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Abstract

Background: Mitochondrial DNA (mtDNA) variation is commonly analyzed in a wide range of different biomedical
applications. Cases where more than one individual contribute to a stain genotyped from some biological material give rise
to a mixture. Most forensic mixture cases are analyzed using autosomal markers. In rape cases, Y-chromosome markers
typically add useful information. However, there are important cases where autosomal and Y-chromosome markers fail to
provide useful profiles. In some instances, usually involving small amounts or degraded DNA, mtDNA may be the only useful
genetic evidence available. Mitochondrial DNA mixtures also arise in studies dealing with the role of mtDNA variation in
tumorigenesis. Such mixtures may be generated by the tumor, but they could also originate in vitro due to inadvertent
contamination or a sample mix-up.

Methods/Principal Findings: We present the statistical methods needed for mixture interpretation and emphasize the
modifications required for the more well-known methods based on conventional markers to generalize to mtDNA mixtures.
Two scenarios are considered. Firstly, only categorical mtDNA data is assumed available, that is, the variants contributing to
the mixture. Secondly, quantitative data (peak heights or areas) on the allelic variants are also accessible. In cases where
quantitative information is available in addition to allele designation, it is possible to extract more precise information by
using regression models. More precisely, using quantitative information may lead to a unique solution in cases where the
qualitative approach points to several possibilities. Importantly, these methods also apply to clinical cases where
contamination is a potential alternative explanation for the data.

Conclusions/Significance: We argue that clinical and forensic scientists should give greater consideration to mtDNA for
mixture interpretation. The results and examples show that the analysis of mtDNA mixtures contributes substantially to
forensic casework and may also clarify erroneous claims made in clinical genetics regarding tumorigenesis.
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Introduction

There are a number of different areas where mitochondrial

DNA (mtDNA) is of great relevance, including molecular

anthropology, population genetics, and clinical and forensic

genetics. Here we deal with the topic of mtDNA mixtures and

we show a statistical framework for mixture interpretation that is

of particular interest in forensic genetics and medical genetic

studies. The analysis of mixtures in forensic casework traditionally

relies on the genotyping of a set of autosomal Short Tandem

Repeats (STRs) that are generally well standardized in commercial

kits. Y-chromosome markers are particularly useful in rape cases

because they specifically target the DNA contribution from the

male aggressor without interference from the female victim.

However, the current procedures have several limitations. For

instance, it is often difficult to determine the number of

contributors in cases involving degraded samples with many

contributors, or when the individuals contribute similar amounts

to the mixture. Mitochondrial DNA is particularly well suited

for the analysis of degraded samples, especially due to the high

proportion of mtDNA molecules compared to the nuclear DNA.

Mitochondrial DNA can be analyzed in cases where other DNA

sources fail; for instance, in hair shafts or in samples containing

low amounts of DNA.

In oncogenetic studies relevant claims about the implications of

mtDNA somatic mutations (instabilities) in tumorigenesis were

several times formulated [1,2,3]. Before such claims are made,

reasonable alternative explanations should be ruled out. For

instance, the data could result from an inadvertent mixture,

implying that the tumor sample was contaminated by exogenous

DNA from some other individual [4,5]. Combining phylogenetic

knowledge with proper statistical analyses, as discussed in this

paper, it is possible to unravel the origin and nature of biological

contamination of PCR amplicons and involuntary sample mix-

ups. These unfortunate artifacts have undermined a field of

research dealing with the analysis of mtDNA instability in cancer

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e26723



[4,5]. The evidentiary samples commonly analyzed in the forensic

field are often degraded or contain low amounts of DNA;

therefore, contamination has been one of the most important

‘hobby horses’ in forensic casework.

On the other hand, current autosomal STR assays have

limitations when attempting to determine the most likely origin

of a profile; the role of SNPs is more promising [6], but little has

been done to date in order to replace STRs with SNPs in this

field of research [7,8]. Mitochondrial DNA is strongly stratified

in human populations, therefore it is possible to determine the

most likely geographical origin of an mtDNA profile [9], at

least on a continental scale, although the level of geographical

resolution depends, for instance, on the mtDNA markers

targeted. Contributors to a mixture may come from different

populations and therefore the analysis of mtDNA could be

useful in orienting police investigations. The main limitation

here comes from the fact that, in reality, mtDNA is a single

marker and does not fully represent the complete genome of an

individual.

