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Abstract
Aiming to build upon the slow convergence speed and low search efficiency of the potential function-based rapidly exploring
random tree star (RRT*) algorithm (P_RRT*), this paper proposes a path planning method for manipulators with an improved
P_RRT* algorithm (defined as improved P_RRT*), which is used to solve the path planning problem for manipulators in
three-dimensional space. This method first adopts a random sampling method based on a potential function. Second, based
on a probability value, the nearest neighbour node is selected by the nearest Euclidean distance to the random sampling point
and the minimum cost function, and in the expansion of new nodes, twice expansion methods are used to accelerate the search
efficiency of the algorithm. The first expansion adopts the goal-biased expansion strategy, and the second expansion adopts
the strategy of random sampling in a rectangular area. Then, the parent node of the new node is reselected, and the path is
rerouted to obtain a clear path from the initial point to the target point. Redundant node deletion and the maximum curvature
constraint are used to remove redundant nodes and minimize the curvature on the generated path to reduce the tortuosity
of the path. The Bezier curve is used to fit the processed path and obtain the trajectory planning curve for the manipulator.
Finally, the improved P_RRT* algorithm is verified experimentally in Python and the Robot Operating System (ROS) and
compared with other algorithms. The experimental results verify the effectiveness and superiority of the improved algorithm.

Keywords Manipulator · Path planning · Improved P_RRT* algorithm · Nearest neighbour node selection · Two expansions

Introduction

With the introduction of German Industry 4.0, China has
successively proposed the “Made in China 2025” strategy to
adapt to the gradually increasing requirements for the intel-
ligentization of robotic arms. The term robotic arm is short
for robotic intelligent arms. As the name implies, a robotic
arm is an important bionic arm that imitates human arms,
as shown in Fig. 1. The roles of robotic arms are important
and include lifting, transporting, grasping, and loading heavy
objects; they are also used in high-risk, high-precision pro-
cessing operations and other fields [1], as shown in Fig. 2.
At present, China’s industrial robotic arms are mainly used
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in factories. The logistics industry has developed rapidly in
recent years, requiring considerable manpower and material
resources, and intelligent warehousing technology has devel-
oped rapidly. Robotic arms play a vital role in the intelligent
warehousing industry and can be used to reduce produc-
tion costs and resource waste; they have always been a hot
spot in robotics research [2, 3]. Among existing studies in
robotic arm research, the motion stability of a robotic arm is
a key topic, so developing a method to find an efficient and
collision-free path is particularly important for the motion of
a robotic arm [4].

Current motion planning algorithms are based on the grid
search method (A*), artificial potential field method (APF),
probabilistic roadmap method (PRM) and rapidly explor-
ing random tree (RRT) algorithm [5]. Among them, the grid
searchmethod can ensure complete resolution and an optimal
solution in path planning, but the flexibility of the algorithm
is limited and the calculation efficiency is low; the artificial
potential field method is prone to local minima in the path
planning algorithm, resulting in the inability to reach the
target point; the probability map method of the multiquery
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Fig. 1 Storage robotic arm

Fig. 2 Robotic arm is used to carry goods

method is probabilistically complete in path planning, but
it requires the state space to be known in advance and has
low efficiency; the RRT algorithm poses problems, such as
large memory usage and low search efficiency in a complex
multiobstacle environment [6, 7]. The RRT algorithm ran-
domly samples in the state space without preprocessing the
state space. Its randomness proves that the RRT algorithm
itself has strong search capabilities and that the algorithm
is probabilistically complete. Many scholars have conducted
in-depth research on the RRT algorithm [8, 9].

In view of the shortcomings of the RRT algorithm, a
variety of RRT algorithm variants and other algorithms
have emerged to improve the efficiency of path planning.
Pérez-Higueras et al. presented an approach for learning
navigation behaviours for robots using an optimal rapidly
exploring random tree star (RRT*) as the main planner. A
new learning algorithm combining both inverse reinforce-
ment learning and RRT* is developed to learn RRT*’s cost
function from demonstrations [10]. Li et al. proposed an
incremental sampling-based motion planning algorithm, i.e.,
near-optimal RRT (NoD-RRT). This algorithm aims to solve
motion planning problems with nonlinear kinodynamic con-
straints. To determine the cost/metric between two given
states considering the nonlinear constraints, a neural net-

