculosis with the 
potential to infect other individuals. Early and rapid diagnosis of TB is essential to improve 
the efficacy of the treatment and effectively block the interpersonal transmission. However, 
many suspected TB patients cannot be  diagnosed immediately, especially when patients face 
a variety of problems, such as the economic burden of transportation, which further exacerbates 
the lack of diagnosis (Lönnroth et  al., 2010). The gap between traditional diagnostic methods 
for TB and the actual clinical needs requires the development of new diagnostic methods that 
should be accurate, rapid and cost-effective. This review not only incorporates the improvement 
and optimization of conventional methods, but also describes the creation and development 
of new diagnostic approaches (Figure  1).
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IMPROVEMENT AND OPTIMIZATION OF 
CURRENT DIAGNOSTIC TECHNIQUES

Etiological Diagnostic Techniques
Sputum Smear Microscopy
SSM is the preferred method in the diagnosis of pulmonary 
TB. SSM is actually the only approach for TB diagnosis in 
some remote areas of developing countries (Ben-Selma et  al., 
2009). The commonly used staining methods are Ziehl-Neelsen 
(ZN) staining and fluorescent staining (Auramine-O / Auramine-
rhodamine). SSM is easy to perform and cost-effective, but it 
lacks sensitivity (>104 bacilli•mL-1 of sputum to get positive) 
and has a high false negative rate, which is prone to cause 
misdiagnosis. In recent years, the operator-independent SSM 
based on the ZEISS Axio Scan has been developed and evaluated 
to automatically detect and count acid-fast bacilli with a sensitivity 
of 97.06% and a specificity of 86.44% (Zingue et  al., 2018). 
This method improves the detection efficiency and saves valuable 
time for the laboratory staff. The specific fluorescent antibody 
labeling with laser confocal microscopy has been developed to 
improve the efficiency of M. tuberculosis detection in lung tissue 
samples, especially when these bacteria have weak ZN staining 
(Erokhina et al., 2019). The Pat-Scan program constructed using 
digital pathology has been developed to detect and quantify 
the bacteria in the paraffin-embedded ZN-stained tissue, thus 
being helpful in reducing the diagnostic time (Sua et  al., 2021). 

It is worth noting that SSM can neither distinguish dead and 
live bacteria, nor distinguish M. tuberculosis from nontuberculosis 
mycobacteria. However, ZN staining can provide information 
on the acid-fastness of bacilli existing in the patients samples. 
This information is sometimes critical in the samples of the 
patients who had already been treated with anti-TB drugs. 
Furthermore, this information can be obtained from only Ziehl-
Neelsen staining, not from fluorescent SSM methods.

Mycobacterial Culture
The clinical samples can be  used for mycobacterial culture 
(102 bacilli•mL-1 of sputum); cultivation is still the gold standard 
for TB diagnosis. M. tuberculosis is usually cultured on a 
solid medium, where it can be  further identified and tested 
for drug sensitivity, providing to clinicians an effective 
antibacterial treatment guidance (Kenaope et  al., 2020). The 
liquid culture systems such as BACTEC MGIT 960, VersaTREK, 
and MB/BacT Alert 3D allow the detection of M. tuberculosis 
in a few days. The BACTEC MGIT 960 automated culture 
system monitors the oxygen quenching fluorescence, and the 
signal is detected once the mycobacteria grow in the tube. 
Hasan et  al. found that MGIT 960 is effective in the quick 
detection of mycobacteria and early TB diagnosis than L-J 
solid medium (Hasan et  al., 2013). The VersaTREK system 
is sensitive to pressure variation; thus, it detects the growth 
of the inoculated specimen by measuring the pressure change 

FIGURE 1 | Various diagnostic tools for TB point-of-care testing.
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above the broth medium (Espasa et  al., 2012). The MB / 
BacT Alert 3D system uses a colorimetric carbon dioxide 
sensor to detect the growth of M. tuberculosis (Piersimoni 
et al., 2001). Considering the slow growth of the M. tuberculosis 
complex (MTBC), most cultures positive for MTCB occur at 
least in 1 week, while a culture negative for MTCB occurs in 
8 weeks (Lee et  al., 2003).