To the best of our knowledge, there are only three relevant

studies in our context that have empirically evaluated the ability of

mtDNA to resolve mixtures. Walker et al. [10] used mtDNA

variations to estimate the number of contributors to a mixture that

was artificially created by combining different mtDNA profiles.

The study by Montesino et al. [11] was a collaborative multi-

centric exercise organized by the GEP-ISFG (Spanish and

Portuguese Group of the International Society for Forensic

Genetics) aimed at analyzing mtDNA sequence patterns in

different sorts of mixed stains from different biological sources,

namely saliva, semen, and blood. The empirical results obtained

from several laboratories pointed to the potential of mtDNA to

disentangle mixtures. However, in the two studies mentioned

[11] there was no attempt to create a statistical framework.

More recently, Holland et al. [12] have used second generation

sequencing for mtDNA mixture deconvolution and for the

detection to a high resolution of mtDNA heteroplasmies. The

results of the analysis in Holland’s et al. indicate that ‘‘the ability to

routinely deconvolute mtDNA mixtures down to a level of 1:250 allows for

high resolution analysis fo mtDNA heteroplasmy, and for differentiation of

individuals from the same maternal lineage’’. In addition, analyses of

mtDNA mixtures due to contamination in single cell analysis have

been also carried out in Yao et al. [13].

We have previously highlighted the relevance of using

phylogenetic characteristics of the mtDNA molecule in other

forensic applications. The specific inheritance features of the non-

recombining mtDNA molecule allow a natural grouping of

sequence haplotypes into principal monophyletic clades, referred

to as haplogroups [14]. The interplay between phylogeny and

forensic genetics [15] could be also of interest when applied to the

deconvolution of mtDNA mixtures. The focus of the present paper

is on the methods, but we will illustrate using simulated and real

data. The methods depend heavily on the amount of information

available in the trace, ranging from full quantitative information to

categorized coding (see below). The appropriate methods, de-

pending on the data available, are discussed and some prelimi-

nary implementations are presented. There are three important

problems that we will address in turn: (i) the deconvolution of

mixtures; (ii) the weighting of evidence, and (iii) a general assessment

of the informative value in mtDNA mixtures. These problems

correspond to similar ones that have already been discussed for

autosomal STRs and we will emphasize the specific features related

to mtDNA mixtures. We show that important results beyond the

reach of autosomal markers and Y-chromosome data can be

obtained.

Methods

Nature of the data
The data can be split into several parts: the specific trace or

stain, potential reference samples and databases. In addition, the

context of the case is important, but this will not be discussed here;

see [16] for a general discussion. The first part of the data, the

trace, can, in principle, be available containing varying degrees

of information, namely, categorized and/or quantitative data.

Categorized data refers to an ambiguous sequence status where

more than one nucleotide variant is observed at the same position.

This positional status of the nucleotide is referred by an IUPAC

international code where unique letters are given to a combina-

tion of two or more possible nucleotides (e.g. ‘‘R’’ means the

coexistence of an adenine A and a guanine G at the same

nucleotide position, see http://www.dna.affrc.go.jp/misc/MPsrch/

InfoIUPAC.html). Quantitative data refers to a sequence status

where the contribution of different nucleotide variants to the same

position can be quantitatively measured (see the example in Table 1).

Quantitative information is not generally available for the software

currently used in automatic sequencers, unlike the case for other

markers including STRs and SNPs. However, we believe that such

data could also be provided for mtDNA and it would then be easy to

perform controlled experiments to assess the validity and reliability

of such data. By providing methods, exemplified using simulated

data, we hope to encourage suppliers to also provide quantitative

data. Our ambition has not been to go into the technical issues of

quantification, but we realize that there is a need for further studies.

