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Abstract: A vast number of structural modifications have been performed for khellactone derivatives
(KDs) that have been widely concerned owing to their diverse biological properties, including
anti-hypertension, anti-HIV, reversing P-glycoprotein (P-gp) mediated multidrug resistance, and
anti-inflammation effects, to find the most active entity. However, extensive metabolism of
KDs results in poor oral bioavailability, thus hindering the clinical trial performance of those
components. The primary metabolic pathways have been revealed as hydrolysis, oxidation, acyl
migration, and glucuronidation, while carboxylesterases and cytochrome P450 3A (CPY3A), as well
as UDP-glucuronosyltransferases (UGTs) primarily mediate these metabolic pathways. Attention
was mainly paid to the pharmacological features, therapeutic mechanisms and structure-activity
relationships of KDs in previous reviews, whereas their pharmacokinetic and metabolic characteristics
have seldom been discussed. In the present review, KDs’ metabolism and their pharmacokinetic
properties are summarized. In addition, the structure-metabolism relationships of KDs and the
potential drug-drug interactions (DDIs) induced by KDs were also extensively discussed. The
polarity, the acyl groups substituted at C-31 and C-41 positions, the configuration of C-31 and C-41,
and the moieties substituted at C-3 and C-4 positions play the determinant roles for the metabolic
profiles of KDs. Contributions from CYP3A4, UGT1A1, P-gp, and multidrug resistance-associated
protein 2 have been disclosed to be primary for the potential DDIs. The review is expected to provide
meaningful information and helpful guidelines for the further development of KDs.

Keywords: khellactone derivatives; metabolism; pharmacokinetics; structure-metabolism
relationship; drug-drug interactions; drug development

1. Introduction

A growing awareness of the determinant roles that pharmacokinetics and metabolism play for
the therapeutic outcome of drugs in vivo has led many pharmaceutical companies to promote the
assessment of pharmacokinetic and metabolic features as important objectives during new drug
development [1]. In many cases, compounds that show promising activities in vitro are revealed
later to be inactive in vivo, which may be attributed to their undesirable pharmacokinetic properties.
Therefore, it is important to make in-depth understanding of: (1) the basic mechanisms participated in
the absorption, distribution, metabolism and excretion (ADME) courses of drug-candidates; (2) the
enzymes and transporters involved in the metabolism and transport of the drug-candidates; (3) the
interactions between chemicals and the drug-metabolizing enzymes along with drug transporters,
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particularly, cytochrome P-450s (CYP450s) and P-glycoprotein (P-gp) which always offer the dominant
contribution to the potential drug-drug interactions (DDIs); and (4) the activities and toxicities
of the metabolites [1]. Moreover, corresponding to the structure-activity relationships (SARs),
structure-metabolism relationships (SMRs) evaluation is becoming a feasible approach to supervise
drug design based on calculated physicochemical parameters incorporating existing knowledge; hence,
it has been widely concerned in drug development.

So far, more than 50 natural khellactone derivatives (KDs) have been isolated and identified from
plants, mainly from the genus Peucedanum, e.g., praeruptorin A (PA, 1), (+)-praeruptorin A (dPA, 2),
(´)-praeruptorin A (lPA, 3), praeruptorin B (PB, 4), (+)-praeruptorin B (dPB, 5), (´)-praeruptorin B (lPB,
anomalin, 6) and pteryxin (7) (Figure 1) [2]. Initially isolated from herbal medicines, a great number
of structural modifications have been performed on KDs, aiming to develop novel agents for the
treatment of Acquired Immune Deficiency Syndrome (AIDS) [3], hypertension [4] and P-gp-mediated
multidrug resistance [5]. C-31 and C-41 of these KDs are usually observed as two stereogenic centers,
suggesting that enantiomers and diastereoisomers could widely occur for KDs [6–10]. In view of the
chiral preference of endogenous macromolecules, stereoselectivity should be a crucial issue for the
pharmacokinetics and metabolism of KDs.
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Suksdorfin (8) was isolated as an anti-HIV principle from Lomatium suksdorfii (S. Watson)
J.M. Coult. & Rose (Umbelliferae) (“Beimei Qianhu”) [11]. Afterwards, an analog of suksdorfin,
31,41-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK, 9) was demonstrated as a promising lead for
anti-HIV agents by suppressing the production of double-stranded viral DNA from a single-stranded
DNA intermediate, in stark contrast to current HIV-1 reverse transcriptase (RT) inhibitors that block
the generation of single-stranded DNA from a RNA template [12,13]. This unique mechanism of action
provides an opportunity to discover a novel non-nucleoside reverse transcriptase inhibitor (NNRTI)
that remains effective against HIV-1 RT multi-drug resistant strains [14]. Because of the remarkable
activities, systematic structural modifications of this famous leading compound have provided more
than 150 KDs, including mono-, di-, and trisubstituted DCK-analogs [15], all of which maintain
the (31R,41R)-configuration of suksdorfin, and their SARs have also been defined [16]. Recently,
3-cyano-methyl-4-methyl-DCK (CMDCK, 10) showed the brightest prospects, because the introduction
of cyanomethyl group can not only enhance the metabolic stability, but also offer a good H-bond
acceptor and can favorably interact with Ser or Tyr aminoacid residues on the NNRTI binding site
surface [17]. Moreover, it is worth noting that (+)-calanolide A (11), a compound that shares similar
skeleton with KDs, is undergoing clinical trials as a candidate for the next generation of NNRTIs [18].

There are an increasing number of the pharmacological evaluations concerning the
antihypertensive activity of Peucedanum praeruptorum Dunn. (Umbelliferae) (“Baihua Qianhu”) [19].
As the primary chemical homologue in this herbal medicine [6,7,20], KDs have been revealed to
be responsible for this activity. Acting as the chemical indicator of P. praeruptorum, a combinatory
mechanism has been revealed for the endothelium-dependent vasorelaxatory effect of PA enantiomers
(dPA & lPA, 2 & 3), mainly attributed to nitric oxide (NO) synthesis catalyzed by endothelial nitric
oxide synthase (NOs) along with Ca2+ channel blocker, rather than K+ channel opener [21]. In
order to obtain optimal structure responsible for this pharmacological feature, a vast number of KDs
were synthesized by chemical modifying dPA, including cis- and trans-configurations to C-31/C-41.
Bioactivity assays indicated that most KDs showed obvious Ca2+ antagonist activity, however, not
comparable to dPA (2) [22,23]. Moreover, it was not surprised to discover that PA enantiomers
(2 and 3) initiated different pharmacologic effects in vitro since the biological system has stereoselective
preference which generally leads to chiral recognition during interactions between xenobiotics and
endogenous macromolecules [24].

P-gp over-expression in tumor cells leads to multidrug resistance (MDR) and causes failure
in cancer chemotherapy. The attempts to develop a new class of P-gp modulators have been
made on KDs, aiming to reverse P-gp-MDR [5,25–27]. Mechanistic studies suggested that
KDs could reverse P-gp-MDR through directly binding to substrate binding site(s) or allosteric
site(s) on P-gp therefore impairing P-gp-mediated drug transport across cell membrane [25].
SARs evaluations suggest that MDR-reversal activity of KDs shows close correlation with the
acyloxy substitution and the configurations of C-31 and C-41. Following a series of assessments,
(˘)-31-O,41-O-bis(3,4-dimethoxycinnamoyl)-cis-khellactone (12) bearing two methoxycynamoyloxy
groups at the C-31 and C-41 along with (31,41)-cis-configuration, was revealed dramatic MDR-reversing
activity in vitro and in vivo, indicating a promising prospect in medical usage [5,25].

