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A B S T R A C T   

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highjacks epithelial cells and 
infiltrates the lung, as well as other organs and tissues, is essential for developing treatment strategies and 
vaccines against this highly contagious virus. Another major goal is to fully elucidate the mechanisms by which 
SARS-CoV- 2 bypasses the innate immune system and induces a cytokine storm, and its effects on mortality. 
Currently, SARS- CoV-2 is thought to evade innate antiviral immunity, undergo endocytosis, and fuse with the 
host cell membrane by exploiting ACE2 receptors and the protease TMMPRSS2, with cathepsin B/L as alternative 
protease, for entry into the epithelial cells of tissues vulnerable to developing coronavirus disease 2019 (COVID- 
19) symptoms. However, the incorporation of new and unique binding sites, i.e., O-linked glycans, and the 
preservation and augmentation of effective binding sites (N-linked glycans) on the outer membrane of SARS-CoV- 
2 may represent other strategies of infecting the human host. Here, I will rationalize the possibility that other 
host molecules—i.e., sugar molecules and the sialic acidsN-glycolylneuraminic acid, N-acetylneuraminic acid, 
and their derivates could be viable candidates for the use as virus receptors by SARS-CoV-2 and/or serve as 
determinants for the adherence on ACE2 of SARS-CoV-2.   

Introduction 

On the day of writing, more than 40 million people worldwide have 
been infected with the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the causative agent of the coronavirus disease 2019 
(COVID-19) pandemic. SARS-CoV-2 shows a human transmission rate in 
the range of 1 person infecting 2 or 3 others, at least in the beginning of 
the pandemic [1], and, although big differences between countries and 
regions are evident, the overall infection/fatality rate is approximately 
1,0% [2,3] 

Coronaviruses (CoVs) infect humans and animals alike and cause a 
variety of illnesses, including respiratory, enteric, renal, and neurolog-
ical diseases [4]. CoVs are classified into four genera that affect different 
animals. The genera alpha-CoV and beta-CoV only affect mammals [5] 
and mostly result in respiratory and gastrointestinal disorders, whereas 
gamma-CoV and delta-CoV infect birds and some mammals, including 
dolphins and white beluga whales [6]. The first known case of a CoV 
infecting a human occurred in the 1960 s when the virus was isolated 
from a patient with a cold [7]. Since then, other CoVs have emerged, 
including SARS-CoV, a lineage B beta-CoV originating from bats and 
palm civets in 2002–2003 that infected more than 8000 people and 

caused approximately 800 deaths [5]. In 2012, Middle East respiratory 
syndrome coronavirus (MERS-CoV), a lineage C beta-CoV, emerged in 
Saudi Arabia [5] and is currently responsible for 2519 confirmed cases 
and 866 deaths (World Health Organization, 2020). MERS is still active 
in the Middle East and shows the highest mortality rate (34.2%) of all 
CoVs affecting humans. The dromedary camel is considered the zoonotic 
host of MERS-CoV, although other possible intermediary hosts have not 
been excluded [8]. 

The actual data related with the structure of the virus, indicates that 
the virus probably evolved natural [9] and developed new mechanisms 
to (1) avoid direct innate immune system surveillance [10], (2) enter 
host cells through different membrane receptors [11], (3) increase 
transmission capacity between humans [12], and (4) induce cell-virus 
membrane or cell–cell fusion [13]. Several reports suggest that the 
novel infective mechanisms employed by SARS-CoV-2 arose through 
mutation and assimilation of certain molecules in a hitherto unknown 
intermediate host [14], although it is also possible that an intermediate 
host is absent, because of the finding that the firstly identified horseshoe 
bat virus is able to adhere to the human ACE2 receptor [15], so direct 
infection of bat to humans could have be possible. 