Heteroplasmies are possible in mtDNA sequences and this DNA

status could lead to interpretational problems (see below). From

a practical point of view, it is not possible to differentiate

heteroplasmies from mixture patterns. However, heteroplasmic

positions correspond to mutational events (more than one

heteroplasmic position in a control region profile is uncommon)

and quite often coincide with those positions that have a high

mutation rate [17], and this information could be implemented in

a Bayesian framework.

Table 2 shows Table 1 in a different format with quantitative

information simulated and added in the two rightmost columns.

For this example, a mixture was formed by haplotypes H22 and

Table 1. Excerpts of the HVS-I mtDNA data; the sequence
range is from position 16024 to position 16365.

Region Sample ID Profile (HVS-I)

Iberia 20 rCRS

Iberia 21 16093

Iberia 22 16093 16189 16293

Iberia 23 16093 16224 16311

…

Iberia 1263 16093 16293

Iberia 1264 16069 16126

…

Iberia 2135 16093 16189 16224 16311

Iberia 2136 16093 16224 16311

…

Iberia 2575 16126 16294 16296 16304

Nomenclature of mtDNA variants is according to Andrews et al. [31]; the
numbers indicate transitions with respect to Andrews et al. [31].
doi:10.1371/journal.pone.0026723.t001
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H23. The column y0 records the signal strength and peak height

(or area) corresponding to the 0 allele. The corresponding figure

for the 1 allele is y1 and the measurements are scaled so

that y0+y1 = 1. The haplotype H22 contributes 30% and the

remaining 70% comes from H23. For instance, the value for site

16224, y0 = 0.32, deviates slightly from the theoretic value of 0.3

because of some noise in the data.

Deconvoluting the mixture
The starting point is a stain and an mtDNA profile. The

challenge of deconvolution is determining which haplotypes may

have contributed to forming the stain. Note that in general, not all

combinations of variants are equally possible because most of them

might not make sense in a phylogenetic context. A deep knowledge

of the phylogeny is therefore mandatory. We assume that all

possible haplotypes are included in a database or a candidate set.

Without this reasonable assumption, any stain could be explained

by a hitherto unobserved haplotype. In some cases, there will be

both known and unknown contributors. The most usual case

involves a known, typed, victim and an unknown, un-typed,

perpetrator. The general framework does not principally depend

on whether or not there are some known contributors.

For categorized data, there is generally not much to say of the

methods: for a given stain and a given number of contributors, we

can determine the combinations of haplotypes consistent with the

stain. However, computational issues could remain in the sense

that the search for possible combinations can be optimized. Such

computational issues are not addressed here. The result of a search

may have three outcomes:

1. No solution is found.

2. Just one solution emerges.

3. Several combinations are possible.

There may be several reasons for alternative 1 above, including

problems relating to contamination and the database not being

exhaustive. There are different reference databases available for

forensic and clinical geneticist. For instance, there are more than

150,000 partial control region segments available in the literature,

some populations groups being much better represented than

others (e.g. Europe is particularly well sampled). There are some

other important databases that are freely accessible to the public

(e.g. EMPOP: http://empop.org/). In addition, most of the

forensic laboratories have their in-house databases for internal use

in their own forensic casework.

Alternative 2 is the simplest, where only the strength of the

evidence remains to be assessed, as discussed below.

Alternative 3 may sometimes be resolved if the number of

contributors is known. For instance, if there is external evidence to

prove that there can only be two contributors and there is only one

solution corresponding to two contributors, the problem of

ambiguity goes away. If, however, there are several solutions, it

is impossible to distinguish between these unless further data is

available. Next, we discuss how this can be done provided

quantitative information is available.

A different statistical approach is then needed. To highlight

the problem, consider the data of Table 1 and assume a

mixture is formed by haplotypes H22 and H23. This mixture

cannot be distinguished from a mixture based on H1263 and

H2135 if only qualitative information is used. If, however,

quantitative information is available, the problem can be

solved. Table 2 shows simulated data with quantitative

information corresponding to a mixture where 22 contributes

a fraction of b = 0.3 and 22 a fraction of 1- b= 0.7. The column

y1 gives the peak height (or area) corresponding to the 1 allele.