Molecular Biology Diagnostic Techniques
Xpert MTB/RIF
GeneXpert MTB/RIF is the most widely used detection method 
in molecular diagnostics. It is a semi-nested real-time fluorescent 
PCR for the detection of M. tuberculosis and rifampin resistance 
simultaneously. The Xpert MTB/RIF Ultra developed based on 
Xpert MTB/RIF increases two different multi-copy amplification 
targets and a larger DNA reaction chamber (World Health 
Organization, 2017). The limit for Xpert Ultra is increased to 
15.6 CFU/ml compared to the detection limit of 112.6 CFU/
ml of Xpert MTB/RIF (Chakravorty et al., 2017). This technology 
directly detects MTBC DNA in sputum or concentrated sputum 
deposits as well as rifampin resistance, producing results within 
2 hours (Bodmer and Ströhle, 2012). In December 2010, the 
World Health Organization recommended Xpert MTB/RIF in 
the diagnosis of TB and drug resistance, especially in HIV 
patients and suspected patients with multidrug-resistant TB 
(WHO Guidelines Approved by the Guidelines Review 
Committee, 2011). In consideration of high demands for 
professional testing personnel and supporting infrastructure, 
the primary medical institutions have difficulties to meet the 
above requirements for Xpert MTB/RIF and ensure the quality 
of test results (Gidado et  al., 2019).

Loop-Mediated Isothermal Amplification
Loop-mediated isothermal amplification is a type of Nucleic 
Acid Amplification Test that employs DNA polymerase and a 
set of specially designed primers to detect the presence of 
pathogenic DNA from a patient sample. The SS-LAMP is 
specially designed with a set of six specific primers to identify 
eight different regions on the MTBC-specific repeat insertion 
sequence 6,110 (IS6110), which is qualified to directly detect 
the DNA of MTBC from liquefied sputum samples (Bentaleb 
et  al., 2016). A validation study of the method was performed 
using 157 liquefied sputum specimens from Moroccan suspected 
TB patients. SS-LAMP analysis is faster, with a specificity of 
99.14% and a sensitivity of 82.93% compared with the 
conventional L-J solid culture method. LAMP method is suitable 
for areas where medical resources are relatively scarce.

Digital PCR
Digital PCR (dPCR) is a new type of nucleic acid quantification 
technology that requires very small amounts of target molecules, 
and it performs the absolute quantification without the need 
for a standard curve (Kuypers and Jerome, 2017). Therefore, 
dPCR is precise and sensitive, and most importantly, it detects 
single copies of DNA (Nyaruaba et al., 2019). The dPCR samples 
can be sputum, blood, formalin fixed paraffin embedded tissue, 

and exhaled breath. The drug sensitivity testing can also 
be  performed by this method (Surat et  al., 2014; Ushio et  al., 
2016; Patterson et  al., 2017; Yang et  al., 2017a; Luo et  al., 
2019; Cao et  al., 2020; Cho et  al., 2020). IS6110 is a common 
target for dPCR amplification, but when combined with IS1081 
and IS6110, the dPCR sensitivity is higher than IS6110 qPCR, 
thus improving the diagnosis of smear-negative TB (Lyu et  al., 
2020). This method has been demonstrated as useful for studying 
in the case of lung, extrapulmonary, latent TB infection, and 
active TB, though more prone to error in the hands of 
inexperienced users (Nyaruaba et  al., 2019).

Immunological Diagnostic Techniques
Tuberculin Skin Test and Interferon-γ Release 
Assay
The tuberculin skin test and the subsequent widely used tuberculin 
protein derivative test play an important role in the auxiliary 
diagnosis of TB, especially in pediatrics TB. However, these 
approaches are neither able to effectively distinguish the positive 
results due to BCG vaccination or M. tuberculosis infection, 
nor provide reliable results for potential immunocompromised 
TB patients. The most widely studied antigens in M. tuberculosis 
include CFP-10, ESAT-6, Ag85A, Ag85B, CFP-7, and PPE18 
(Fan et  al., 2017; Ren et  al., 2018). The interferon-γ release 
assay helps in the diagnosis of TB by detecting the secretion 
of IFN-γ by sampled lymphocytes after stimulation with ESAT-6 
and CFP-10 antigens, which are quite specific for M. tuberculosis. 
Although the analytical performance of the two commercial 
kits is different, they have quite similar sensitivity in diagnosing 
latent and active TB infection. The immunological methods 
have certain limitations when dealing with HIV patients, 
immunocompromised adults, as well as children (Ayubi et  al., 
2016; Benachinmardi et  al., 2019), and it requires professional 
knowledge and certain equipment.