The purpose of this review is to attract attention to the need of 
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identifying the host sugar molecules used by SARS- CoV-2 as a result of 
its glycan shield. The role of glycans are very often overlooked when 
scientists search for remedies against viral infections. Viral glycans are 
much more difficult to identify than immunogenic proteins, because of 
their tendency to move around and their compositional flexibility and 
we hypothesize that different host and non-host glycans and sialic acids 
could be used as alternate receptors of SARS-COV-2. Therefore, it is 
extremely important to include glycans into the research of the overall 
picture of viral transmission and the development of vaccines against all 
virus and especially SARS-CoV-2 which is producing devastating effects 
not only on human health but also on the global economy. The data of 
two recent papers in science and nature have clarified part of the 
composition of the glycan shield of SARS-CoV-2 and the capacity of 
adhering to at least ten different sugar molecules, c.q. Glycoforms 
[16,17]. 

Evasion of host innate antiviral immunity by SARS-CoV-2 

SARS-CoV-2 has a median incubation time of approximately 5.1 days 
(95% CI, 4.5 to 5.8 days; [18]), indicating viral evasion of the innate 
antiviral immune system, which leads to a delayed immune response 
[19,20]. The innate immune system is normally alerted to viral entry by 
pattern-recognition receptors (PRRs), including cell membrane- 
localized Toll-like receptors (TLR), intracellular Nod-like receptors 
(NLR), and DNA sensors that are triggered by nucleic acids and foreign 
proteins, in response to pathogen-associated molecular patterns 
(PAMPs) [21]. When PAMPs are sensed by PRRs, a signaling cascade is 
initiated that massively recruits leukocytes via type I and III interferon 
production, eventually limiting viral replication and preventing viral 
spread to other cells [21]. In the never-ending coevolution between 
hosts and viruses, both competitors continuously evolve and develop 
new survival strategies [22]. Accordingly, RNA viruses, including this 
new RNA coronavirus [10], have evolved multiple strategies of evading 
the innate antiviral immunity of the host [23]. 

The SARS-CoV-2 S protein consists of two subunits, S1 and S2. S1 is 
responsible for attachment to host molecules on the cell membrane, 
while S2 facilitates fusion between the cell and virus membrane and/or 
between neighboring cells resulting in cell–cell fusion, forming a syn-
cytium [24]. S1-glycoprotein binding to the ACE2 receptor on the sur-
face of human cells [25,26] and S- protein cleavage by TMMPRSS2 are 
critical steps in the crosstalk between the virus and host. SARS-CoV and 

MERS-CoV utilize several host cell membrane sugars as viral receptors 
and part of their glycan shield [27]. These sugar molecules are part of 
sialic acid-binding immunoglobulin-like lectins (SIGLECs), which are 
responsible for self-recognition by innate immune cells and protection 
against cytotoxic immune activity [28]. SARS-CoV can bind to 
Neu5,7,9Ac3 and Neu4,5,Ac2, both derivates of N-acetylneuraminic 
acid (Neu5Ac) [29], through a host galectin [30] together with the N- 
linked glycans [31–33]. 

The glycan structure of the SARS-CoV-2 spike glycoprotein (S) is 
similar to that of SARS-CoV in terms of the N- linked glycans [29]; 
however, it also possesses unique O-linked glycans and a polybasic 
cleavage site ([9]; Fig. 1). The abundant presence of N- and O-linked 
glycans covering most of the immunogenic peptides and RNA of SARS- 
CoV-2 gives the virus the capacity to evade the antiviral innate im-
mune system. Most of the N- and O-linked are linked themselves with 
multiple sugar molecules and some of them are heavily sialylated [17], 
masking the immunogenic structures of the virus [34,16,35]. 

Sialic acids and other host sugar molecules and their possible 
involvement in different SARS-CoV-2 mechanisms 

Sialic acids and other host sugar molecules, which are often used as 
receptors by a wide range of viruses [32,36], show the highest density 
on epithelial cells [37], including those in the lungs and more impor-
tantly, the oral cavity [38]. The major function of sialic acids and gly-
cans on different cell types is to help the innate immune system 
discriminate between self and non-self; asa result, different tissues ex-
press tens to hundreds of millions of glycan chains per cell that are 
capped by sialic acids [39]. It is now known that sialic acids comprise a 
family of more than 50 naturally occurring derivatives of the nine- 
carbon sugar neuraminic acid (5-amino-3,5-dideoxy-D-glycero-D-gal-
actononulsonic acid, [40]). One branch of the sialic acid family is N- 
acetylated to form N-acetylneuraminic acids (Neu5Ac, NANA, Sia), 
which are the most widespread form of sialic acid and almost the only 
form found in humans. The other branch is based on N-glycolylneur-
aminic acids (Neu5Gc) which are common in many animal species [41]. 
Humans lost the capacity to produce Neu5Gc from precursors such as 
Neu5Ac more than 2 million years ago, due to a mutation of the gene 
encoding for the cytidine monophosphate N-acetylneuraminic acid hy-
droxylase (CMAH) enzyme; this mutation possibly arose from a bottle-
neck event that occurred in response to a type of malaria [28]. 