work is utilized to predict the cost function. On this basis,
a new reconstruction method for the random search tree is
designed to achieve a near-optimal solution in the config-
uration space [11]. Chen et al. proposed a novel approach
of RRT* in collaboration with a double-tree structure to
separate the extension and optimization procedures [12].
Hidalgo-Paniagua et al. presented quad-RRT, an extension
of the bidirectional strategy to speed up the RRT when deal-
ing with large-scale, bidimensional (2D) maps [13]. Chao
et al. proposed an algorithm called grid-based RRT* (GB-
RRT*) by combining the principle of RRT* with the grid
searching strategy. The proposed hybridized algorithm com-
pensates for the weaknesses of RRT* with the strengths of
the grid search strategy and is applicable in complex envi-
ronments with obstacles and narrow areas without relying
on predesigned road networks [14]. Ryu et al. proposed
an improved informed RRT* algorithm to reduce compu-
tational time, even in complex environments. Unlike the
use of RRT* for informed RRT* to find an initial solution
for the whole configuration space, the gridmap skeletoniza-
tion approach is applied to generate the initial solution [15].
Kiani et al. presented an improvement on the RRT algorithm,
namely, Adapted-RRT, which uses three well-known meta-
heuristic algorithms, namely, greywolf optimization (GWO),
incremental grey wolf optimization (IGWO), and expanded
grey wolf optimization (Ex-GWO). They attempted to find
solutions close to the optima without collision while pro-
viding comparatively efficient execution time and space
complexities [16]. Qi et al. presented an algorithm termed
multiobjective dynamic rapidly exploring random (MOD-
RRT*), which is suitable for robot navigation in an unknown
dynamic environment [17]. Qureshi et al. added the idea of
the artificial potential field method to the RRT* algorithm to
obtain the P-RRT* algorithm, which significantly improves
the shortcoming of slow convergence efficiency of the algo-
rithm and minimizes the use of memory [18]. Jeong et al.
proposed the Q-RRT* algorithm, which also considers the
parent node of a newnode’s parent node on the basis ofRRT*,
expands the ranges of parent vertices, and uses this method
in the rewiring operation. This method further improves the
search efficiency of the algorithm and the quality of the path
[9]. Li et al. proposed a PQ-RRT* algorithm that combines
the potential function-based RRT* (P_RRT*) and quick
RRT* (Q_RRT*) algorithms to fully utilize the advantages
of the two algorithms and further improve the convergence
rate and efficiency of the algorithm [7]. Hu et al. proposed
a learning scheme with nonlinear model predictive control
(NMPC) for mobile robot path tracking. The NMPC strat-
egy utilizes a varying-parameter one-layer projection neural
network to solve an online quadratic programming optimiza-
tion via iteration over a limited receding horizon [19]. Hu
et al. developed a 9-degree-of-freedom (DOF) rigid-flexible
coupling (RFC) robot to assist coronavirus disease 2019
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(COVID-19) oropharyngeal (OP) swab sampling. Compared
with a rigid sampling robot, the developed force sensing RFC
robot can facilitate OP swab sampling procedures in a safer
and more gentle way. In addition, a varying-parameter zero-
ing neural network-based optimizationmethodwas proposed
for motion planning of the 9-DOF redundant manipulator
[20]. Jordan et al. proposed bidirectional RRT* (B-RRT*) to
use the greedy connectionheuristic to connect twodirectional
trees to improve the efficiency of the algorithm. However,
the algorithm only explores the pure space, and the expan-
sion of the random tree is blind [21]. Wei et al. proposed
smooth RRT (S-RRT) and adopted a path optimization strat-
egy based on the maximum curvature constraint to generate
a smooth and curved continuous executable path for the
robot manipulator. However, for the expansion of the ran-
dom tree, only the idea of target bias is used for expansion,
the search efficiency is still low, and there is a large differ-
ence between the fitted path and the original path [22]. Nasir
et al. proposed RRT*-Smart, and two new technologies, path
optimization and intelligent sampling, were used to improve
the efficiency of the RRT*-Smart algorithm. The algorithm
only experiments in a two-dimensional environment, the gen-
erated path is relatively tortuous, and the proposed method
cannot improve the efficiency of the algorithmverywell [23].
As combinations of the above algorithms, these algorithms
have improved the efficiency and convergence of the path
search to a certain extent. In the face of complex obstacle
environments, the above algorithms still have low efficiency,
slow convergence to the optimal solution, and large com-
putational memory usage. For the motion path of a robotic
arm, there are many turning points, and the planned path is
not smooth, which seriously affects the service life of the
robotic arm.

In response to the above problems, this paper proposes an
improved P_RRT* algorithm for path planning of manipula-
tors. This method is used to achieve efficient path planning
for manipulators in a complex obstacle environment. Com-
pared with the existing path planning algorithm, the main
contributions of the text are as follows:

(1) For the selection of the nearest neighbour nodes, two
methods, the minimum Euclidean distance and the
minimum cost function, are proposed to improve the
convergence speed of the algorithm.

(2) For the expansion of new nodes, a two-step expansion
strategy is proposed. The first step expansion adopts the
idea of target bias for expansion, and the second step
expansion adopts the method of random sampling of
rectangular regions. This expansion method is used to
improve the search speed of the algorithm.

(3) Since the generated path has many inflection points and
the path curvature is large, the removal operation for

redundant nodes and the constraint operation of maxi-
mum curvature are used to make the path smoother.

The rest of this article is arranged as follows: The “Defi-
nition of the path planning problem” section introduces the
basic definition and the problems that need to be solved for
path planning; “Basic P_RRT* algorithm” introduces the
background knowledge of the improved algorithm presented
in this article; “Improved P_RRT* algorithm” introduces the
specific implementation steps of the improved algorithm pre-
sented in this article; “Analysis” introduces the analysis and
optimal solution of the path planning problem; “Deletion
of redundant nodes and the maximum curvature constraint”
introduces the smoothing operation of the generated path,
which includes the deletion of redundant nodes in the path
and the maximum curvature constraint operation on the path;
“Bezier curve” introduces the use of the Bezier curve to fit
the final path; “Experiments and analysis” introduces the
Python and robot operating system (ROS) simulation exper-
iment analyses of the improved algorithm presented in this
article; “Conclusion” summarizes this article.

Definition of the path planning problem

This section introduces three problems that need to be solved
in path planning. Let Q ⊂ Rn denote the state space of the
problem described, where R is a set, and r(i)i∈n denotes the
mapping from n to R; that is, i ∈ n is mapped to r(i) ∈ R.
Qobs ⊂ Q denotes the obstacle space, and Qfree � Q\Qobs

denotes the barrier-free space. Qinit and Qend are the starting
state and the ending state, respectively. They are both in an
obstacle-free space. The obstacle spatial distance (d*obs) is
set: that is, the obstaclemodel is simplified to a sphere, where
the distance that the radius of the sphere expands outward is
used. The continuous function α: [0,1] → Qfree is a feasible
collision-free path [24].

The problem of path planning is to find a collision-free
path, namely, α: [0,1]→Qfree. The path that extends from the
starting point α (0) ∈ Qinit to the ending point α (1) ∈Qend

and through the point α(τ ) ∈ Qfree for all τ ∈ [0,1] is called
a feasible path.

Question 1: For path planning problem{Qinit,Qobs,Qend},
if a path is found, it proves that there is a feasible path, and
if the path is not found, it proves that a path does not exist.

Question 2: For all the path sets
∑

,
∑

feasible represents all
feasible paths, andC(.) represents the cost functionmeasured
by theEuclidean distance; then, given the path planning prob-
lem {Qinit, Qobs, Qend}, find a path α* ∈ ∑

feasible; if there
is C (α*) � min{C (α): α ∈ ∑

feasible}, there is an optimal
path; otherwise, the optimal path planning process fails.

Question 3: For t ∈ T , which represents the time required
for the algorithm to find a collision-free path, the algorithm
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qinit

qend

qrand
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qnew

Fig. 3 Basic RRT algorithm mind map
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qpotential_parent

Fig. 4 RRT* algorithm is used to reselect the mind map of the parent
node

is required to find the optimal path in the shortest time t ∈ T
[7, 9, 18].