Immuno-PCR
The Immuno-PCR (I-PCR) assay detects potential mycobacterial 
antigens and circulating antibodies in the body fluids of TB 
patients, thus, it can be  used as a new diagnostic approach 
for TB. I-PCR based on magnetic beads (MBs)/ gold nanoparticles 
(GNPs) in liquid form produces a reduced background signal, 
and the automated one-step I-PCR also shortens the detection 
time (Mehta et  al., 2017). Singh et  al. designed an I-PCR 
(MB-GNP-I-PCR) detection kit based on MBs coupled with 
GNP to detect the early secreted antigen ESAT-6 (Singh et  al., 
2018). Dahiya et  al. designed a GNP-RT-I-PCR analysis based 
on GNPs to detect the CFP-10 protein of M. tuberculosis in 
clinical samples of TB patients (Dahiya et  al., 2020a). The 
sensitivity was 83.7 and 76.2%, and the specificity was 93.5 
and 93.8% in 49 cases of pulmonary TB and 42 cases of 
extrapulmonary TB, respectively (n = 63). The MB coupled 
AuNP-based I-PCR (MB-AuNP-I-PCR) method has been 
designed to detect M. tuberculosis MPT64 and CFP-10 proteins 
in the body fluids of TB patients, and the results showed that 
the sensitivity of MB-AuNP-I-PCR in smear-negative pulmonary 
TB and extrapulmonary TB patients was significantly higher 
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than that of Magneto-ELISA and GeneXpert analysis (Dahiya 
et  al., 2020b).

The PCR-ELISA developed by Zhou et al. detects mutations 
in the rpoB, katG, and inhA genes caused by rifampicin and 
isoniazid resistance and predicts the drug susceptibility of 
clinical isolates of M. tuberculosis (Zhou et  al., 2020). 
Ultrasensitive ELISA combines ELISA with a thionicotinamide-
adenine dinucleotide cycling method, which rapidly achieves 
high sensitivity for diagnosing TB without M. tuberculosis 
culture (Watabe et  al., 2014). MPT64 protein is specifically 
secreted only from live M. tuberculosis when the bacteria are 
heated (46°C); thus, ultrasensitive ELISA only detects the 
MPT64 protein secreted by live M. tuberculosis (Wang et  al., 
2020; Cao et  al., 2021), and the sensitivity is almost the same 
as that of smear microscopy and Xpert MTB/RIF.

Lateral Flow Urine Lipoarabinomannan Assay
Lipoarabinomannan is a key lipopolysaccharide and pathogenic 
factor present in the cell wall of mycobacteria, with a 
representative structural epitope of M. tuberculosis (Sarkar et al., 
2014). LF-LAM has high sensitivity in the diagnosis of TB in 
patients co-infected with HIV, especially those with low CD4 
counts. WHO recommends the use of LF-LAM to diagnose 
and screen active TB in HIV-infected patients (World Health 
Organization, 2015). However, the sensitivity and specificity 
of LAM-based tests still need further population-scale studies 
to confirm the diagnostic potential (Sigal et  al., 2018).

NEW PROMISING DIAGNOSTIC 
TECHNIQUES

Chemical Probe Methods
The chemical probes using radiology or optical imaging possess 
the ability of real-time quantification of bacteria and other infectious 
agents, providing an alternative method to culture (Heuts et  al., 
2009; Andreu et  al., 2012). Multiple options are available for 
chemical probes, including fluorescence, chemiluminescence, light 
scattering, and radioactivity. Fluorescence is the most popular 
approach, since it is easily captured by fluorescence scanners/
plate readers, time-lapse fluorescence microscopes, ultra-high-
resolution microscopes, and flow cytometers (Hira et  al., 2020).

Cell Envelope-Dependent Probes
Mycobacteria possess a distinct extracellular structure. The 
arabinogalactan, long-chain mycolic acid, and trehalose-enriched 
glycolipid contribute to form the unique membrane layer. The 
trehalose mycosyl esterase located on the cell membrane possesses 
conservative substrate specificity, which allows the exogenous 
addition of synthetic probes (FITC-trehalose) for a specific 
incorporation into bacteria. This specific incorporation is the 
key in the detection of bacterial growth through fluorescent 
labeling. The FITC-trehalose sensitively detects M. tuberculosis 
in a macrophage infection model (Backus et  al., 2011). The 
4-N,N-dimethylamino-1,8-naphthalimide conjugated trehalose 
probe (DMN-Tre) sensitively detects M. tuberculosis in sputum 

samples of TB patients; the fluorescence intensity is significantly 
enhanced (fluorescence intensity increase >700 fold) when the 
transition from aqueous to hydrophobic environment occurs. 
DMN-Tre labeling enabled the rapid, no-wash visualization of 
mycobacterial and corynebacterial species (<1 h) (Kamariza 
et  al., 2018). DMN-Tre specifically detects metabolically active 
mycobacteria and corynebacteria, which is useful for investigating 
the drug response after treatment.