The peak heights are scaled so they add up to 1. We first

assume there is no drop out or drop in and present the general

method for solving this based on the intuitively reasonable

regression model:

yi,1~bxi,1z 1{bð Þxi,2zei, i~1,:::,n

where i refers to the marker and yi,1 is the peak height for allele

1. Moreover, xi,j is the number of 1alleles of the contributor j

( = 1 or 2) and ei is the error term.The error term can be

pragmatically be modeled as a normal distribution truncated to

non-negative values. Observe that we model only the peak height

for allele 1 as we assume the peak heights of the two alleles are

scaled so that there is no additional information in the peak

height of the other allele. More sophisticated models may be

developed once more real data becomes available. The model

can be rewritten as:

zi~buizei, where zi~yi,1{xi,2, ui~xi,1{xi,2: ð1Þ

Table 2. Table 1 with quantitative information.

Polymorphism H20 H21 H22 H23 H1263 H1264 H2135 H2136 H2575 y1

rCRS 1 0 0 0 0 0 0 0 0 0.00

16069 0 0 0 0 0 1 0 0 0 0.00

16093 0 1 1 1 1 0 1 1 0 1.00

16126 0 0 0 0 0 1 0 0 1 0.00

16189 0 0 1 0 0 0 1 0 0 0.30

16224 0 0 0 1 0 0 1 1 0 0.68

16293 0 0 1 0 1 0 0 0 0 0.29

16294 0 0 0 0 0 0 0 0 1 0.02

16296 0 0 0 0 0 0 0 0 1 0.00

16304 0 0 0 0 0 0 0 0 1 0.00

16311 0 0 0 1 0 0 1 1 0 0.73

The polymorphisms are the transitions referred to in Andrews et al. [31]. The column 1 denotes the peak height corresponding to allele 1.
doi:10.1371/journal.pone.0026723.t002
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Based on this model, several problems can be solved. First

observe that the hypothesis:

N H0: ‘‘Individual 1 did not contribute to the mixture’’

is equivalent to testing H0: b~0. This can be done using a

statistical package. In this case standard linear regression formulae

are also available. For instance, the least square estimate of the

fraction is

b̂b~

Pn

i~1

ziui

Pn

i~1

u2
i

: ð2Þ

Furthermore, the competing hypotheses can be distinguished

based on how well the data fits. Specifically, we can compute the

model fit as measured by the conventional R2 and the most likely

hypothesis is the one with the largest R2. For the example in this

section, R2
22,23 corresponds to the model fit assuming individuals

with haplotypes 22 and 23 contributed. The corresponding figure

if the mixture was formed by individuals with haplotypes 1263

and 2135 is R2
1263,2175 and the most likely explanation corresponds

to the alternative with the larger R2. The calculations can be

performed using standard statistical software, such as R, or

standard formulae.

Next, we extend the model (1) to account for drop in and drop

out. Let:

Di,j~1 if allele 1 for marker i for individual j

does not drop out,
ð3Þ

and 0 otherwise. Also,

Ki,j~1 if allele 1 for marker i for individual j drops in,

and 0 otherwise. Then, the extended version of Eq. (1) becomes

yi,1~bDi,1max(xi,1,Ki,1)z

1{bð ÞDi,2max(xi,2,Ki,2)zei, i~1,:::,n:
ð4Þ

An interesting question now is: if data are simulated from model

(4) with realistic probabilities of drop out and drop in, will the

model we use for estimation (1) still provide reasonable answers

and solve the problem? Example 2 in the Results section deals with

this. The assumptions of the model and more general alternatives

are described in the Discussion section.

Weighing the evidence
In principle, evidence based on mtDNA profiles is evaluated in

the same way as other autosomal DNA. At least two hypotheses

must be formulated. In crime cases, the prosecution’s hypothesis is

denoted HP and a typical version is ‘‘the mixture comes from a

lineage corresponding to the victim and a lineage corresponding to

the suspect’’. It is essential to note that lineage is emphasized to

indicate that mtDNA cannot be linked to individuals as all persons

belonging to the same lineage will have the same mtDNA profile.