Basic P_RRT* algorithm

The classic RRT algorithm [5] is an efficient multidimen-
sional space planning method. An initial node is taken as the
root node (qinit); then, a random sampling point (qrand) in the
state space.

is selected, and the node (qnearest) in the random tree that
is closest to qrand in terms of the Euclidean distance accord-
ing to the Get_Nearest function is selected. Then, qnearest is
extended to qrand by a step (ρ) distance, a new node qnew is
generated, and it is judged whether qnew collides with any
obstacles. If there is a collision, qnew is deleted, and the ran-
dom points are resampled. If there is no collision, qnew is
added to the random tree, and the parent node of qnew is
assigned as qnearest, as shown in Fig. 3. The next random
sampling is performed, and the above steps are repeated.
When the distance between qnew and the target point qend is
less than the step length ρ, qnew and the target point are con-
nected to obtain a collision-free path from the starting point
to the ending point.

The RRT* algorithm [25] is an improved algorithm based
on the traditional RRT algorithm; it reselects the parent

qnearest

qinit

qend

qrand
r2

qnew

qpotential_child

Fig. 5 RRT* algorithm for the rewiring mind map operation

node in the nearest neighbour area (Reselect_Parent_Node)
and rewires the node in the nearest neighbour area
(Rewire_Node). In the RRT algorithm, the parent node of
qnew is assigned as qnearest, and the RRT* algorithm improves
the selection of the parent node of the new node. Specifically,
the set (Q(potential_parent)) of all the adjacent potential par-
ent nodes of qnew in the tree within a circle, where qnew
is the centre and r1 is the radius, is found. Then, whether
there is a node in Q(potential_parent) that is more suitable
than qnearest to be the parent node of qnew is determined;
that is, the Euclidean distance from qnew to qinit is deter-
mined and used as the cost function. This method first
calculates the Euclidean distance cost value, Cost(qnew), with
qnearest as the parent node, selects the potential parent node
in Q(potential_parent) to connect with the new node, and
then judges the potential parent node as the parent of the
new node. It is determined whether the Euclidean distance
cost value of the node, Cost(Q(potential_parent)), is less than
Cost(qnew); if it is greater than Cost(qnew), the potential par-
ent node will be discarded, and the next potential parent node
will be calculated. If it is less than Cost(qnew) and the con-
nection between the potential parent node and the new node
does not collide with an obstacle, then the parent node of
qnew is reselected and connected. If it collides with an obsta-
cle, the parent node of the new node remains unchanged as
qnearest. The nodes are compared in sequence until all poten-
tial parent nodes are compared, as shown in Fig. 4. The RRT*
algorithmalso uses the rewiring of nodes in the nearest neigh-
bour area. The idea is to use qnew as the parent node of all
potential child nodes Q(potential_child) in an adjacent circle
with r2 as the radius. If the Euclidean distance cost value,
Cost(Q(potential_child)), of a parent node with qnew as a
potential child node is smaller than the original Euclidean
distance cost value of the potential child node and if it does
not collide with obstacles, the original parent node of the
potential child node is discarded, and the new node is used
as its parent node for rewiring; otherwise, the parent node
remains unchanged, as shown in Fig. 5. The codes for res-
electing the parent node and the rewiring operation of the
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RRT* algorithm are shown in Algorithm 1 and Algorithm 2,
respectively. The Euclidean distance cost value is the sum of
the Euclidean distance of the path from this point to the root
node.

Algorithm 1 Reselect_Parent_Node(qnew,Q(near_ball_1))

1.for i in Q(near_ball_1) do
2. if Cost(Q(i))+Cost(Q(i),qnew)<Cost(qnew)

3. qparent Q(i)

4. else 
5. qparent qnearest

6. return qparent

Algorithm 2 Rewire_Node(qnew , Q(near_ball_2))

1.for i in Q(near_ball_2) do
2. if Cost(qnew)+Cost(Q(i),qnew)<Cost(Q(i))

3.      Q(i).parent Get_parent(Q(i),T)

4.      T.remove(  Q(i).parent )

5. Q(i).parent qnew

6.      ppath wire(qnew,Q(i))

7. return ppath

Algorithm 3 RGD(qrand)

1.qrand Random()

2.qprand          qrand

3.for i 0 to k do
4.            APG(qend , qprand);  

5. dmin Nearest_Obstacle(qobs , qprand); 

6. if dmin ≤ dobs
∗ then

7. return qprand; 

8.    else
9.         qprand qprand+λ(        )

10.return qprand

attF

attF

F
att

The P_RRT* algorithm uses a potential function to
improve the selection of random sampling points qrand on
the basis of RRT* and is defined as the potential function
random sampling point selection method (RGD(qrand)), and
the RGD(qrand) code is shown in Algorithm 3. Specifically,
RGD(qrand) introduces the idea of the artificial potential field
method in the operation of selecting random nodes (qrand).
APG stands for the attraction gradient [18]. The target point
generates attraction, and a potential random sample point
is defined as qprand. qprand is a point from qrand along the
decreasing direction of the attractive potential field gradient;
that is, the point is biased towards the target direction, and it is
obtainedbymovingdownhillwith a small stepλ.Whenqprand
is used instead of qrand as a random sampling point, the poten-
tial field gradient of gravity will decrease upon approaching
the target point. During the expansion process, the Euclidean
distance to the nearest obstacle is judged in real time. If it is
less than the obstacle spatial distance (d*obs), the program
will be terminated immediately, and qprand will be returned.
Otherwise, the next expansion will be performed with a lim-
ited number of k, in which the values of the parameters λ, k
and d*obs need to be adjusted. This article ignores the adjust-
ment of the parameters and sets λ � 0.02, k � 80, and d*obs
� 0.1.

Improved P_RRT* algorithm

The basic P_RRT* algorithm improves the selection of ran-
dom nodes in the state space, which makes it more biased
towards the location of the target point, reduces the proba-
bility of generating invalid nodes in a tree, saves calculation
space and reduces memory usage. However, the efficiency
of a successful path search and the convergence rate of a
search are still very low. To improve the search efficiency and
achieve a higher convergence rate, in this paper, the selection
of nearest neighbour nodes and the expansion of new nodes
in the P_RRT* algorithm are further improved.