In addition, some other pharmacological features have also been reported for KDs, such as
anti-platelet aggregation [28,29], anti-inflammation [30–32], inducing differentiation and apoptosis of
cancer cell [33,34], and cytotoxicity [35].

Above all, a great number of pharmacological evaluations have proved a bright prospect for KDs
as drug-candidates. However, increasing number of articles revealed that their insufficient metabolic
stability induced low oral bioavailability (F), thus limiting the further clinical development of KDs.
The scopes of the current review include the summarization of the pharmacokinetic and metabolic
properties of KDs, as well as the discussions concerning the structure-metabolism relationships of KDs
and KDs-induced potential DDIs, aiming to provide meaningful information and helpful guidelines
for the further development of KDs.
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2. Pharmacokinetic Properties of Khellactone Derivatives

Many failures of drug candidates in development processes are the result of their undesirable
pharmacokinetic properties, for instance poor absorption, undesirable half-lives (t1/2), and extensive
first-pass effect. Regarding KDs, high lipophilicity (logP values calculated with ChemBioOffice 2008
are usually between 1 and 5) results in the good absorption, however, it leads to a low metabolic
stability. Thus, it isn1t surprising to note that most KDs suffer from the low bioavailability due to the
presence of various acyloxy groups at C-31 and C-41.

Till now, some investigations have been devoted to the preclinical pharmacokinetic profiles of
KDs, and the pharmacokinetic parameters summarized in the literature [8,17,36–41] are collected
in Table 1. In principle, the data in the table indicate that: (1) low bioavailability was observed for
all KDs (lower than 26% for all investigated compounds), attributed to the low metabolic stability;
(2) except for the end-hydrolyzed products, khellactones, the mean residence time (MRT0´t) values
of KDs were less than 7 h; (3) except for the end-hydrolyzed products, their t1/2 values were less
than 200 min when single compounds were administered, and the peak time (tmax) values were
less than 2 h; and (4) the other parameters, including apparent volume of distribution (Vd), area
under concentration-time curve (AUC), and peak concentration (Cmax), exhibited big variations due
to the variegated structures. The plasma pharmacokinetic profile of PA (1) was characterized as a
linear manner instead of non-linear profile, when this component was intravenously dosed (i.v.) [39].
At the meanwhile, after oral administration (i.g.) of either PA enantiomer or racemic PA (1), it is
quite difficult to detect the prototypes, whereas cis-khellactone enantiomers (dCK and lCK, 13 & 14)
were observed as the dominant PA-derived components [38]. Similarly, dCK and lCK along with their
diastereoisomer, (+)-trans-khellactone (dTK, 15), were detected as the primary Peucedani Radix (the
roots of P. praeruptorum) extract-derived components in rats following oral administration of the crude
extract [8,42]. Even more, lPA (3) prototype disappeared rapidly following i.v. dosing (undetectable
after 5 min) owing to the extensive hydrolysis catalyzed by the carboxylesterase(s) in rat plasma.

2.1. Absorption

Absorbability is one of the most important criteria for choosing new drug candidates for
development. The drug absorption can be governed by a variety of biological and physicochemical
factors, among which the two most important ones that determine both the extent and the rate of
absorption are polarity and solubility. As elucidated in Table 1, KDs manifest quick absorption into the
circulation system following oral administration.

Several in vitro platforms, e.g., Caco-2 cell (human colon adenocarcinoma cell line) and
Madin-Darby canine kidney epithelial cells transfected with the human MDR1 gene (MDCK-MDR1),
have been well developed for permeability and absorption screening, of which Caco-2 cell monolayer
model has been widely adopted as a preferable tool [43]. Yee [43] suggested that the overall ranking
of compounds with the apparent permeability coefficient (Papp) lower than 1 ˆ 10´6 cm/s, between
1 and 10 ˆ 10´6 cm/s, and higher than 10 ˆ 10´6 cm/s can be classified as poorly (0%–20%),
moderately (20%–70%), and well (70%–100%) absorbed candidates, respectively, while the efflux
ratio (PappBLÑAP vs. Papp APÑBL) was adopted as the criterion to access the directional preference
and to determine the transporter-mediated mechanism with a threshold of 2. The transports of PA
(1), dPB (5), anomalin (lPB, 6), and CMDCK (10) have been evaluated on Caco-2 cell monolayers
model [44–46], among which the transport properties of PA were characterized under the help of a
chiral HPLC-UV method and the parameters for both PA enantiomers (dPA & lPA, 2 and 3) were
obtained. The parameters are summarized in Table 2. Overall, all efflux ratios are less than 1.1; hence,
the involvement of transport can be excluded. Apart from dPB (5), the other KDs exhibited good
permeability (Papp great than 10 ˆ 10´6) across the Caco-2 monolayers, agreeing well with the results
from pharmacokinetic profiling (Table 1).
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Table 1. Pharmacokinetic parameters of khellactone derivatives in vivo.

Comp. Route CL (mL/min/kg) Vd (L/kg) AUC (µg¨ min/L) t1/2 (min) Cmax (ng/mL) tmax (h) MRT0´t (h) F (%) Ref.

Ref. 13-4 a i.v. 0.01 ˘ 0.003 2.34 ˘ 0.31 195,270.08 97 ˘ 11 N.A. N.A. N.A. N.A. [17]
Ref. 13-4 i.g. 0.058 ˘ 0.01 8.19 ˘ 2.60 348,067.29 167 ˘ 30 N.A. N.A. N.A. 17.8 [17]
CMDCK i.v. 0.044 ˘ 0.010 8.14 ˘ 5.88 47,082 ˘ 10,464 120 ˘ 60 N.A. N.A. N.A. N.A. [47]
CMDCK i.g. N.A. N.A. 29,874 ˘ 4524 200.4 ˘ 31.8 105.7 ˘ 73.3 0.4 ˘ 0.1 N.A. 15.8 ˘ 2.1 [47]

HMDCK b i.v. 0.050 ˘ 0.0017 0.008 ˘ 0.002 558.4 ˘ 8.71 N.A. N.A. N.A. 1.235 ˘ 0.618 N.A. [48]
HMDCK b i.g. 0.33 ˘ 0.083 0.079 ˘ 0.039 57,978 ˘ 13,182 N.A. 530.7 ˘ 120.8 0.58 1.983 ˘ 0.478 17.3 [48]
Ref. 48-5 i.g. 0.55 ˘ 0.10 0.252 ˘ 0.130 31,302 ˘ 8016 N.A. 284.1 ˘ 74.73 0.50 3.092 ˘ 0.454 10.3 [48]
Ref. 48-6 i.g. 1.7 ˘ 0.33 0.669 ˘ 0.422 9474 ˘ 2576.4 N.A. 80.9 ˘ 18.80 0.38 2.658 ˘ 0.681 3.3 [48]
Ref. 48-7 i.g. 0.77 ˘ 0.22 0.373 ˘ 0.193 21,252 ˘ 6336 N.A. 254.6 ˘ 32.45 0.25 3.769 ˘ 0.063 7.2 [48]
Ref. 48-8 i.g. 0.57 ˘ 0.067 0.102 ˘ 0.011 35,334 ˘ 4323.6 N.A. 398.5 ˘ 29.00 0.50 1.517 ˘ 0.207 12.4 [48]
Ref. 48-9 i.g. 0.62 ˘ 0.017 0.467 ˘ 0.063 23,046 ˘ 372.6 N.A. 163.6 ˘ 13.56 0.25 3.581 ˘ 0.307 7.5 [48]