The defense hypothesis is typically HD: ‘‘the mixture comes from a

lineage corresponding to the victim and a lineage corresponding to

the suspect’’. In clinical cases and other non-court cases it is not

reasonable to refer to prosecution and defense and the hypotheses

are denoted H1 and H2 instead. The evidence is measured by the

likelihood ratio LR~L(datajH1)=L(datajH2): There may be

more than two hypotheses, in which case several LR values

can be calculated depending on the context. The estimates of

L(datajH1) and L(datajH2) depend on the choice of database

and are not discussed in any detail in this paper.

Probability of an informative mixture
Mixtures of identical mtDNA profiles will not be informative,

i.e., a mixture is unidentifiable. It is of interest to estimate the

probability that a specific case will not lead to an informative

mtDNA mixture. This probability will obviously depend on the

database. Assuming that there are different k profiles with

frequencies p1,….,pk, the probability that a mixture of a random

sample of be m.1 profiles will be informative in the sense that not

all are identical is:

p:id~1{
Xk

i~1

pm
i ð6Þ

This probability can also be estimated from simulations. Note

that this probability strongly depends on the population group

represented by the database and the range of sequence

information targeted. For instance, sub-Saharan African lineages

are generally more divergent and therefore more informative than

European ones, and control region data may show little resolu-

tion in, for example, some Native American populations.. The

calculations can be performed using the R-library unseen2 library

freely available from http://folk.uio.no/thoree/nhap/.

Results

Example 1: on categorized data
Consider Table 1. Assume a stain is observed with transitions at

sites 16189 and 16293, displaying a mixture. The only two person

mixture consistent with this finding consists of haplotypes H21 and

H22. We first formulate the hypotheses:

HP: The mix is formed by two individuals, one from the H21

haplotype and one from the H22 haplotype,

HD: The mix is formed by two random individuals.

Obviously, P(data| HP) = 1. Based on Table 1, we estimate the

probability of both haplotypes as 1/11 and therefore:

LR~
1

(1=11)|(1=11)
~121:

Similar calculations are performed if the hypotheses are specified

differently, for instance if the individual with haplotype H21 is a

known contributor, LR = 11. Also, in principal, nothing will

change if the deconvolution and the haplotype estimates are based

on larger, more realistic databases. For instance, if haplotype H21

is observed 12 times in a database of 2575 haplotypes and

haplotype H22 is only observed once, this will lead to:

LR~
1

(12=2575)|(1=2575)
~552552:

The above example provides a unique combination. The problem

of deconvolution and following LR calculations becomes more

complex if there are several solutions and several combinations

consistent with the mixture. Such ambiguous situations can arise if

Statistical Interpretation of mtDNA Mixtures
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there are possibly more than two contributors. Any haplotype with

alleles coinciding with those of haplotypes H21 and H22 outside

the mixture sites can be added without changing the data from the

mixture.

Ambiguous problems can also arise if other mixtures are

considered. For example, a mixture of H22 and H23 cannot be

distinguished from a mixture of haplotypes H1263 and H2135

based on the limited number of sites shown in Table 1. Additional

data or information is then needed to distinguish between the

possible solutions to the deconvolution problem. The next

example shows how this problem of ambiguity can be approached

provided quantitative data is available.

Example 2 (Example 1 continued): on quantitative data
Consider once again the data in Tables 1 and 2 and the

hypotheses:

N H1: A mixture from haplotypes H22 and H23.

N H2: A mixture from haplotypes H1263 and H2135.