Selection of the nearest neighbour node

This paper improves the selection of the nearest
neighbour node in the P_RRT* algorithm (Near-
est_Neighbour(qprand,qend)). The traditional nearest
neighbour node (qnearest) selection method selects the
node with the closest Euclidean distance to the random
sampling point as the nearest neighbour node (qnearest).
In this paper, searching for the smallest value of the cost
function C(q) in the tree as the nearest neighbour node
(qnearest), C(q) is defined as

C(q) � wd × qend − q + wc ×
(

k

‖qend − q‖
)

(1)

where ‖qend − ‖q is the Euclidean distance between the
target point qend and the current node q, wd is the distance
proportional coefficient, wc is the mixed proportional coeffi-
cient, and k represents the number of obstacles in the circle
near the current node. The values of wd and wc are obtained
through the distribution of obstacles and experimental anal-
ysis. In this article, the values are wd � 1 and wc � 4. To
improve the ability of themodel to avoid obstacles, the radius
of the circle that determines the value of k in formula (1) is
twice the length of r1 in the RRT* algorithm, and the nearest
neighbour node chooses the smallest C (q) in the tree.

Algorithm 4 Nearest_Neighbor(qprand,qend)

1.qprand RGD(qrand);

2.rand          Random(0,1);

3.if rand < pnearest

4. qnearest Get_nearest(T, qprand);  

5.else
6.     C(q)         C(qend,q)       

7. qnearest min(C(q))

8. return qnearest

wd∗ qend−q +wc∗(
k

qend−q
)
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Let rand be a uniformly distributed random number in the
interval [0,1]. To improve the obstacle avoidance ability of
the algorithm, according to the experimental analysis, the
value of pnearest � 0.5. Pnearest represents the probability of
selecting the node with the smallest Euclidean distance from
the random sampling point in the tree as the qnearest; that is,
if rand<pnearest, then the node with the smallest Euclidean
distance from the random sampling point (qprand) is selected
as the nearest neighbour node (qnearest). If rand>pnearest, the
point with the smallest cost function C (q) in the tree is
selected as the nearest neighbour node (qnearest). The cor-
responding code is shown in Algorithm 4.

Expansion of new node

The traditional P_RRT* algorithm first samples random
points based on the potential function, finds the node (qnearest)
closest to the random node and expands along the direction
of the random point to obtain qnew. The traditional algo-
rithm only expands the new node once, which is not efficient.
This article improves the expansion of the new node in the
P_RRT* algorithm, and the strategy of expanding the new
node twice is adopted to speed up convergence and improve
the efficiency of the algorithm. The specific steps are as fol-
lows:

The new node (q1new) in the first step is expanded with
the goal-biased expansion method [26, 27]: that is, the idea
of gravitation in the artificial potential field method is intro-
duced on the expanded step size so that it grows towards the
target point, as shown in Fig. 6. q1new is defined as:

q1new � q1new + ρ ∗
(
qprand − qnearest
qprand − qnearest

+ kp ∗ qend − qnearest
qend − qnearest

)

.

(2)

where kp is the gravitational coefficient, ρ is the growth step
of the random tree, qprand is the random sampling point,
qnearest is the nearest neighbour node, ‖qend − qnearest‖ is
the Euclidean distance from the target point (qend) to the
nearest neighbour node (qnearest), and ‖qprand − qnearest‖
is the Euclidean distance from the random sampling point
(qprand) to the nearest neighbour node (qnearest). Whether the
path between q1new and qnearest collides with obstacles is
determined; if there is a collision, the expansion of q1new
will be abandoned, and the random sampling point will be
selected again using the method of selecting a random sam-
pling point in the P_RRT* algorithm. If there is no conflict,
q1new is added to the random tree, and its parent is assigned
to qnearest.

qinit

qnearest

q1new

qend

qprand

Fig. 6 q1new expansion mind map

qinit

qend

qprand

q1new

qnearest

q2new

Fig. 7 q2new expansion mind map

Algorithm 5 New_Node_2(q1new,qprand)

1. qprand RGD(qrand)

2. while true do
3.       rand() Random();

4.  

5.       if collision_check(q2new,q1new)    

6.              break  

7.       else
8.              continue

9. return q2new

[q2new x ,q2new y ,q2new z =[q1new x , q1new y ,q1new z ]+

r∗[rand(q1new x →qprand x ,rand(q1new y →qprand y ,

rand(q1new z →qprand (z))]

The second step of the expansion of the new node (q2new)
adopts the strategy of random sampling from q1new to qprand
in a rectangular area (New_Node_2(q1new,qprand)). That is, a
point is randomly selected in the rectangular area formed by
the new node q1new of the first expansion to the last expansion
pointqrand and is assigned as the newnodeq2new of the second
expansion, as shown in Fig. 7. Let rand(x) be a randomly
selected value in the range of x; then, the new node (q2new)
can be expressed as:

[q2new(x), q2new(y), q2new(z)]

� [q1new(x), q1new(y), q1new(z)] + r*[rand

(q1new(x) → qprand(x)),rand(q1new(y) → qprand(y)),

rand(q1new(z) → qprand(z))] (3)
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In the formula, q2new(), q1new(), and qprand() represent the
coordinate values of q2new, q1new, and qprand, respectively;
r represents the expansion ratio coefficient; and r � 0.01
according to the experimental analysis. In addition, whether
the connection between q2new and q1new collides with obsta-
cles is determined; if they collide, the expansion of q2new
is abandoned, and q2new is resampled. If there is no colli-
sion, q2new is added to the random tree, and its parent node
is assigned to q1new. The code is shown in Algorithm 5.