Ref. 48-10 i.g. 0.27 ˘ 0.12 0.045 ˘ 0.017 77,790 ˘ 26,256 N.A. 621.5 ˘ 79.67 0.75 1.793 ˘ 0.181 25.7 [48]
Ref. 48-12 i.g. 0.43 ˘ 0.083 0.049 ˘ 0.020 46,536 ˘ 9774 N.A. 529.0 ˘ 192.9 0.50 1.286 ˘ 0.085 15.8 [48]
Ref. 48-13 i.g. 0.67 ˘ 0.17 0.123 ˘ 0.058 28,668 ˘ 7722 N.A. 191.1 ˘ 2.48 0.75 2.136 ˘ 0.123 9.8 [48]

PA i.v. N.A. N.A. 37,835.6 ˘ 5871.6 51.18 ˘ 9.02 N.A. N.A. N.A. N.A. [37,39,49]
Pteryxin i.g. N.A. N.A. 4128.08 87.78 976.04 2.00 6.732 N.A. [38,41]

dPB i.v. 9.6 ˘ 3.2 N.A. 1,088,700 ˘ 375,900 7.14 ˘ 2.14 N.A. N.A. N.A. N.A. [36]
dPA i.v. N.A. N.A. 80,346 ˘ 8724 109.2 ˘ 51.6 N.A. N.A. 1.61 ˘ 0.58 N.A. [40]
lPA c i.v. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. [40]
lCK d i.g. N.A. N.A. 191,172 ˘ 89,460 352.2 ˘ 169.8 345.6 ˘ 204.0 0.71 ˘ 0.19 10.0 ˘ 3.35 N.A. [40]
lCK e i.g. N.A. N.A. 512,820 ˘ 235,470 353.4 ˘ 157.2 1156.3 ˘ 637.6 0.72 ˘ 0.53 10.3 ˘ 3.95 N.A. [40]
dCK f i.g. N.A. N.A. 46,536 ˘ 22,890 409.2 ˘ 180.6 108.5 ˘ 38.2 0.43 ˘ 0.35 11.0 ˘ 4.46 N.A. [40]
lCK f i.g. N.A. N.A. 177,612 ˘ 98,910 427.8 ˘ 266.4 685.1 ˘ 254.3 0.36 ˘ 0.20 13.7 ˘ 5.84 N.A. [40]
dTK g i.g. N.A. N.A. 29,280 ˘ 6462 526.2 ˘ 69 55.5 ˘ 31.3 4.83 ˘ 1.83 N.A. N.A. [8]
lCK g i.g. N.A. N.A. 213,414 ˘ 54,096 420 ˘ 85.2 468 ˘ 233 1.08 ˘ 1.14 N.A. N.A. [8]
dCK g i.g. N.A. N.A. 50,982 ˘ 10,110 420.6 ˘ 84 362 ˘ 224 1.08 ˘ 1.14 N.A. N.A. [8]
dPA g i.g. N.A. N.A. 3468 ˘ 1620 1666.2 ˘ 2049 19.8 ˘ 11.3 0.38 ˘ 0.56 N.A. N.A. [8]
dPB g i.g. N.A. N.A. 7932 ˘ 2088 526.2 ˘ 69 10.3 ˘ 5.42 4.83 ˘ 1.83 N.A. N.A. [8]
dPE g i.g. N.A. N.A. 7734 ˘ 954 526.2 ˘ 69 5.35 ˘ 0.41 4.83 ˘ 1.83 N.A. N.A. [8]

a: follow the number named in corresponding references; b: (31,41)-3-hydroxymethyl-4-methyl-31,41-di-(S)-camphanoyl-(+)-cis-khellactone; c: parent compound could only be detected
before time 10 min; d: the parameters were obtained after oral treatment of PA; e: the parameters were obtained after oral treatment of dPA; f: the parameters were obtained after oral
treatment of lPA; g: the parameters were obtained after oral treatment of Peucedani Radix extract; N.A.: not archived in corresponding references.
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Table 2. The bi-directional Papp values of some khellactone derivatives in the Caco-2 cell
monolayer model.

Compound Papp APÑBL (ˆ10´6, cm/s) Papp BLÑAP (ˆ10´6, cm/s) Papp BLÑAP/Papp APÑBL Ref.

dPB 1.25 ˘ 0.05 1.33 ˘ 0.13 1.06 [50]
lPB 15.27 ˘ 0.45 13.82 ˘ 1.37 0.90 [51]
dPA 22.5–30.3 16.5–19.7 0.6–0.8 [46]
lPA 20.1–28.2 15.8–18.8 0.6–0.8 [46]

CMDCK 23.2 ˘ 1.76 12.1 ˘ 1.37 0.52 [17,47]

The carboxylesterase(s)-mediated enantiospecific hydrolysis is regarded to be responsible for the
low recovery of lPA (3) in Caco-2 system, and subsequently resulted in enantioselective properties
between dPA and lPA (2 and 3). In addition, it is interesting to find that an effective method was
developed for the assessment of intestinal permeability of dPA (2), lPA (3), dPB (5), and lPB (6) on Caco-2
monolayer model using online guard column extraction coupled with tandem mass spectrometry [52].

2.2. Distribution

Drugs are often administered at a location distant from their intended site of action. Hence, to be
effective, the drug must be absorbed and transported from the dosing site across several bio-membranes
to reach the target tissue and the action domain. Penetrating cell membranes is a complicated course,
which highly relies on the nature of the membrane and the physicochemical properties of the drug,
such as ionization characters, hydrophobicity, number of hydrogen bonds, and molecular size [53].

Zhang et al. [39] investigated the distribution of PA (1) in a variety of biological samples, including
plasma, urine, bile, tissues, and feces by developing a fast and sensitive LC-MS/MS method. The
results demonstrated that PA is principally distributed in blood-supply tissues, such as heart, spleen,
and lung with AUCs (areas under the curve) of 189%, 205%, and 134% of that in plasma after i.v.
administration of PA (1), respectively, indicating that cardiovascular and respiratory systems are the
main targets of PA (1). In addition, noticeable distribution of PA (1) in brain was confirmed because
low polarity of PA permits it to cross the blood-brain barrier (BBB). In a comparison with kidney,
faster elimination was observed for PA (1) in liver, which can be attributed to the extensive hepatic
metabolism in the enzyme-enriched tissue. No long-term accumulation was observed for PA (1) in all
tissues. Linear dynamics was manifested for PA (1) in all tissues following i.v. administration in dose
range of 5–20 mg/kg. However, when PA (1) was orally administered, the metabolites rather than its
parent compound were detected in vivo, resulting in that the oral distribution of PA (1) could not be
characterized. At the meanwhile, the concentration of pteryxin (7), a regio-isomer of PA, in various
tissues of mouse following the order: Cliver > Cbrain > Cheart > Ckidney, Cstomach > Cspleen > Cintestines,
and no long-term accumulation was observed for pteryxin in all tissues after oral treatment, coinciding
with the findings obtained for PA. As expected, pteryxin bears great hydrophobicity (logP, 2.72,
calculated with ChemBioOffice 2008), thus resulting in the extensive brain distribution via crossing
BBB. In addition, Liang et al. [36] profiled the tissue distribution of dPB (5) in rats after intravenously
treated, and claimed that the highest concentration was observed in the lung, followed by heart, liver,
and kidney tissues, successively. dPB prototype (5) also can be detected in the brain, indicating that
dPB (5, logP, 4.12, calculated with ChemBioOffice 2008) could overcome BBB after i.v. administration.