Fig. 1. A schematic overview of the spike glycoprotein S and its subunits S1 and S2. Note the Olinked glycans on S1 in the vicinity of the TMMPRSS2 cleavage site 
(dashed line). TMMPRSS2 cleaves S2 from S1, facilitating the connection between S1 and hACE2. N-linked glycans (continuous line) cover both the S1 and S2 subunit 
as part of the masking glycan shield. Different sialic acids serve as part of the glycan shield and could be determinants for viral entry into epithelial cells. The innate 
antiviral immune system is evaded. and tricked through the possible use of Neu5Gc, Neu5Ac, and their derivates (given as sialic acids) by SARSCoV-2. 
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Nevertheless, when humans consume Neu5Gc-rich nutrients, this sialic 
acid can be incorporated into different cell types and expressed on the 
cell membrane of multiple human tissues or in fluids such as saliva and 
airway surface liquid [38,42]. All humans have circulating IgM, IgA and 
IgG antibodies against Neu5Gc-glycans of different levels [43]. These 
anti-Neu5Gc antibodies tend to interact with food derived Neu5Gc, 
metabolically incorporated in host glycans, producing a chronic xen-
osialitis that can contribute to vascular inflammation [44], diabetes type 
2 [45] and cancer progression [46]. SARS-CoV-2 is heavily sialylated 
and both sialic acids groups (Neu5Ac and Neu5Gc) are candidates for 
capping the glycan shield of its spike protein S [47]. 

The nasopharyngeal cavity is constantly exposed to viruses, bacteria, 
and fungi and contains the entrance of both the gastrointestinal and 
respiratory tracts. The oral cavity is protected by multiple components 
of the innate immune system, including immune cells, defensins 
and—important in the relationship with SARS-CoV-2—a wide range of 
glycans [38]. Pathogens entering the body through the oral cavity will 
first interact with host surfaces under a saliva-rich environment. The 
abundance of glycans in saliva protect the host against pathogenic in-
vaders and nourish symbiotic microbes that make up the oral micro-
biome [48]. However, several viruses can exploit these glycans as a port 
of entry, with many of these interactions remaining unknown. SARS- 
CoV-2 glycan shield is heavily sialylated and almost all N- and O- 
linked glycans are capped by multiple saccharides [17] and both, sac-
charides and sialic acids, are abundantly present in saliva. Indeed, SARS- 
CoV-2 infection can be reliably measured in saliva, and several studies 
have shown that the virus is present in the saliva of both asymptomatic 
and symptomatic individuals [49,50]. The replication rate of the virus in 
the nasopharyngeal compartments is also unusually high, which may be 
responsible for its high transmission rates between humans [14]. 
Moreover, Shang et al. (2020b) [51] demonstrated that SARS- CoV-2 has 
a 10–20-fold higher capacity than SARS-CoV of adhering to hACE2, 
which was confirmed by Wrapp et al. (2020) [52]. Given that ACE2 is 
expressedin epithelial cells of the tongue, this may explain the highly 
transmissible nature of the virus through saliva [12]. 

A more recent study [53] found that the SARS-CoV-2 entry receptor 
ACE2 and viral entry- associated protease TMPRSS2 are highly 
expressed in nasal goblet and ciliated cells. This finding implicates these 
cells as loci of original infection and possible reservoirs for dissemina-
tion within and between individuals. They also showed that other bar-
rier surface tissues could also suggest further investigation into 
alternative transmission routes. For example, the co-expression in 
esophagus, ileum and colon could explain viral fecal shedding observed 
clinically, with implications for potential fecal–oral transmission [53]. 
Again, these data demand further research on the role of the glycan 
shield and host sugar molecules in the pathogenesis of COVID-19, 
because of the fact that glycans and sialic acids are most abundant on 
surface barriers and an important part of their integrity under stress 
circumstances [39,54]. 