Implementation of the improved algorithm

According to the principle of the above improved P_RRT*
algorithm, the specific implementation steps can be summa-
rized as follows:

Step 1: Initialize each parameter in the random tree, includ-
ing inserting the starting point, target point, obstacles, step
length, target bias step length, and obstacles;
Step 2: Use the random sampling point selection method
RGD (qrand) of the potential function in the P_RRT* algo-
rithm to obtain the randomly sampled point qprand;
Step 3: Obtain the random number probability (rand)
that obeys the uniform distribution, and select the nearest
neighbour node (qnearest). If the random number prob-
ability (rand) is less than the nearest neighbour node
probability pnearest � 0.5, then the nearest neighbour node
is the node in the tree that has the closest Euclidean dis-
tance to the random sampling point (qprand); if the random
probability rand is greater than pnearest � 0.5, formula (1)
is used to calculate the cost function C (q), and the point
with the smallest cost function C (q) in the tree is selected
as the nearest neighbour node;

Step 4:Use the obtained nearest neighbour node for expan-
sion. The first step is to expand and use the target bias
strategy, obtain q1new through formula (2), and judge
whether the new node q1new collides with obstacles. If
collision with an obstacle occurs, then return to Step 2;
otherwise, go to Step 5;
Step 5:On the expanded newnode q1new, the second step of
expansion is carried out by formula (3), which uses a ran-
domly selected point in the rectangular area as the second
expanded new node to obtain q2new and judges whether the
new node q2new collides with an obstacle or whether the
line between two new nodes (q1new, q2new) collides with an
obstacle. If there is a collision, execute Step 5 to randomly
sample the new node q2new again; otherwise, execute Step
6;
Step6: Perform theoperationof reselecting the parent node
in the RRT* algorithm for the new node in the adjacent
circle (see Algorithm 1) and find the parent node of the
new node with the smallest Euclidean distance cost value
that does not collide with an obstacle;
Step 7: The new node acts as the parent node of the node
in the adjacent circle to perform the rewiring operation in
the adjacent circle in the RRT* algorithm (see Algorithm
2). Find the node in the adjacent circle whose Euclidean
distance cost value with the new node as its parent node
is less than its own Euclidean distance cost value and that
does not collide with an obstacle to perform the rerouting
operation to find the optimal path;
Step 8: Check whether the Euclidean distance between the
new node and the target point is less than the step length
ρ. If it is, connect the new node and the target point to
obtain a complete and clear path, and the algorithm ends;
otherwise, go to Step 2.
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Algorithm 6 Improved P_RRT*

1.initialization
2.T.( qinit );

3.while true do
4.     qrand Random();

5.     qprand RGD(qrand)

6.     rand Random(0,1);

7. if rand < pnearest

8.          qnearest Get_nearest_list_index(node_list, qprand); 

9.     else
10. C(q)          C(qend,q)          

11. qnearest min(C(q)) 

12.    q1new Extend(qnearest,qprand)

13.    if collision_check(q1new)

14.          T.add(q1new)

15.          while true do
16.                rand() Random();

17

18.                if collision_check(q2new,q1new)              

19.                         T.add(q2new)

20.                         break

21.                else
22.                         continue

23.    else
24.         continue

25.    Q(near_ball)           Neighbor(qnew,T)

26.    if Q(near_ball) ≠ ∅ then
27. qparent Reselect_Parent_Node(qnew,Q(near_ball_1))

28. if  Path_collision_check(qnew,qparent)

29.                  qnew.parent qparent

30.         ppath Rewire_Node(qnew,Q(near_ball_2))

31. if  Path_collision_check(qnew,qchild)

32.                  q(new).path          ppath

33.    if dist(qnew,qend)< expandDis

34.         return Goal T

35.    else
36.         continue

37. return T

[q2new(x),q2new (y),q2new (z)]=[q1new(x), q1new (y),q1new (z)]+

r∗[rand(q1new(x) →qprand (x) ,rand(q1new(y) →qprand (y) , rand(q1new(z) →qprand (z))]

wd∗ qend−q +wc∗(
k

qend−q
)

According to the above steps, the flow chart of the
improved P_RRT* algorithm is shown in Fig. 8, and the code
of the algorithm is shown in Algorithm 6.

Analysis

This section analyses the probabilistic completeness, asymp-
totic optimality, fast convergence, and computational com-
plexity of the improved P_RRT* algorithm. Let ALG rep-
resent an algorithm. Vn ALG represents the vertex of the tree
generated after n iterations of the ALG algorithm. Y ALG

n
represents the minimum path cost after n iterations of the
ALG algorithm. Sn ALG represents the number of steps after
n iterations of the ALG algorithm.

Probabilistic completeness

For Question 1 (mentioned in the definition of the path
planning problem), the probabilistic completeness of most
sampling-based algorithms can be guaranteed. The form of
probabilistic completeness is as follows:

Definition 1 (Probabilistic completeness) For path planning
problem {Qinit, Qobs, Qend}, if the probability of finding a
feasible path as the number of iterations increases is 1 for
ALG, that is,

limn→8 P(V
ALG
n ∩ Qend 	� ∅) � 1
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Fig. 8 Improved P_RRT*
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then the ALG algorithm generates a complete path con-
necting root qinit to qend ∈ Qend. The ALG algorithm has the
characteristics of probabilistic completeness.

The probabilistic completeness of the RRT algorithm has
been proven in detail, and the RRT* algorithm, as a vari-
ant of RRT, inherits the probabilistic completeness of the
RRT algorithm [25]. At the same time, the probabilistic com-
pleteness of the P_RRT* algorithm has also been explained
[18]. This paper explains the probabilistic completeness of
the improved P_RRT* algorithm proposed in Theorem 1.

Theorem 1 (Probabilistic completeness of improved
P_RRT*) For any feasible path planning problem {Qinit,
Qobs, Qend}, as the number of iterations increases, the
probability of finding a feasible path is close to 1, that is,

limn→8 P(∃qend ∈ V ImprovedP_RRT*
n ∩ Qend such that qinit

is connected to qend ∈ Qend) � 1

Proof of Theorem 1 This article uses the same sampling
method as the P-RRT* algorithm, and the improved P_RRT*
algorithm only improved the selection of its nearest neigh-
bour nodes and the expansion strategy on the basis of the
P_RRT* algorithm, which changed the growth trend of the
tree but did not change the connectivity of the tree. Therefore,
the improved P_RRT* algorithm has the same probabilistic
completeness as the P_RRT* algorithm.
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Asymptotic optimality

For Question 2 (mentioned in the definition of the path
planning problem), if the algorithm has a continuous path
minimum cost solution α*: [0,1] such that α* (0) � Qinit

and α*(1) ∈ Qend, and there is no collision in the complex
obstacle environment, then the algorithm is asymptotically
optimal.

Let β ∈ R+, for the state q ∈ Qfree, where Hq, β represents
the closed ball area with radius β centred on q. If the ball area
is completely located in the barrier-free space, then for any
q ∈ Qfree, it can be expressed as β-internal state (Qintβ); and
if the ball area is partially located in the barrier-free space,
for any q ∈Qfree, it can be defined as β-external state (Qextβ).
Qintβ and Qextβ represent a subset of the barrier-free space
Qfree. Then, Qintβ: � {q ∈ Qfree: Hq, β ⊆Qfree} and Qextβ: �
Qfree\Qintβ [18].