2.3. Excretion

Xenobiotics are generally eliminated from the body by metabolism and/or excretion. Both the
liver and kidney offer key contributions for the excretion of drug prototypes and their metabolites.
In principle, as aforementioned, metabolism was the primary pathway for the elimination of KDs;
thus, it is reasonable to speculate that the recovery of prototypes in either feces or urine should be
quite low.
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The fecal and urinary samples after oral dosement of PA (1) were analyzed using LC-MS/MS in
our group, the original form of PA (1) can be excreted through both pathways [54]. Whereas, low total
recoveries were revealed for PA (1) within 24 h (0.120% in urine and 0.009% in feces), suggesting that
quite a small portion of PA could be excreted in the original form through urine and feces, which might
be caused by significant liver-mediated first pass effect [39]. In addition, a number of KDs1 prototypes
were detected in the feces and urine following orally administered Peucedani Radix extract at a dose
of 1000 mg/kg [42].

3. Metabolism of Khellactone Derivatives

Because the entire blood supply of the upper gastrointestinal tract passes through the liver prior
to its arrival of the systemic circulation, the drug may be bio-transferred by the enzymes in either
liver or intestine during the first passage of drug absorption. In general, the higher drug permeability
and the greater metabolic clearance correspond to a higher lipophilicity, and thereby more extensive
first-pass elimination [55]. KDs usually bear the khellactone skeleton with two acyloxy groups, one at
the C-31 position while the other is at C-41, suggesting KDs always show high lipophilicity (logP usually
among 1–5). Consequently, it is not surprising to note that KDs feature low metabolic stability and
low bioavailablity in most cases. Not only the enzymes in liver and gut, but also the carboxylesterases
in rat plasma were reported to possess the catalytic abilities for KDs [7,9,10,40,50,54,56–58];
however, the gut bacteria-catalyzed metabolism hasn1t been reported for this kind of coumarins [54].
Taking lPA (3) for instance, its prototype is undetectable even following intravenous administration, let
alone oral treatment, while most portion of dPA (2) can be quickly metabolized into lCK (14) and some
other metabolites owing to the extensive distribution of isozymes in both intestine and liver tissues.

Enzymatic kinetics of KDs has also been widely addressed, and the primary kinetic parameters
documented in the literature are elucidated in Table 3. Corresponding to their concentration (remaining
percentage)-time curves, most t1/2 values are lower than 30 min, indicating quick metabolism in human
liver microsomes, human intestinal microsomes, rat liver microsomes, and recombination enzymes.
The high levels of the in vivo intrinsic clearance (CLint), all of which were greater than 0.20 mL/min/mg,
consolidate the observation of low bioavailability for KDs in rats. Michaelis constant (Km) values of
PA (1), dPA (2), and CMDCK (10), were lower than 65 µmol/L, indicating relative high affinity with
human intestinal microsomes, human liver microsomes, human CYP3A4, and rat liver microsomes,
whereas Vmax levels were higher than 0.25 pmol/min/mg.

Tandem mass spectrometric platforms, including ion trap, hybrid triple quadrupole-linear ion
trap and time-of-flight mass spectrometry have been demonstrated as the reliable tools to plausibly
identify the metabolites in vitro and in vivo. The fragmentation patterns of KDs have been previously
proposed by various mass spectroscopic techniques [6,58]: initially, neutral loss takes place at the C-41

position to afford a stable intermediate residue; the intermediate ion will subsequently cleave another
neutral molecule from the C-31 position to produce a diagnostic fragment ion at m/z 227 or remove
an acyl group to yield the other characteristic signal at m/z 245. The cracking rules proposed for KDs
are illustrated in Figure 2.
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Table 3. Kinetic parameters of khellactone derivatives in vitro.

Comp. t1/2 (min) CLint (mL/min/mg) CLh (mL/min/kg) Qh (mL/min/kg) Km (µmol/L) Vmax (pmol/min/mg) Ref.

Ref. 38-1 a 2.4 2.9 - - - - [59]
Ref. 38-2 5.1 1.4 - - - - [59]
Ref. 38-3 1.5 4.6 - - - - [59]
Ref. 38-4 2.1 3.3 - - - - [59]
Ref. 38-5 3.7 1.9 - - - - [59]
Ref. 38-6 2.0 3.5 - - - - [59]
Ref. 38-7 3.4 2.0 - - - - [59]
Ref. 38-8 5.2 1.3 - - - - [59]
Ref. 38-9 2.2 3.2 - - - - [59]
Ref. 38-10 2.0 3.5 - - - - [59]
Ref. 38-11 2.1 3.3 - - - - [59]
Ref. 38-12 b b - - - - [59]
Ref. 38-13 5.7 1.2 - - - - [59]
Ref. 38-14 4.3 1.6 - - - - [59]
Ref. 48-3 17.92 0.39 - - - - [48]
Ref. 48-5 34.61 0.20 - - - - [48]
Ref. 48-6 35.27 0.20 - - - - [48]
Ref. 48-7 29.07 0.24 - - - - [48]
Ref. 48-8 25.93 0.27 - - - - [48]
Ref. 48-9 3.90 1.78 - - - - [48]
Ref. 48-10 49.26 0.14 - - - - [48]
Ref.48-11 30.09 0.23 - - - - [48]
Ref. 48-12 30.77 0.23 - - - - [48]
Ref. 48-13 26.54 0.26 - - - - [48]

CMDCK (HIM) 25.7 0.012 3.3 - 45.6 0.33 [56]
CMDCK (HLM) 5.62 ˘ 0.57 0.31 ˘ 0.031 19.4 ˘ 0.12 20.7 14.3 1.78 [58]

CMDCK (CYP3A4) 6.84 ˘ 1.55 - - - 12.1 1.58 [58]
PA (HLM) 30.13 c 0.27 0.12 - - - [54]

lCK 1.29 0.02 ˘ 0.004 25.8 ˘ 2.70 [60]
CAK-4 4.33 ˘ 1.40 0.402 ˘ 0.0715 [40]
CAK-3 9.97 ˘ 3.55 0.663 ˘ 0.165 [40]

PA(RLM) 8.19 c 0.24 ˘ 0.02 - - 64.1 ˘ 4.22 0.26 ˘ 0.036 [37,54,57]
dPA(HLM) 22.65 c 0.20 - - 17.83 ˘ 15.02 - [9,60]
dPA(RLM) 10.24 c - - - - - [9]
lPA(HLM) 31.09 c 0.28 - - - - [9]
lPA(RLM) 3.01 c - - - - - [9]

a: follow the number named in corresponding references; b: parent compound could not be detected at time 0 min; c: calculated using the CLint value documented in corresponding
references; -: not archived in corresponding references.
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3.1.1. Hydrolysis of Khellactone Derivatives

In sight of the presences of two acyloxy groups, it is reasonable to believe that hydrolysis is
a principal metabolic pathway for KDs (Figure 3).
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khellactone derivative in Peucedani Radix.