These hypotheses are, as mentioned, indistinguishable when

based on qualitative data only. To see how well we (i) can estimate the

fractions contributed and (ii) distinguish between the hypotheses based on

regression model (1), we simulated the peak heights. One example

is displayed in the far right column of Table 2. We performed

1000 simulations. Figure 1 shows the estimated fraction from

contributor 1. For the correct model the values are consistent with

the true value of 0.3 with 95% of the simulated values lying

between 0.22 and 0.37. Figure 2 displays the R2 values for the

correct model H1 and the false model H2 and the difference. In

98.9% of the simulations this approach concluded with the correct

model. This is a promising result in view of the small data set.

Figure 3 shows how the fraction of correctly identified mixtures

varies as a function of the drop out probability. The data was

simulated according to the model in Eq. (4) but estimated

according to Eq. (1) as we assumed no knowledge of the drop out

probability and thus ignored drop out in the estimation.

Example 3: a real murder case
A real casework example is discussed below. A victim was

murdered and there is a suspect and cigarette butts, which could

have been shared by the victim and the suspect, according to the

crime scenario. The judge presiding in the case had directly

requested that the contribution by both people to the cigarette

butts be revealed, as this information could be crucial for resolving

the case. Analyses of autosomal STRs and SNPs failed when

attempts were made to analyze the butts, and so mtDNA is the

only choice for resolving the case. The profiles obtained for the

HVS-I segment were:

N Victim: T16304C

N Suspect: T16126C C16292T C16294T A16399G

N Cigarette butt (mixture): 16126Y 16292Y 16294Y 16304Y

16399R

where Y in the IUPAC code refers to T/C and R to A/G.

Figure 4 shows the electropherograms of the three sequencing

profiles. From a phylogenetic point of view, the profile of the

victim could be compatible with haplogroup H (further analysis

of mtDNA SNPs [data not shown] allocated this profile to

Figure 1. The upper panel shows that the proportion from contributor 1 is a reasonable estimate based on the correct model,
whereas a clear bias appears for the wrong model. A total of 1000 simulations were performed.
doi:10.1371/journal.pone.0026723.g001

Statistical Interpretation of mtDNA Mixtures

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e26723



haplogroup H5). The profile of the suspect undoubtedly belongs to

haplogroup T (most likely to the sub-clade T2). The mtDNA

analysis of the cigarette butt shows a perfect mixture that is

compatible with the presence of at least two contributors, exactly

mirroring the simultaneous presence of the same profiles carried

by the victim and the suspect.

The statistical evaluation starts by formulating the hypotheses:

N HP: The mixture comes from the haplotypes of the victim and the suspect.

N HD: The mixture comes from the haplotypes of the victim and an unknown

donor.

In this case, the LR = 1/p where p is an estimate of the frequency

of the suspect haplotype. This haplotype is not seen in a database

of 2575 profiles and a conventional approach, considered

favorable to the defendant, is to add the suspect’s haplotype to

the databases, leading to an LR of 2576.

Example 4: in a clinical context
The procedure developed in the present study could also

be used in clinical cases where mixtures of different mtDNA

haplotypes frequently occur, for instance in mtDNA instability

studies in cancer, where generally there is an interest in comparing

a tumor sample from an affected patient with a non-tumor sample

from the same patient. Discrepancies between the mtDNA profiles

of these samples are generally interpreted as molecular instabilities

responsible for the tumorgenesis process [1,2]. Alternatively, such

mixtures could also be consistent with artificial mixtures created

accidentally by sample mix-up or contamination. This alternative

Figure 2. The correct model can be identified as higher values
of R2 were obtained, as shown in the box plot on the left hand
side. A pairwise comparison of the 1000 simulations performed is
shown in the far right box plot.
doi:10.1371/journal.pone.0026723.g002

Figure 3. The fraction of times the correct model is identified becomes lower as the drop out probability increases, but it stays
above 80% as long as the drop out probability is below 0.05.
doi:10.1371/journal.pone.0026723.g003
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hypothesis has been formulated few years ago [4,5] and rests on

solid theoretical foundations; furthermore, it has received support in

other fields of genetic research, such as human population genetics

[18,19,20], forensic genetics [15,21,22,23] and other disease studies

[24,25,26,27]. Basically, this alternative hypothesis considers the

confrontation of the instabilities observed in oncogenetic studies

against the known mtDNA phylogeny (and considering positional

mutational patterns [28]); most of the times, the seeming instability

patterns are perfectly compatible with a contamination or sample mix-

up events occurring during any step of the genotyping process (e.g.

mixture of two known mtDNA haplotypes). According to the

supporters of this explanation, these patterns of instabilities are difficult

to reconcile with the intervention of some kind of molecular process

(occurring during carcinogenesis) that is able to exactly reproduce the

evolutionary mutational patterns these instabilities represent.