Definition 2 (Strong β-clearance) For a feasible path α:
[0,1], only when all points on the path belong to Qintβ, that
is, α(s) ∈ Qintβ; ∀s ∈ [0,1], the path has strong η-clearance.

Definition 3 (Weak β-clearance) A path α1: [0,1] has weak
β-clearance when there exists a path α2: [0, 1] and function
ϕ: [0, 1] such that ϕ (0) � α1, ϕ (1) � α2, and for τ ∈ (0, 1],
ϕ (τ ) has strong β-clearance.

Definition 4 (Asymptotic optimality) When the number of
samples is infinite,ALG is asymptotically optimal if it returns
a feasible path containing the minimum cost solution. This
can be expressed as

P

(

lim
n→8

sup Y ALG
n � M∗

)

� 1

where M* represents the optimal path cost. P_RRT* is
only an improvement upon the random sampling method
of the RRT* algorithm based on the RRT* algorithm, and
this operation does not affect the asymptotic optimality of
the algorithm. Therefore, P-RRT* inherits the property of
RRT* asymptotic optimality [18]. The improved P_RRT*
algorithm in this paper is an optimized version of the P-RRT*
algorithm, so the improved P_RRT* in this paper also has the
property of asymptotic optimality.

Fast convergence to optimal solution

For Question 3 (mentioned in the definition of the path plan-
ning problem), the algorithm is required to find the optimal
path in the shortest time t ∈ T .

Definition 5 (Optimal path planning) If a path α* is
collision-free and has weak β-clearance, then the path is the
optimal path.

Theorem 2 ((Potential guided sampling heuristic
RGD(q)The RGD(q) step in P_RRT* guides random sam-
ples to the target area for sampling so that P(qprand ∈ Qextβ )
> 0.

According toTheorem2 andDefinition 5, P_RRT*has the
property of quickly converging to the optimal solution [7, 18].
The improved P_RRT* in this paper further optimizes the
search process of P_RRT*. The search time is reduced while
remaining unchanged with the rest of the P_RRT* process.
Therefore, the improvedP_RRT* andP_RRT*have the same
property of quickly converging to the optimal path solution.

Computational complexity

Computational complexity analysis of the improved P_RRT*
algorithm is performed. Theorem 3 shows that the improved
P_RRT* algorithm has a computational complexity similar
to that of P_RRT*.

Theorem 3 There is a constant a∈R+, such that the following
formula remains true:

limn→∞E

[
SImproved P_RRT*
n

SP_RRT*n

]

≤ a

Proof of Theorem 3 Since the improved P_RRT* algorithm
only improves the selection method and expansion strategy
of the nearest neighbour node of the P_RRT* algorithm, it
does not increase the number of samples but optimizes the
P_RRT* algorithm, which does not greatly affect the com-
plexity, so the improved P_RRT* algorithm and P_RRT*
algorithm have similar computational complexity.

Deletion of redundant nodes
and themaximum curvature constraint

Redundant node deletion operation

Due to the random expansion of the algorithm, it will
inevitably cause the path to become tortuous and include
many unnecessary turning points. For a robotic arm, the
redundant turning points will cause unnecessary energy loss,
cause wear and reduce the service life of the robotic arm.
Therefore, this article adopts an operation to remove redun-
dant points [28, 29]. The redundant node removal operation is
performedon the generated path. The specific operation starts
at the starting point, connects the subsequent way points,
abandons the second way point, and connects to the third
way point. If the path does not collide with obstacles, the sec-
ond node is determined to be redundant and is deleted. The
starting node is then connected to the fourth node to deter-
mine whether there is a collision; if there is no collision, the
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Starting point

Target point

Original path in the tree

The path after the redundant 

nodes are deleted

Fig. 9 Operation diagram of the path with the redundant nodes deleted

third node is deleted. The process continues according to this
method; if there is a collision, the node is retained and used as
the starting point to make the above decisions until the target
point is reached. This will generate a path that removes the
redundant nodes, as shown in Fig. 9.

Maximum curvature constraint

In the redundant node deletion operation section of this arti-
cle, a path after removing redundant nodes is obtained, and
the path is smoother. The obtained path may have an exces-
sively large rotation angle, which may cause impact damage
to the robotic arm during operation, can seriously affect the
service life of the robotic arm and is not suitable for an actual
application of a robotic arm. Therefore, the maximum cur-
vature constraint method [30, 31] is used to smooth the path.
According to the data analysis, the cosine value of the max-
imum corner angle is 0.707. The cosine value of each angle
between thepaths is calculated inorder from the startingpoint
of the obtained path with the redundant points removed. If
the value is greater than 0.707, the child node on the right
side and the parent node on the left side of this vertex from
the original path are added as standards; that is, the parent
nodes on the left side and the child nodes on the right side
are added. As shown in Fig. 10b, where the curvature is rel-
atively large, the left and right adjacent points of this point
from the original path are added to the left and right sides of
the point, as shown in Fig. 10a. This is a preparatory step for
the Bezier curve fitting method described below.

Bezier curve

The path after the deletion of the redundant nodes and the
maximum curvature constraint operation is already a rela-
tively smooth path, as shown in Fig. 11b, but in practical
applications, it is necessary to minimize the impact damage
at the turning point. Therefore, in this section, the Bezier
curve method [32, 33] is used for the final smoothing of the

path; it makes the path smoother and more suitable for the
application of a robotic arm in actual scenes. With a Bezier
curve of order n, which includes n + 1 nodes, the formula
C(u) is as follows:

C(u) �
n∑

i�0

Bn,i (u) × pi , u ∈ [0, 1] (4)

In the formula, pi represents n + 1 points in the space, the
weight coefficient Bn,i(u) with the parameter u represents
the Bernstein basis function, and the formula is calculated as
follows:

Bn,i (u) � n!

i! (n − i)!
ui (1 − u)n−i (5)

The final generated curve is composed of n + 1 nodes, and
these nodes are called control points. When u � 0 and u � 1,
they are located at the start and end points, respectively. The
obtained path diagram fitted by the Bezier curve is shown in
Fig. 11a. It can be determined from the diagram that there is a
slight difference between the fitted path and the original path,
which may lead to collisions. Under numerous experimental
tests, the probability of collision is 0.