On the other hand, phase II conjugation cannot occur owing to the absence of hydroxy/amino
group in the chemical structures of most KDs. When the mass spectral profile of dPE (16) in liver
microsomes was analyzed, a pair of hydrolyzed products was detected with similar mass spectrometric
behaviors and the same molecular weight as 346 Da, and consequently, we made a preliminary
speculation that one hydrolyzed metabolite was directly generated by hydrolysis, yet epimerization
gave a birth to the other one [61]. However, this hypothesis was contrary to the observation of the sole
end-hydrolyzed product, cis-khellactone (17). Aiming to validate our assumption for the generation of
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the isomers, an in-depth study was carried out in our group, thereafter. Two hydrolyzed metabolites of
lPA (3), which shared identical molecular weight (344 Da), were isolated following incubation of lPA in
fresh rat plasma, and then, the two hydrolyzed products were definitely identified as regio-isomers via
a variety of spectroscopic and spectrometric techniques, suggesting intra-molecular acyl migration was
responsible for the generation of the pair of regio-isomers (CAK-4 and CAK-3, 18 and 19) [9], and also,
for the observation of the paired hydrolyzed products of dPE (16). According to step-wise hydrolysis,
the sole end-hydrolyzed product of PA (1) was afforded as cis-khellactone (17). Subsequently, further
glucuronidation occurred for cis-khellactone (17) to afford a prominent cis-khellactone glucuronide (17)
along with a minor one [54]. A tentative hypothesis was carried out in our previous report to address
the definitely character of the cis-khellactone glucuronides based on the reactivity of the hydroxy
groups at different sites [54]. It was well known that the nucleophilicity and stereo-conformation of
hydroxyl groups play determinant roles for the glucuronidation preference [62]. The electron cloud
density of the hydroxyl group at C-41 of cis-khellactone could be down-regulated by the coumarin
skeleton according to p,π-conjugation, suggesting that 31-OH should show a higher reactivity for
the glucuronidation than 41-OH. Therefore, the major glucuronidated product could be plausibly
identified as cis-khellactone-31-glucuronide (20), whereas the minor one was thereby characterized as
its regio-isomer, cis-khellactone-41-glucuronide (21). Collectively, the metabolic pathways of PA (1) are
summarized in Figure 3. On the other side, oxidative hydrolyzed product were detected for dPB (5)
and dPE (16) [61].

NADPH-dependence is the criterion to judge the participation of CYP450s in the metabolism of
xenobiotics. Although CYP450s catalyze most of the xenobiotic metabolism, the hydrolysis of lPA (3)
was revealed to be partly mediated by the carboxylesterases in rat plasma, in Caco-2 cells, and in liver
microsomes of rat/human in the absence of NADPH-regenerating system; however, lPA kept intact
in human plasma (Figure 4). The contribution from human either carboxylesterases 1 or 2 (hCES1
or hCES2) was excluded using recombinant enzymes, suggesting that further study is called for to
definitely identify the hydrolysis enzyme involved in the hydrolyzed cleavage of acyl group of lPA,
which might also own the catalytic ability for the hydrolysis of some other KDs.
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Figure 4. NADPH-independent hydrolysis and intra-molecular acyl migration of praeruptorin A (PA)
in Caco-2 cells, in rat/human liver microsomes in the absence of NADPH-regenerating system, and in
fresh rat plasma. LM: liver microsomes. The structures of the two cis-khellactone glucuronides were
tentatively assigned on the basis of the speculation in [31].

Species differences were observed for the hydrolysis of KDs due to the significant differences
for the types and contents of enzymes between rats and human beings. It is necessary to mention
that rat plasma carboxylesterases rather than human plasma carboxylesterases exhibit the catalytic
ability for lPA (3) hydrolysis. The enzymes in human liver microsomes exhibited region preference for
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the angeloxy group at C-41 of dPA, while hydrolysis could be initiated at either position in rat liver
microsomes in the presence of NADPH-regenerating system [9]. Moreover, the generation rates of all
hydrolyzed products in rat liver microsomes were different from those in human liver microsomes; in
most case, the rat liver microsomes exhibit more powerful catalytic ability, in the other words, greater
metabolic rates for KDs, than human liver microsomes.

3.1.2. Oxidation of Khellactone Derivatives

The oxidation of coumarins has been extensively studied in vivo and in vitro, and coumarins can
be transferred via a number of metabolic pathways, among which 3-hydroxylation and 3,4-epoxidation
are demonstrated as the prominent pathways for coumarin in rat liver microsomes, and most coumarin
oxidation are catalyzed predominately by CYP3A [63–66]. On the basis of this rule, Ruan et al. [57]
suggested that PA underwent oxidation at the skeleton of coumarin. However, the oxidation site was
finally placed on the side chains at C-31 and C-41 by our group and some other groups using the well
proposed mass fragmentation patterns of KDs [9,54,58,59,61]. Step-wise oxidation was reported for
KDs, from methyl group, to hydroxymethyl, then to aldehyde group, and even to carboxy group at
last, such as the oxidation pathways of PA (1) [54] and CMDCK (10) [54,58].

In Ruan1s report [57], the mono-oxidation site was only speculated based on the neutral loss of
an acetyl acid (CH3COOH, 60 Da) in the MS2 spectra of oxidized metabolites, while the product ion
at m/z 227 corresponding to the loss of a C4H6OHCOONa (138 Da) molecule from the C-31 position
was overlooked, leading to an inappropriate judgment. Moreover, in order to unambiguously verify
the oxidation site of dPA (2), scale-up incubation was performed for the incubation of dPA (2) in rat
liver microsomes to yield abundant oxidized products. Following that, the incubated system, which
contained the parent compound and metabolites, was entirely introduced for NMR measurement.
The side chains were proved to be preferred for the regiospecific metabolism of dPA (2) after careful
assignment of the NMR spectroscopic data. However, when cyanomethyl and methyl groups were
introduced at C-3 and C-4, for instance CMDCK (10), oxidation could take place for cyanomethyl or
methyl groups.

As expected, species discrepancies occurred not only for the elimination rate of the parent
compounds, but also for the types and amounts of metabolites. Taking dPA as an example, only three
oxidized products were detected in human liver microsomes; alternatively, six ones were detected in
rat liver microsomes. Moreover, the content of each product exhibited significant variation between
these two species. Collectively, the two species could generate obvious differences for both qualitative
and quantitative aspects.