The statistical framework formulated above could be useful

for evaluating the probability of an artificial mixture of

two profiles according to the mtDNA phylogeny versus real

instability. The potential of the method can be illustrated by way

of a real example. In a study of mtDNA instability in prostate

cancer patients, Chen et al. [29] reported the profile

of their patient case #1 to have the following variants:

A16182C, A16183C, T16189C, C16232A, T16249C, G16274A,

T16304C, and T16311C, where all positions were heteroplasmic

(that is, a mixture/heteroplasmic-like pattern: 16182X, 16183X,

16189Y, 16232X, 16249Y, 16274R, 16304Y, and 16311Y).The

statistical evaluation of this finding can proceed in the conven-

tional way. First, the competing hypotheses are stated as:

N H1: The data is from the patient with some mutations and heteroplasmies

added by the tumor.

N H2: The data is a result of contamination added to the profile of the

patient.

First, note that the contamination hypothesis can be directly

dismissed if there are no combinations of haplotypes consistent with

the data; thus no calculations are required. Assume, therefore, that

H2 cannot be directly rejected. The likelihood of L(datajHi), i~1,2
needs to be calculated and we first state the general expressions and

subsequently show how this applies to the specific example. Assume

there are S phylogenetic sites and that the probability of a mutation

occurring in site s is ps, s~1,:::,S: If assumptions can be made on

the likelihood of sites for mutations corresponding to hypothesis H1,

then these can be formulated in terms of ps. For the applications we

are aware of, there are no such assumptions. Rather, mutations

occur independently and uniformly. On the condition of there being

x different mutations, the likelihood is:

L(datajH1)~x!
1

S

1

S{1
� � � 1

S{xz1
~x! P

x{1

j~1

1

S{j
: ð5Þ

Next, consider the likelihood assuming H2 to be true. In order to

make assumptions favorable to hypothesis H2, only a two-person

mixture is considered since including the possibility of contamina-

tions involving more individuals would increase the likelihood.

Generally, the likelihood in this case is the sum of the probabilities

consistent with the mixture. In this case, there is only one possible

contaminating haplotype. Assuming the probability for the

contaminating haplotype is L(datajH2)~a, the likelihood ratio in

favor of hypothesis H2 becomes:

LR~
a

x! P
x{1

j~1

1
S{j

~

a P
x{1

j~1
(S{j)

x!
: ð6Þ

Figure 4. Sequencing electropherograms of the profiles discussed in example 3.
doi:10.1371/journal.pone.0026723.g004
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For this specific example, x~8 and there are 341 sites. The number

of phylogenetic sites, S, is smaller than 341. A conservative

calculation is obtained by assigning a lower limit to S, and we use

S = 100. In this case, the contaminating haplotype corresponds to

rCRS and all conceivable values for a leads to extremely large LR-s.

For instance, even a value as low as 0.01 gives an LRw109: To

indicate the strength of the evidence in favor of the contamination

hypothesis in this case, even setting a to the lowest known frequency

for a haplotype would lead to an extremely large LR value.

Discussion

We have formulated a formal statistical framework to model

mtDNA mixtures that can be applied to real casework cases with

the double purpose of (i) unraveling the number of contributors to

a mixture and (ii) evaluating the probability of the evidence given

the mtDNA profiles of the contributors versus the mtDNA profiles

of other individuals different to the contributors.