Experiments and analysis

In this section, the improved P_RRT* algorithm is experi-
mentally verified, the improved P_RRT* algorithm is com-
pared with the existing RRT, RRT* and P_RRT* algorithms
in the same three-dimensional environment, and the superi-
ority, effectiveness and reliability of the improved algorithm
are verified. This experiment is a Python and ROS simula-
tion experiment conducted in the Windows 10 environment
of an HP Intel (R) Core (TM) i5-6500 CPU@3.20 GHz and
3.19 GHz with 4.

GBmemory in the laboratory. The initial node coordinates
are set to [0,0,0], the end node coordinates are [8, 10, 10],
the random expansion step length ρ is 1.0, λ � 0.02, k � 80,
d*obs � 0.1, the adjacent circle radius r and other parameters
are the same, the radius of the adjacent circle used for res-
electing the parent node is 2 (r1 � 2), and the radius of the
adjacent circle used for the rewiring operation is 1 (r2 � 1).
Then, an efficient and collision-free path is planned from the
start point to the end point. Furthermore, this paper uses the
UR5 manipulator of UAO to implement and verify the sim-
ulation experiment. When the search time exceeds 100 s, the
search is unsuccessful; otherwise, it is successful. This article
mainly compares the average search time, average number of
sampling nodes, average path length, search success rate and
other indicators with those of the RRT, RRT* and P_RRT*
algorithms for comparative experimental analyses.
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Python experiment analysis

Experiment 1: Algorithm comparison experiment
with the same number of obstacles

The superiority of the proposed algorithm will be verified
through comparison. Specific experimental contents are
as follows: the RRT, RRT*, and P_RRT* algorithms are
compared in environments with the same number of ran-
domly distributed obstacles. Each group of experiments
is performed 200 times. Due to the randomness of the
algorithm, the average value is taken for comparison, as
shown in Table 1.

According to the data in Table 1, the average search time
and the average number of sampling nodes of the classic
RRT algorithm are very large compared to those of the other
three algorithms. The average length of the path is also the
longest, and the search success rate is 70%.The search timeof
the RRT* algorithm is the second slowest. Compared with
the RRT algorithm, the average search time and the aver-
age number of sampling nodes were significantly reduced.
The average search time of the P_RRT* algorithm compared
to those of the RRT and RRT* algorithms also changed
significantly, but the average number of sampling nodes
remained high, which inevitably led to the requirement for
morememory and consumption ofmore calculation space by
the algorithm. Compared with the other three algorithms, the
improved P_RRT* algorithm shows a significant reduction
in the average search time and average number of sampling
nodes, and its average path length is also the shortest. The
superiority of the improved algorithm is, therefore, obvious.

Experiment 2: Algorithm comparison experiment
with different obstacle numbers

The effectiveness of the proposed algorithm will be com-
pared. Specific experimental contents are as follows: the
RRT, RRT*, and P_RRT* algorithms are compared in envi-
ronments with different numbers of randomly distributed
obstacles. Each group of experiments was carried out 200
times, and the average of the results was taken, as shown in
Table 2.

Table 2 shows that the search time of the classic RRT algo-
rithm is relatively small when there are few obstacles; when
there are many obstacles, the average search time and the
average number of sampling nodes increase rapidly, and the
search success rate is significantly reduced. With the grad-
ual increase in the number of obstacles, the average search
time of theRRT* algorithm increases significantly, the search
success rate is reduced, and the average number of sampling
nodes is increased. Compared with the RRT and RRT* algo-
rithms, the average search time and average path length of
the P_RRT* algorithm are significantly improved; however,
as the number of obstacles gradually increases, the average
number of sampling nodes also greatly increases, the con-
vergence is reduced, and an increasing amount of memory
space is consumed. The improved P_RRT* algorithm can
still maintain its search efficiency as the number of obstacles
gradually increases. The average search time is small and
stable. The average number of sampling nodes is also signif-
icantly reduced. The algorithm has a faster convergence rate,
and its average path length is greatly reduced compared with

Fig. 10 Maximum curvature constraint operation diagram
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(a)  Bezier curve fitting path diagram  (b) Path diagram after processing

Obstacle
Path after 

processing

Path after 

processing

Path of Bezier 

curve fitting

Fig. 11 Bezier curve fitting diagram

Table 1 Comparison of the
algorithms under the same
number of obstacles

Average search
time

Average number
of sampling nodes

Average path
length

Search success rate

RRT 80.98 297.30 28.86 70%

RRT* 36.21 187.40 27.28 100%

P_RRT* 17.92 194.81 23.86 100%

Improved P_RRT* 3.01 61.35 21.75 100%

Table 2 Comparison of the algorithms under different obstacle numbers

Obstacle Average search time Average number of sampling nodes Average path length Search success rate
RRT RRT* P_RRT* Improved P_RRT*

6 47.57 168.80 28.40 75% 27.78 147.90 26.50 100% 14.94 177.60 23.70 100% 3.00 52.95 21.15 100%

8 80.98 297.30 28.86 70% 36.20 187.40 27.28 100% 17.92 194.80 23.86 100% 3.01 61.35 21.75 100%

10 106.10 408.50 29.57 65% 40.12 186.00 27.14 100% 19.52 212.20 24.23 100% 3.20 66.10 21.99 100%

12 109.20 427.60 28.28 55% 55.05 187.30 27.76 80% 20.68 234.60 25.36 100% 3.70 72.50 22.75 100%

the RRT, RRT* and P_RRT* algorithms. The effectiveness
and excellent results of the improved algorithm are obvious.

Experiment 3: Algorithm comparison experiment with two
environmental maps

The reliability of the proposed algorithm will be compared
with existing algorithms. A comparative experiment with
each algorithm is carried out on two environmental maps.
The two environmental map models are shown in Fig. 12,
and an experimental analysis is performed with the RRT,
RRT* and P_RRT* algorithms, as shown below.

Map 1

Under the condition that the starting point and target point are
the same, the results of the RRT, RRT*, and P_RRT* algo-
rithms are compared. Each group of experiments is carried
out 200 times, and the average value of the results is taken, as
shown in Table 3. The path diagrams generated by different
algorithms are shown in Fig. 13a–d.