Above all, metabolic pathways, including stepwise hydrolysis, intramolecular acyl migration,
glucuronidation, and stepwise oxidation were reported for KDs. The metabolic information is
illustrated in Figures 3–6.
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3.2. Enzyme Involved in the Metabolism of KDs

The participation of CYP450s in the metabolism of KDs has been demonstrated by the
NADPH-dependent manners for the generation of most metabolites. Zhuang et al. screened a panel
of recombinant human CYP enzymes, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, and CYP3A5, as well as a series of chemical inhibitors, namely ketoconazole,
troleandomycin, ritonavir, naphthoflavone, sulfaphenazole, tranlcypromine, and quinidine. Human
CYP3A4 and CYP3A5 were proved to act the principal roles for the CMDCK (10) metabolism [58].
Identification of CYP450 isozymes involved in metabolism of dPA (2) was achieved in our groups
by integrating chemical inhibitors and recombinant human CYP enzymes, as well as antibodies,
and the findings consolidated the key role of human CYP3A4 for the KDs1 metabolism. Even more,
Zhang et al. [37] clarified the contributions from rat CYP3A1 and CYP3A2 for the metabolism of PA (1)
by comparing the pharmacokinetic profiles between normal rats and liver cirrhosis rats.

Carboxylesterases, enzymes that are widely distributed in the tissues and blood of mammals,
mainly hydrolyze drugs containing ester and/or amide linkages, thus playing an important role in
drug metabolism, especially for ester prodrugs. The contribution of hCES1 and hCES2 was excluded
by screening recombinant enzymes for the hydrolysis of lPA (3). The hydrolysis of pteryxin in rat
plasma was also reported in our previous article [42].

However, both carboxylesterases and UDP-glucuronosyltransferases (UGTs) that are involved in
the hydrolysis and glucuronidation of KDs haven1t been definitely characterized, thus, further studies
are required to address this issue. In addition, it should be taken into account that the rat plasma
carboxylesterases are quite different from those of humans, hence, it is not reasonable to only use rats
as the sole model animals to assess the preclinical pharmacokinetics of KDs.
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3.3. Structure-Metabolism Relationship

Structure-metabolism relationships (SMRs) evaluation is the one of the most important branches
of structure-pharmacokinetics relationships investigation, owing that SMRs feature characterization
could provide reliable information to obtain optimal structure of new drug with desirable metabolic
features. Metabolic characterization has been performed for a great number of KDs. Herein, we aim to
summarize both of the qualitative and quantitative information archived in the literature, and then to
propose the SMRs for KDs.

As indicated above, KDs share a common core structure, and the differences just occur at the
types of acyloxy groups substituted at C-31 and C-41 positions, except when structural modifications
are performed at C-3 and C-4 of some KDs. Hence, we suggest that the substituents at C-31 and C-41

along with the configurations of C-31 and C-41 (R or S) play the key roles for SMRs. When moieties
were introduced to C-3 and C-4, the groups could contribute to the hydrophobic coefficient (logP), and
subsequently affect the metabolic stability.

Acyl migration was only observed for cis-khellactone derivatives that possess ester bonds
at both C-31 and C-41 in the same configuration (cis-type) due to the space barrier in the case
of trans-configuration. Until now, only lPA and pteryxin, which was identified as having a
31R,41R-configuration by our in-depth study (unpublished data), revealed carboxylesterase(s)-catalyzed
hydrolysis; therefore, we speculate that carboxylesterase(s)-mediated hydrolysis occurs to KDs having
a combination of angeloyl and acetyl substituents with R-configuration at C-31 and C-41. When
hydrolysis has taken place, the skeleton structure would be generated as one of main hydrolyzed
products and the absolute configuration of their respective parent compounds maintained. In the case
of 3,4-unsubstituted KDs, oxidation only takes place at large (isovaleryl, angeloyl or camphanoyl)
side chains, not at smaller (acetyl) substituents, e.g., PA enantiomers. More oxidized products were
observed for dPA than lPA, tentatively suggesting that the (3S,4S)-configuration could enhance the
oxidative ability. Otherwise, oxygen can be added onto the substituent(s) at C-3 and/or C-4 of
3,4-substituted KDs, for instance CMDCK (10) [58].

The metabolic stability of KDs exhibited a positive correlation with their hydrophilicity
(logP values). When dPB and dPE were incubated with human liver microsomes or rat liver microsomes
in parallel, the remaining percentage of dPE is less than that of dPB in either human liver microsomes
or rat liver microsomes, corresponding to the higher hydrophilic level (logP value) for dPE. Meanwhile,
31R,41R-configuration was tentatively regarded exhibiting a better metabolic stability than its antipode
based on the findings observed from dPA vs. lPA. On the other side, several series of mono- and
disubstituted DCK derivatives were adopted to establish the quantitative SARs of DCK derivatives
via assessment of the in vitro metabolic stabilities in human liver microsomes. The metabolism results
indicated that all DCK derivatives underwent rapid oxidation on the lipophilic camphanoyl moieties
and the two camphanoyl ester moieties were the determinants of the low metabolic stability, suggesting
that structural alteration in these two ester moieties is a feasible way to improve the metabolic
profiles of DCK derivatives. A cyano group showed good metabolic stability through improving the
hydrophilicity of KDs when it was introduced onto C-3 site. Further SMRs evaluations are ongoing in
our group to obtain some supervisory evidences for further structural modifications of KDs.

Above all, the ADME courses of KDs following oral administration are summarized in Figure 7.
Firstly, the intestinal barrier only slightly hinders the absorption of KDs, and intestinal bacteria
could not mediate the metabolism of KDs. And then, the critical roles of intestinal microsomes,
liver microsomes, and plasma carboxylesterases were demonstrated for the elimination of KDs from
circulation system. At the meanwhile, urine-mediated excretion could be taken place for KDs. The
wide tissue distribution could also impact the concentration of KDs in blood, in particular blood-supply
tissues, such as heart, spleen, and lung, and KDs could cross BBB to achieve brain distribution. The
attempts to improve the plasma concentration and oral bioavailability of KDs should pay attention to
their crucial metabolism-mediated elimination.
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4. Potential DDIs

Concomitant administration of several drugs is quite common and, indeed, is usually the
situation in hospitalized patients. Whenever two or more drugs are administered over similar or
overlapping time periods, DDIs might occur. Although DDIs can be explained by pharmacodynamic
or pharmacokinetic effects, in many cases, the DDIs show a pharmacokinetic, rather than
pharmacodynamic, basis. Interaction through mutual competitive inhibition among drugs is almost
inevitable, owing that metabolism acts as a major route of drug elimination from the body, and also
many drugs can compete for the same enzyme system, in particular CYP450s.

Inhibition and induction of CYP450 enzymes, such as CYP3A4, are probably the most common
causes for DDIs. Several promising drug candidates have been withdrawn from the market attributing
to the serious adverse effects as a result of CYP450s-mediated DDIs. Therefore, CYP450s-mediated
DDIs have always been regarded as one of the major concerns for clinicians and patients. Besides
metabolic interactions, it is also necessary to recognize that drugs that could regulate the protein
expression of CYP450s may have a substantial contribution for drug interactions.

Moreover, the involvement of transporters, in particular P-gp, for DDIs has been widely reported.
Owing to its intracellular localization, the P-gp can limit cellular uptake of drugs from the blood
circulation into the brain and placenta, and also from the gastrointestinal lumen into the enterocytes.
P-gp can also enhance the elimination of drugs out of the hepatocytes, renal tubules, and intestinal
epithelial cells into the adjacent luminal space. Therefore, there is a prominent role for P-gp to show
a greater impact on drug transport. Like CYP450s, inhibition and induction of P-gp have been reported
as the primary causes for DDIs.

Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are members of the orphan
nuclear receptor subfamily, and they were originally defined as xenobiotic receptors, regulating the
expression of drug-metabolizing enzymes and transporters as adaptive responses to prevent the
accumulation of toxic chemicals in the body. During the last decade, mounting evidences suggested
that PXR and CAR induce a broad spectrum of hepatic and intestinal genes involving in xenobiotic
metabolism and transport. Those target genes include phase I enzymes CYPs (i.e., CYP3A4, CYP2B6,
CYP2Cs, and CYP2A6), phase II enzymes glutathione-transferases, UGTs, i.e., UGT1A1, UGT1A6, and
UGT1A9, and sulfotransferases (SULTs), as well as drug transporters, such as multidrug resistance
protein 1 (MRP1), multidrug-resistance associated protein 2 (MRP2) and organic anion transporter
polypeptide 2 (OATP2).

As xenobiotic receptors, another important feature of either PXR or CAR is the ability to recognize
numerous chemical signals. A variety of structurally diverse CAR/PXR ligands have been reported,
including pharmaceutical drugs, environmental pollutants, herbal medicines, dietary supplements,
and endobiotics.
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4.1. CYP450s and UGTs Mediated DDIs

Preliminary findings suggested that the total coumarin extract of Peucedani Radix, which is
a KDs-enriched complexity, could down-regulate the activity of hepatic microsomal drug-metabolism
enzymes in a dose-dependent manner, including CYP1A1, CYP2E, CYP2C11, and CYP2B1 in mice
after oral administration, and subsequently regulate the metabolism of pentobarbital sodium [67].
Afterwards, Iwata et al. reported that the activity of CYP3A4 rather than CYP2D6 could be inhibited
by the methanol extract of Peucedani Radix via co-incubation with probe substrates [68]; whereas,
the inhibition could be relieved according to pre-incubation, attributing to the inactive metabolites
generated from the extract by crucial metabolism [69]. In view of the prominent content of PA (1)
in Peucedani Radix, it is tentatively suggested that PA could provide primary contribution for the
CYP-activity inhibitive effect, whereas its metabolites couldn1t regulate the enzymatic activity.

However, some contrary findings were obtained when single compounds were introduced
to assess their influences on the CYP3A mRNA, protein expression, and functional activity. KDs,
including PA (1), dPA (2), dPB (5), and dPE (16), could significantly enhance catalytic activity of CYP3A,
particularly CYP3A4, through inducing the mRNA transcription along with protein expression [70–73].
As aforementioned, PXR and CAR are critical determinants of xenobiotics-induced CYP3A expression
and they can generate crosstalk regulation on CYP3A transcription. PXR-/CAR-over expressed and
untransfected human colon adenocarcinoma cells (LS174T) were assessed in parallel to clarify the
roles of PXR and CAR for the increment of CYP3A4 activity. The results indicated that KDs can
co-activate the CAR- and PXR-mediated pathways to co-regulate CYP3A expression. In-depth docking
studies revealed that KDs can be readily docked into the ligand-binding cavity of PXR mainly through
hydrogen bond formation and/or π–π interactions with the residues Ser247, Gln285, His407, and
Arg401 [74].

Protein and mRNA expressions of UGT1A1 were determined by real-time PCR and western
blotting assays after PA (1) and dPA (2) were incubated with HepG2 cells. In parallel, effects of
PA (1) and dPA (2) on UGT1A1 mRNA and protein expressions were also measured after transient
transfection of a specific CAR siRNA in HepG2 cells. Consequently, the UGT1A1 mRNA and protein
expression levels could be significantly induced by either PA or dPA, whereas the mRNA and protein
up-regulation of UGT1A1 could be attenuated by transient transfection of a specific CAR siRNA,
suggesting the critical role of CAR for the inductions of UGT1A1 mRNA and protein expression.

Meanwhile, in the mRNA and protein expression regulation of several enzymes, competitive
inhibition initiated by KDs was also reported for the drugs which are the substrates of CYP3A4.
Preclinical assay was performed for the co-administration of ritonavir and CMDCK (10) to evaluate the
potential competition between these two substrates of CYP3A4. Through inhibiting CYP3A enzymes
in both of the intestine and liver tissues, the concomitant administration of ritonavir can significantly
increase the bioavailability of CMDCK (10) and strengthen its plasma exposure, suggesting extensive
CYP3A4-mediated competition between CMDCK (10) and ritonavir. Seldom have KDs been assessed
for competitive inhibition, however, corresponding to the chemical structures of KDs, we propose
that the acyl substitutes play the determinant roles for the competitive inhibition phenomena at the
meanwhile of determining the metabolic types and rates.

4.2. Transporter-Mediated DDIs

The roles of transporter-mediated DDIs have been well defined, and protein expression
regulation and activity inhibition were regarded as the two primary routes, of which activity
inhibition can be mediated with competitive and non-competitive manners. During the absorption
assessment of KDs using Caco-2 cell monolayers, the involvements of P-gp and the other prominent
transporters were excluded, indicating that the competitive inhibition for transporters can be
neglected. Alternatively, KDs could interfere in transporter action through non-competitive
manner. Following an extensive herbal drug screening program, PA was revealed resensitizing
potential for P-gp-mediated MDR (P-gp-MDR) cancer cells response to cancer drugs, thus being
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regarded as an inhibitor of P-gp. Subsequently, based on the promising performance, a series
of structural modifications were carried out by Fong1s group [5,25–27,33,34] to yield a number
of PA derivatives, one of which, (˘)-31-O,41-O-dicinnamoyl-cis-khellactone (22), exhibited more
potency than PA and verapamil (a definite inhibitor of P-gp) for the reversal of P-gp-mediated
MDR. In P-gp-MDR cells, (˘)-31-O,41-O-dicinnamoyl-cis-khellactone (22) could increase cellular
accumulation of doxorubicin (a probe substrate for P-gp) without regulating the protein expression
level of P-gp. In P-gp-enriched membrane fractions (˘)-31-O,41-O-dicinnamoyl-cis-khellactone
(22) could moderately stimulate basal P-gp-ATPase activity. However, this compound inhibited
P-gp-ATPase activity stimulated by the standard substrates verapamil or progesterone via decreasing
Vmax value rather than Km level. (˘)-31-O,41-O-dicinnamoyl-cis-khellactone (22) could decrease
reactivity of P-gp-specific antibody, agreeing well with the speculation of a non-competitive
inhibition mode. Collectively, it was suggested that (˘)-31-O,41-O-dicinnamoyl-cis-khellactone
(22) binds simultaneously with substrates to P-gp but perhaps at an allosteric site, and thereby
affects P-gp–substrate interactions. In general, two ATP-binding domains are also involved in
the P-gp function of drug transport. Either the substrate binding sites and ATP-binding domains
interact cooperatively as a functional unit; therefore, KDs could affect ATP hydrolysis, and
subsequently suppress P-gp-mediated drug transport. Afterwards, a more superior inhibitor,
(˘)-31-O,41-O-bis(3,4-dimethoxy)-cinnamoyl-cis-khellactone (12), was screened out from numerous
structural modification products. The coexistence of 3- and 4-methoxy groups at the cinnamoyl
moieties remarkably enhanced the P-gp-inhibitory activity, whereas the lone existence of the 4-methoxy
group on cinnamoyl reduced the activity. Contrary to (˘)-31-O,41-O-dicinnamoyl-cis-khellactone
(22), (˘)-31-O,41-O-bis(3,4-dimethoxy)-cinnamoyl-cis-khellactone (12) promoted the binding of
UIC2 antibody to P-gp to induce a conformational change of P-gp. In addition, although
(˘)-31-O,41-O-dicinnamoyl-cis-khellactone (22) could moderately stimulate the basal P-gp-ATPase
activity, (˘)-31-O,41-O-bis(3,4-dimethoxy)-cinnamoyl-cis-khellactone (12) significantly inhibited
P-gp-ATPase activity. A pharmacophore search with verapamil-based template revealed
that four functional groups of (˘)-31-O,41-O-bis(3,4-dimethoxy)-cinnamoyl-cis- khellactone (12)
could simultaneously participate in the interaction with P-gp whereas only three domains
of (˘)-31-O,41-O-dicinnamoyl-cis-khellactone (22) or (˘)-31-O,41-O-bis(4-dimethoxy)-cinnamoyl-
cis-khellactone (23) could be involved in the binding with P-gp. Above all, 31-O,41-O-aromatic acyl
substituted KDs could serve as a new class of P-gp modulator through directly binding with substrate
site(s) or allosteric site(s) on P-gp to hinder drug binding to P-gp, and consequently to slow down ATP
hydrolysis and drug transport. The SARs1 characteristics of KDs were summarized from the Fong1s
reports [5,25–27,33,34] as follows: (1) aromatic acyl groups contributed more than linear or branched
aliphatic acyl group to MDR reversal activity of KDs; (2) cis-configured KDs exhibited higher MDR
reversal potency than the trans-type KDs; and (3) 3,4-dimethoxyl substituted aromatic acyl groups,
which might interact with P-gp as hydrogen bond accepter were more suitable than other groups for
enhancing MDR reversing activity of KDs.