N- and O-linked glycans, cellular entry 

The ongoing vaccine development efforts have primarily focused on 
the CoV transmembrane S glycoprotein, which extends from the viral 
surface and mediates host cell entry. Recent studieshave described how 
SARS-CoV-2 binds to hACE2 and TMPRSS2 [25,55,56]. 

Both the S glycoprotein and ACE2 receptor are known to be exten-
sively glycosylated by complexN- linked-glycans [52]. The glycans on 
the spike glycoprotein serve multiple purposes, of which the glycan 
shield is the most well documented [11,16,35]. Research on the site- 
specific, N- linked glycosylation of MERS and SARS S glycoproteins 
showed that each of these glycosylation sites can be occupied by up to 
ten different glycans, which greatly increases epitope diversity [16,35]. 
Although SARS-CoV-2 and SARS-CoV show very similar N-linked gly-
cans on their spike glycoproteins, SARS- CoV-2 is the first CoV to also 
incorporate O-linked glycans (Fig. 1). Different reports predicted the 

presence of new O-linked glycans owing to the incorporation of a proline 
amino acid, and all were in agreement that this incorporation resulted 
from immunological pressure in some intermediate host [9]. The exis-
tence of these O-linked glycans was confirmed unambiguously in a 
recent study [17]. 

N-linked and O-linked glycans show high affinity to sialic acids 
through the formation of covalent bonds and their amino acid se-
quences. MERS-CoV shows high affinity to Neu5Ac, with no affinity to 
Neu5Gc; moreover, no O- linked glycans have been identified for this 
virus, although it could be that nobody ever looked for them. Both N- 
and O-linked in SARS-CoV-2 are heavily sialylated [17] and it could be 
that they act as a determinant factor in viral binding with hACE2 re-
ceptors [25,47,29]. 

The presence and characteristics of the O-linked glycans in SARS- 
CoV-2 appear highly “sophisticated” for a virus affecting humans. If O- 
linked glycans are essential for the life cycle of SARS-CoV-2, which has 
made the jump to humans as the preferred vector, why and how has it 
incorporated these O-linked glycans in the vicinity of the S1 and S2 
subunits [57]? O- linked glycation is normally used to mask the cleavage 
site of proteins and inhibit cleavage ([58]; Fig. 1). Thus, the O-glycans 
would also impede the necessary cleavage of the SARS-CoV-2 S glyco-
protein and its capacity to enter the host cell, fuse, and replicate. The 
most logical explanation is that the virus needed to mask its S glyco-
protein from the immune system of the host and therefore incorporated 
the glycan shield composed of both N-linked and O-linked glycans 
capped by host monosaccharides and sialic acids [17]. 

Discussion 

Glycan research in viral structures is difficult but essential to develop 
treatment options and vaccines against SARS- CoV-2. All the mass spec 
data point to the SARS-CoV-2 spike protein’s being heavily glycosylated, 
but less than HIV. HIV is so densely glycosylated that the enzymes that 
process the sugars on its surface can’t easily reach them. SARS-CoV-2′s 
sparser glycosylation means that the sugars are more naturally pro-
cessed than the ones in HIV. But it also suggests that the coronavirus’s 
glycan shield may not be as effective as that of HIV [16,35]. Further 
studies have to focus on the type of sialic acid that is preferentially used 
by the N- and O-glycans in SARS-CoV-2 and becoming part of its glycan 
shield. 

Establishing whether the SARS-CoV-2 receptors utilize the abundant 
membrane sugar molecules of the host and identifying the intermediate 
host would help us expand our knowledge of how SARS-CoV-2 achieved 
its virulence and was transmitted to humans. This can aid the develop-
ment of therapeutic strategies or vaccines against the virus as well as 
highlight lifestyle changes that can be implemented to prevent further 
infection. If sialic acids and especially Neu5Gc emerge as important 
players in the pathophysiology of SARS-CoV-2, it may also partially 
explain the difference in susceptibility between males, females, children, 
and the elderly. Given that Neu5Gc is an important sialic acid of 
mammalian meat and dairy products, both part of the human diet, 
Neu5Gc incorporation in humancell membranes would depend on the 
amount and frequency of consumption of Neu5Gc-rich nutrients. 