DLF-1 is a high affinity stoichiometric probe for the D-Ala-
D-Ala motif of bacterial peptidoglycan. The fluorescent probe 
directly labels the cell wall components of M. tuberculosis, 
representing an alternative approach for a rapid quantitative 
analysis of active and dormant M. tuberculosis in  vitro and in 
vivo (Yang et  al., 2016). The D-Ala-D-Ala motif is also present 
in other bacterial strains besides M. tuberculosis; thus, DLF-1 
cannot be  specifically used to label M. tuberculosis.

BlaC-Specific Fluorogenic Probes
BlaC is an Ambler Class A β-lactamase, highly conserved 
among clinical isolates of M. tuberculosis, which effectively 
hydrolyzes β-lactam antibiotics (Kwon et al., 1995). The crystal 
structure of BlaC indicates the presence of an unusual glycines 
within the BlaC active site, which makes M. tuberculosis 
β-lactamase unique (Wang et  al., 2006), thus becoming a 
biomarker for M. tuberculosis detection.

Xie et  al. developed a fluorescent probe for M. tuberculosis 
using the flexible substrate-specific loop of BlaC enzyme and 
introducing a methoxyl substituent at the position 7 of the 
lactam ring, which made it 1,000 times more selective for 
BlaC than TEM-1 β-lactamase (Xie et al., 2012). The fluorescence 
intensity is enhanced 100–200 fold when BlaC is activated, 
which is useful for reducing false positives. The green fluorescent 
probe CDG-OME was developed for the sensitivity and specificity 
of detecting an extremely small number of live pathogens in 
the sputum of patients within 10 min, even in unprocessed 
sputum, making it a rapid, low-cost diagnostic tool for TB. On 
the basis of this work, Cheng et  al. designed a CDG-3 probe 
with the substitution of the cyclopropane ring at the position 
2  in addition to the substitution of the methoxide ring at the 
position 7, and its selectivity to BlaC is 120,000 times greater 
than TEM-1 β-lactamase (Cheng et al., 2014). CDG-3 detected 
M. tuberculosis within 1 h in a trial with 50 clinical samples, 
with a sensitivity and specificity of 90 and 73%, respectively. 
It is worth noting that signal diffusion problems compromised 
single M. tuberculosis labeling if the fluorescent probes only 
recognized BlaC; the ability of BlaC labeling to detect cell 
viability or drug sensitivity has not yet been reported. Cheng 
et al. further developed a dual-target fluorescent probe CDG-DNB 
targeting BlaC and DprE1; BlaC hydrolyzes the lactam ring 
to activate the fluorophore, while DprE1 covalently bind to 
an anchor element for fluorescence fixation (Cheng et al., 2018). 
The combination of BlaC and DprE1 facilitates M. tuberculosis 
fluorescent labeling. The dual targeting probe CDG-DNB 
specifically and accurately labels the single live M. tuberculosis 
in less than 1 h, and the specificity of CDG-DNB probe has 
been demonstrated, since it only selectively labels M. tuberculosis 
among other bacterial species (including 43 NTM).
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Sule et al. synthesized CDG-3, which is a fluorescent reporter 
enzyme substrate specific for BlaC (REF) and developed a TB 
diagnostic method used in sputum specimens (Sule et  al., 
2016). This method detects M. tuberculosis also in clinical 
samples that are contaminated by other bacteria. The CDG-3 
probe has high selectivity to BlaC, and is used to measure 
the levels of enzymes and M. tuberculosis in sputum. The 
sensitivity and specificity for CDG-3 according to the ROC 
curve were 88.1 and 86.1% in 160 clinical specimens from 
potential TB patients, with a negative predictive value of 93%; 
thus, it could be  used to predict potential TB patients (Sule 
et  al., 2019). BlaC is secreted by the Tat secretion system in 
live M. tuberculosis (McDonough et  al., 2005); thus, the BlaC-
specific reporter enzyme fluorescence test is suitable for the 
evaluation of the treatment results and phenotypic drug 
susceptibility. Yang et  al. synthesized a novel REF substrate 
CNIR800 with the near-infrared (NIR) fluorescent dye IRDye 
800CW (Yang et  al., 2017b). The quenching agent of IRDye 
800CW is bond to a lactam ring, which is hydrolyzed by 
BlaC. The emission wavelength of CNIR800 is 795 nm, which 
significantly improves the signal to noise ratio for M. tuberculosis 
detection. The detection threshold of CNIR800 is ~100 CFU 
in vitro and < 1,000 CFU in the lungs of mice. The fluorescence 
signal of CNIR800 produced by cleavage reaches its maximum 
level 4–6 h after its administration in live animals, allowing 
the accurate assessment of the efficacy of antituberculosis drugs.