Multidrug resistance protein 2 (MRP2) belongs to the ATP-binding cassette (ABC) transporter
family. It is one of the canalicular export pumps expressed on the apical membrane of polarized cells
and can be extensively distributed in various tissues, including intestine, liver, and kidney. MRP2
plays an indispensable role in exporting a wide spectrum of organic anions, mainly conjugates of
various toxins and carcinogens with glutathione (GSH), glucuronate, or sulfate. In order to assess the
effect of KDs on MRP2, the changes in mRNA level, protein expression, and transport activity of MRP2
were determined by quantitative real-time PCR, western blotting, and the fluorescent MRP2-substrate
5-(6)-carboxy-21,71-dichlorofluorescein (CDF) uptake assay, respectively. In addition, the effects of CAR
knockdown on MRP2mRNA and protein expression were also studied by transient transfection of
a specific CAR siRNA. As a result, PA (1) and dPA (2) could significantly induce the MRP2mRNA
and protein expression, and thereby enhanced the transport activity of MRP2. Moreover, mRNA and
protein expression upregulations were attenuated by transient transfection of a specific CAR siRNA,
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suggesting that the upregulation of MRP2 was mediated by the CAR-pathway. Taken together, PA (1)
and dPA (2) can significantly upregulate MRP2 expression via the CAR-mediated pathway in vitro.

X-ray crystallography demonstrated that PXR has a much larger ligand-binding pocket in
comparison with other nuclear receptors (NRs), which enables PXR to bind a wide variety of
ligands [75]. The ligand-dependent PXR activation has been shown to be species specific. For example,
the antibiotic rifampicin is a potent PXR activator in humans and rabbits; whereas, it has little effect
on the mouse or rat PXR. In contrary, the synthetic anti-glucocorticoid pregnenolone-16α-carbonitrile
(PCN) can activate the mouse and rat PXR; however, it exhibits no effect on human PXR. In X-ray
crystallography studies, CAR was shown to have a much smaller ligand-binding pocket than PXR [75].
Unique structural conformations were characterized that may explain the ligand-independent
activities of CAR [76,77]. The ligand binding of CAR also shows species specificity. For example,
6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is
a potent agonist for the human CAR but not the mouse CAR, while 1,4-bis[2-(3,5-dichloropyridyloxy)]
benzene (TCPOBOP) is more selective for mouse CAR than human CAR. The species specificity of
CAR and PXR represents a challenge for suitable animal models to evaluate candidate human drugs.

In general, it is believed that endogenous CAR and PXR reside in the cytoplasm of
hepatocytes [75,78]. Upon exposure to its agonist, for instance KDs, CAR, and PXR translocate
from the cytoplasm to the nucleus of the cells. Then they bind to their DNA response elements
as heterodimers with the retinoid X receptor (RXR). CAR could heterodimerize with RXR prior to
binding with the promoter region of CYP3A4. The CAR/RXR complex binds to a sequence in the
51-untranslated region of the gene that contains two copies of the nuclear receptor organized as ER6
and controls the expression of pre-mRNA. On the other hand, PXR is capable of dimerizing RXR to
facilitate DNA binding specificity via two highly conserved zinc finger motifs as well as a P-Box motif
and D-Box motif which allow the receptor to target and bind its xenobiotic response elements (XREs)
located in the 51 promoter region of PXR target genes.

The nuclear receptors, in particular CAR and PXR, are responsible for many important xenobiotic
responses. Initially, KDs bind to the CAR and PXR in the cytoplasm, and then CAR and PXR translocate
from the cytoplasm to the nucleus of the cells. After the formation of heterodimers or heterotetramers
with RXR, the complexities will bind to their corresponding DNA sites to enhance the transcriptions of
pre-mRNA, which, subsequently, can be translocated into cytoplasm, and subsequently to up-regulate
the protein expression of CYP3A4, UGT1A1 and MRP2, but, not to affect the protein expression of p-gp.

Collectively, the KDs-initiated drug-drug interaction potency is summarized in Figure 8. P-gp,
CYP3A4, UGT1A1, and MRP2 were regarded to offer pivotal contribution. PXR- and CAR-mediated
pathways were responsible for the upregulation of CYP3A4, UGT1A1, and MRP2 by KDs, however,
without affecting the expression level of P-gp, while non-competitive and competitive inhibition
occurred for P-gp and CYP3A4, respectively.
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5. Conclusions and Perspectives

The scope of this review mainly focuses on summarizing the available pharmacokinetic and
metabolic information on KDs. The predominant metabolic pathways are revealed as stepwise
hydrolysis, stepwise oxidation, acyl-migration, and glucuronidation, while CYP3A, carboxylesterases,
and UGTs offer primary contributions to these metabolic reactions. The knowledge concerning the
SMRs suggests that the acyloxy groups at C-31 and C-41 play the determinant roles for the metabolic
patterns of KDs, and preliminary information has indicated the introduction of hydrophilic substituents
at C-3 and C-4 sites could lower the lipophicity, and thus strengthen the metabolic stability. A series of
evaluations have demonstrated that KDs could not only regulate the expression of both metabolizing
enzymes and transporters, but also affect the activities of P-gp and CYP3A via a competitive or
non-competitive manner, indicating that attention should be paid to the potential for DDIs during
clinical trials of KDs. Above all, in the future innovative efforts should be made to counterbalance the
dramatic pharmacological activities and the metabolic features of KDs, as well as the potential DDIs,
during structural optimization.
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