Meat consumption is significantly higher by men than women 
[59,60] and children are less exposed to meat than are those older than 
60 years of age. If Neu5Gc is part of the possible virus receptor reservoir 
of SARS-CoV-2 it could explain the susceptibility of children for SARS- 
CoV-2 provoked Kawasaki disease. Several reports inform about an 
explosive outbreak of children suffering from Kawasaki since the SARS- 
CoV-2 pandemic. One study, based on a retrospective time-series anal-
ysis of the last 15 year, shows an 497% increase of children suffering 
from Kawasaki since SARS-CoV-2 and this increased incidence is similar 
to the peak of Kawasaki disease that occurred after the 2009 influenza A 
H1N1 pandemic, providing evidence of the role of viral infections in 
triggering Kawasaki disease. [61]. Another study found a 30-fold 
increased incidence of Kawasaki-like disease. Children diagnosed after 
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the SARS-CoV-2 epidemic began showed evidence of immune response 
to the virus, were older, had a higher rate of cardiac involvement, and 
features of macrophage activation syndrome. The SARS-CoV-2 epidemic 
was associated with high incidence of a severe form of Kawasaki disease 
[62]. A similar association was found for the level of IgG and IgA anti-
bodies against Neu5Gc and severity of Kawasaki disease in a study with 
10 patients and compared with a control group of 6 healthy and 6 febrile 
patients [63]. In the acute phase antibodies against Neu5Gc raised 
significantly, stayed high during the subacute phase and decreased at 
convalescence in the Kawasaki patient group whereas no increase was 
detected in the control group at any moment [63]. The exact cause of 
Kawasaki disease has never been established, although different types of 
virus seem responsible for disease initiation [64]. It could be possible 
that SARS-CoV-2 uses Neu5Gc to enter children with increased meta-
bolically incorporated Neu5Gc and this could explain the COVID-19 like 
Kawasaki disease symptoms. Anyway, the fact that the glycan shield of 
SARS-CoV-2 is heavily sialylated, supports the hypotheses that Neu5Ac 
and/or Neu5Gc and their derivates are possible virus receptors and/or 
determinants for cell entrance of the virus. If so, then it could be of in-
terest to investigate the use of anti-sialic acid-glycan antibodies as a 
possible vaccine to prevent COVID-19. Nevertheless, it could still take 
months till definite data are available; it took years till it was shown that 
MERS has the capacity to adhere to Neu5Gc [65]. 
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[42] Martins MdF, Honório-Ferreira A, Martins P, Gonçalves CA. Presence of sialic acids 
in bronchioloalveolar cells and identification and quantification of N- 
acetylneuraminic and N-glycolylneuraminic acids in the lung. Acta Histochem 
2019;121(6):712–7. https://doi.org/10.1016/j.acthis.2019.06.004. 

[43] Dhar C, Sasmal A, Varki A. From “Serum Sickness” to “Xenosialitis”: Past, Present, 
and Future Significance of the Non-human Sialic Acid Neu5Gc. Front Immunol 
2019;10(April):807. https://doi.org/10.3389/fimmu.2019.00807. 

[44] Pham, T., Gregg, C. J., Karp, F., Chow, R., Padler-Karavani, V., Cao, H., Chen, X., 
Witztum, J. L., Varki, N. M., & Varki, A. (2009). Evidence for a novel human- 
specific xeno-auto-antibody response against vascular endothelium. Blood, 114 
(25), 5225–5235. https://doi.org/10.1182/blood-2009-05-220400. 

[45] Kuipers RS, Pruimboom L. Short comment on “A review of potential metabolic 
etiologies of the observed association between red meat consumption and 
development of type 2 diabetes mellitus”, by Yoona Kim, Jennifer Keogh, Peter 
Clifton. Metabolism 2016;65(1):e3–4. https://doi.org/10.1016/j. 
metabol.2015.09.006. 
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