Probes Dependent on Sulfatase, Esterase, 
Protease, and Nitroreductase
Beatty et al. developed a sulfate activation probe (7-hydroxy-9H 
-(1, 3-dichloro-9, 9-dimethylacridin-2-ketone)-sulfate targeting 
mycobacterial sulfotransferases (Beatty et al., 2013) and conserved 
sulfatases (Mougous et  al., 2002). Mycobacteria have unique 
sulfatase fingerprints, which can be  used to determine 
mycobacterial species and lineage, and this probe has the potential 
to detect TB. Recently, the highly conserved esterase activity 
of the MTBC has been discovered (Tallman and Beatty, 2015). 
Tallman et  al. synthesized new C4- and C8-masked probes 
using four-carbon (C4) and eight-carbon (C8) acylloxymethyl 
ether derivatives of long-chain fluorescent substrates to analyze 
the lysates of macrophages infected with M. tuberculosis, and 
identified the patterns of M. tuberculosis esterase and lipase 
bands (Tallman et  al., 2016).

Babin et al. developed a rapid and economical chemiluminescent 
protease Hip1 probe (FLASH) (Babin et  al., 2021). The FLASH 
probe is cleaved by M. tuberculosis protease Hip1; then, the 
aniline linker undergoes spontaneous elimination, releasing the 
activated phenoxy-dioxetane luminophore. FLASH allows the 
quantification of active Hip1, thus detecting and quantifying 
M. tuberculosis in 1 h, useful in the analysis of clinical sputum 
samples. FLASH also distinguish live from dead cells, allowing 
the monitoring the drug susceptibility of clinical M. tuberculosis 
isolates. Mu et  al. developed a nitrooxidoreductase Rv2466c-
dependent fluorescent probe (Mu et al., 2019). The small molecule 
mycothiol (MSH) of M. tuberculosis binds to Rv2466c; its 
sulfhydryl group forms a disulfide bond with the Cys19 to 
activate Rv2466c, allowing the entrance of the coumarin-based 

nitrofuranyl calanolides (NFCs) into Rv2466c and interact with 
W21, N51, and Y61 of Rv2466c to form the Rv2466c-
mycothiol-NFC ternary complex. Rv2466c reduces the nitro 
group of NFCs to an amino group, generating high level of 
fluorescence, thus potentially useful for a rapid diagnosis and 
drug sensitivity test of clinical sputum samples.

Clustered Regularly Interspaced Short 
Palindromic Repeats
CRISPR-Cas acts in a sequence-specific manner by recognizing 
and cleaving DNA or RNA, allowing an improved identification 
and validation of the target. The sensitivity and specificity of 
CRISPR-Cas are comparable to conventional PCR, but it does 
not require complicated equipment as PCR and is very cost-
effective. The CRISPR-MTB detection system uses Cas12a 
endonuclease that recognizes double-stranded DNA and cuts 
it into single-stranded DNA and combines isothermal 
amplification technology to achieve nearly single copy level 
sensitivity, with the additional benefit of only requiring 500 μl 
of sample (Ai et al., 2019). However, these amplifications based 
on molecular biology diagnostic methods have high false positive 
rates and are unable to distinguish dead from live bacteria.