Several aspects of the models can be refined and further

developed as more data and experience become available. For

instance, the regression model for the quantitative data requires

the error terms to be independent and identically distributed with

a truncated normal distribution. These assumptions are particu-

larly important for p-values and confidence intervals to be reliable,

whereas estimates of regression coefficients (corresponding to the

contributed fractions) are likely to be reasonably valid without

these assumptions. Furthermore, the simulations indicate that the

results work reasonably well, also when the assumptions are

somewhat violated, as in Figure 3. With more data available it will

be possible to improve the model for the error distribution (for

instance by transforming the data) and also account for the

dependence between sites.

Technical issues regarding mtDNA typing were not discussed

here but we are aware of the many complications that could

complicate the statistical interpretation of real cases. For instance,

background noise in sequencing electropherograms could be a

hamper mtDNA mixture interpretation. Also, it is not possible to

distinguish between two aggressors belonging to the sample

matrilineage, given that they share the same mtDNA profile.

Another drawback regarding the quantitative approach is that

the Sanger sequencing procedure is not a pure quantitative

method. PCR based approaches could distort the relative pro-

portion of each contributor along the electropherogram by

preferentially amplifying certain allele variants. If the electrophe-

rograms are of good quality, by averaging the proportions of

the different variants that participate in the mixture one could

estimate the relative proportion of two contributors to the

electropherogram (as for instance could be the case in the

example illustrated in Figure 4). By way of replicating the PCR

amplification and the sequencing procedure, it might be possible

to improve the information pertaining to the relative proportion of

the different contributors to the mixture. Alternatively, the use of

new generation sequencing or methods that allow the sequencing

of single strands of DNA would allow a more exact determination

of the donor contributions. In such cases, the quantitative

statistical approach could be applied without the need for further

modifications. The study by Holland et al. [12] is for instance a

paradigmatic example. Next generation sequencing needs howev-

er proper forensic validation before it can be safely used in forensic

casework [30].

It would be useful to provide guidelines on the minimum

number of positions that should be queried to reach the level of

evidential security needed in court for a conviction. Similarly, it

would be helpful to provide recommendations on the minimal

number and the positions of mtDNA polymorphisms to be

investigated. Simulations can be performed to deal with this

problem as mentioned in the section ‘Probability of an informative

mixture’ for similar problems. Unfortunately, it is not possible to

provide general recommendations on the number of sites needed.

The main problem is that the solution would depend on a large

number of parameters which are specific for the problem at hand.

Rather tailored simulations would have to be done for the specific

case based on the database applicable for this problem. Some

conclusions and recommendations can be derived from the present

study:

N Since mtDNA is inherited as a haplotype block, not all

combinations of variants in the mixture are possible (as

opposed to the case for unlinked autosomal markers), and

therefore phylogenetic inferences and phylogenetic compati-

bility (the deconvoluted haplotypes should have phylogenetic

sense) are also mandatory in order to reduce the universe of

haplotypes that could have contributed to the mixture.

Figure 5. Flowchart of the procedures dealt with in the present
study.
doi:10.1371/journal.pone.0026723.g005
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N All mixture profiles should be interpreted in light of a known

mtDNA phylogeny. If the mixture makes no sense in an

evolutionary context, one should suspect the presence of

artifacts (for instance due to background noise).

N Using phylogenetics, one could infer the number of contrib-

utors in the mixture; however, this is not always possible and

depends on the profiles contributing to the mixture.

N As a cautionary note, it is important to highlight the fact that

the complications that might arise in mixture cases involving

poor DNA samples may well be imponderable; therefore, not

all cases can be resolved by way of mtDNA analysis.

N For a generic example we have shown that apparent tumor

instabilities are more likely explained in the context of sample

mix-up or contamination, which can easily arise in the course

of sample preparation or analyses [5].

Figure 5 shows the flowchart of the procedures dealt with in the

present article.

Given that mtDNA analysis is the ultimate choice in mixture

cases where autosomal markers have failed, more attention should

be given to this maker in complex cases. Herewe have developed a

statistical framework and software (freely available from the

authors: http://repository.umb.no/R/mtDNA/) that will allow

the resolution of cases that otherwise would remain unresolved.
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