Mass Spectrometry
Matrix-assisted laser desorption ionization-time of flight mass 
spectrometry (MALDI-TOF) is used to identify tuberculous 
complex and most atypical mycobacteria from cultures (Lotz 
et  al., 2010; El Khéchine et  al., 2011). The identification of 
M. tuberculosis from a L-J solid culture is superior to that 
from liquid culture, probably due to the interference exerted 
by certain components of the liquid medium. The combination 
of exhaled breath collected by a bioaerosol sampling system 
and high-resolution mass spectrometry is used to identify 
M. tuberculosis (Chen et al., 2020). Currently, the FDA-approved 
two MALDI-TOF platforms (namely MALDI Biotyper and 
Vitek MS, BioMérieux) are used to identify mycobacteria and 
a few other bacteria. The mass spectrometry approach can 
be  performed in a routine clinical laboratory by the operator 
within a few minutes (Seng et  al., 2010), although it requires 
expensive laboratory infrastructure and specialized staff, as well 
as shorts for an available extensive library for data alignment.

Immunosensors
Immunosensors are often used to detect and quantify disease-
related substances in clinical diagnosis due to their increased 
affinity to the antigen and antibody complex with great selectivity. 
Electrochemical immunosensors used in TB diagnosis are based 
on the use of monoclonal antibodies to detect specific proteins 
secreted by M. tuberculosis (Montoya et al., 2017; Mohd Bakhori 
et  al., 2019; Peláez et  al., 2020). they quantitatively monitor 
the electrical signals generated by the binding between antibodies 
and target molecules or antigens of M. tuberculosis. Moreover, 
the current nanomaterial immunosensor relies on the specific 
chemical, physical and electronic properties of the nanomaterials 
themselves to improve the performance of the sensing device 
and diagnose TB in real-time (Mohd Bakhori et  al., 2019; 
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Hatami et  al., 2020; Kahng et  al., 2020). Although biosensors 
are promising, portable, easy to operate, with no amplification 
steps, immunosensors did not achieve the same success as 
immunoassays(Shin et  al., 2015). This is probably due to the 
detection limit of 103 copies to diagnose M. tuberculosis 
(Jaroenram et al., 2020). In addition, problems occur to identify 
latent infections, as well as pediatric and immunocompromised 
HIV patients(MacGregor-Fairlie et al., 2020). Therefore, further 
efforts are needed to develop immunosensors that are effective 
in diagnosing TB.

Next-Generation Sequencing Technology
Next-generation massively parallel sequencing allows to sequence 
millions of fragments simultaneously in each run and has been 
recently proposed to provide profiles of drug resistance within 
a single analysis of drug-resistant TB (Tafess et  al., 2020). 
Drug susceptibility testing is achieved through targeted or 
whole genome sequencing methods (Papaventsis et  al., 2017). 
The traditional whole genome sequencing of M. tuberculosis 
depends on bacterial culture (Iketleng et  al., 2018), but the 
direct whole genome sequencing of the sputum developed by 
Doyle et  al. bypasses the process of bacterial culture (Doyle 
et  al., 2018), thus saving detection time, and significantly 
improving the speed of detecting drug resistance compared 
with the whole genome sequencing of MGIT or culture-based 
drug resistance phenotype test in clinical practice. However, 
the effective and convenient manufacturing of more DNA 
isolation devices, the cost of throughput sequencing, good 
databases, the high requirements of the laboratory infrastructure, 
and the need for specialized staff remain the main obstacles 
to the clinical application of next-generation sequencing 
technology (Smith et  al., 2020).

CONCLUSION

TB represented and still represents a continuous challenge 
to the global public health. In the last years, significant 

progress has been made in the development of TB diagnostics 
platforms However, TB is still diagnosed late or misdiagnosed, 
as well as properly monitored and treated, since the emergence 
of multidrug-resistant strains has further worsened the 
situation. In recent years, traditional methods for detecting 
mycobacteria have been continuously improved, and 
considerable efforts have been made for the development of 
new methods. Nevertheless, several key factors need to 
be  further addressed to obtain techniques allowing a rapid 
TB diagnosis: (1) Diagnosis of extrapulmonary TB, TB in 
children, people with TB and HIV, and TB in pregnant 
women. (2) Tests for drug response or drug resistant TB. (3) 
Effective and affordable test materials. (4) Sensitive and 
specific methods of becoming positive for M. tuberculosis 
other than BCG vaccination. Therefore, more accurate, rapid, 
sensitive, selective, cost-effective diagnostic techniques and 
tools are needed for the recognition of positive cases and 
the detection of drug-resistant TB. The development, evaluation, 
and improvement of new diagnostic methods would 
be  especially successful in clinical application. Thus, all the 
above continues to be  a necessary area of research.
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