Map 2

Under the condition that the starting point and target point
are the same, the results of the RRT, RRT*, and P_RRT*
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Fig. 12 Two different
environmental map models
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obstacle obstacle

Table 3 Algorithm comparison
with respect to Map 1 Algorithm Average search

time
Average number
of sampling nodes

Average path
length

Search success rate

RRT 76.38 110.23 25.17 70%

RRT* 52.99 62.20 24.49 80%

P_RRT* 29.20 73.20 21.86 100%

Improved P_RRT* 4.51 11.80 17.66 100%

Table 4 Algorithm comparison
with respect to Map 2 Algorithm Average search

time
Average number
of sampling nodes

Average path
length

Search success rate

RRT 83.89 139.50 26.49 65%

RRT* 62.72 93.00 25.20 75%

P_RRT* 46.36 108.52 22.80 95%

Improved P_RRT* 8.30 23.90 18.70 100%

algorithms are compared. Each group of experiments is per-
formed 200 times, and the average value of the results is
taken, as shown in Table 4. The path diagrams generated by
different algorithms are shown in Fig. 14a–d.

According to the data in Tables 3 and 4, when there are
many obstacles onMaps 1 and 2 and the environment is com-
plex, the average search time of the RRT algorithm is very
large. The required times are 76.38 s and 83.89 s for Maps 1
and 2, respectively. The RRT* algorithm has search times of
52.99 s and 62.72 s, the P_RRT* algorithm has search times
of 29.2 s and 46.36 s, and the improved P_RRT* algorithm
has minimum search times of 4.51 s and 8.3 s for Maps 1
and 2, respectively. The planning efficiency and search suc-
cess rate of the RRT algorithm are very low, and the average
number of sampling nodes is very high, resulting in sub-
stantial memory usage. Compared with the RRT algorithm,
the average search time and average sampling node num-
ber of the RRT* algorithm are reduced; however, compared
with P_RRT* and the improved P_RRT* algorithm, they

are still very high, and the search success rate is also low.
The P_RRT* algorithm has improved average search times
and average path lengths compared to those of the RRT and
RRT* algorithms, but the average number of sampling nodes
remains very large. Compared with the improved P_RRT*
algorithm proposed in this paper, the P_RRT* algorithm still
exhibits the shortcomings of low efficiency, a large memory
footprint, and long tortuous paths. In this paper, the improved
P_RRT* algorithm has a smaller average search time and
average number of sampling nodes. It shows a more promi-
nent effect in a complex multiobstacle environment, and its
search path is shorter and smoother. The reliability of the
improved algorithm is obvious through the comparative anal-
ysis of two different environment map experiments.

ROS simulation experiment analysis

To combine theory with reality and to verify the feasibility of
the algorithm in this article, this section uses the UR5manip-
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(a) RRT algorithm generates 

a  path map in map 1

(b) RRT* algorithm generates 

a path map in map 1

(c) P_RRT* algorithm generates

a path map in map 1 

(d) Improved P_RRT* algorithm generates 

a path map in map 1

Fig. 13 Different algorithms generate path maps in Map 1

Table 5 Position values of each joint at the start and target points of the robotic arm

Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

The starting position 0.00112 0.00365 1.979e−05 0.000136 − 1.0392e−05 9.0132e−06

The target position 2.40849 6.10617 − 6.17202 3.42690 − 0.86144 − 0.57220

ulator of UAO to perform a simulation analysis in the ROS.
The UR5 manipulator is a six-degree-of-freedom articulated
manipulator. First, the environment scene is built in MoveIt,
the rviz tool in ROS is used to visualize the demonstration,
the robotic arm model is loaded, and the error transforma-
tion matrix is used to compensate for the docking error of
the mobile robotic arm. The obstacles, starting point pose,
and target point pose are set. Here, the starting point and tar-
get point pose are the poses after error compensation. The
improved P_RRT* algorithm is added to the Open Motion
Planning Library (OMPL), and the corresponding ymal file
is modified. The Kinematics and Dynamics Library (KDL)
solver inMoveIt is used to solve each joint angle, and finally,
a collision-free path that meets the requirements is obtained,

as shown in Fig. 15b. In Fig. 15a, 1 represents the target and
2, 3, and 4 represent the obstacles near the target. The hori-
zontal manipulator represents the initial pose and reaches the
target pose that coincides with the yellow pose. The position
values of each joint at the start and end points of the robotic
arm are shown in Table 5. The trajectory of the robotic arm is
shown in Fig. 15b. Figure 16 shows the position change dia-
gram of each joint during the simulation of the manipulator.
The figure shows that the manipulator runs smoothly in the
simulation experiment of the improved P_RRT* algorithm,
and the algorithmmeets themovement needs of a real manip-
ulator. The simulation experiment verifies the feasibility of
the algorithm in this paper.
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(a) RRT algorithm generates 

a path map in map 2

(b) RRT* algorithm generates 

a path map in map 2

(c) P_RRT* algorithm generates 

a path map in map 2

(d) Improved P_RRT* algorithm 

generates a path map in map 2

Fig. 14 Different algorithms generate path maps in Map 2

Fig. 15 Motion simulation
diagram of the UR5 robotic arm

(a) The initial pose and target pose of 

     the UR5 robotic arm

(b) UR5 robot arm motion trajectory diagram
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Fig. 16 Change in the joint
position of the robotic arm

Table 6 Comparison of the algorithms in the same ROS obstacle envi-
ronment

Average search time Search success rate

RRT 11.26 100%

RRT* 10.65 100%

P_RRT* 8.36 100%

Improved P_RRT* 4.83 100%

To verify the superiority of the improved algorithm, the
proposed algorithm was compared with the RRT, RRT* and
P_RRT* algorithms. Under the same obstacle conditions
mentioned above, 20 simulation experimentswere performed
for each algorithm, and the average of the results was used,
as shown in Table 6. According to the table, the improved
P_RRT* algorithm still has high motion planning efficiency
in the simulation experiment. The superiority of the improved
algorithm is obvious.

Conclusion

The improved P_RRT* algorithm proposed in this paper
improves the P_RRT* algorithm’s shortcomings of low
search efficiency and slow convergence speed. The superior-
ity, effectiveness, reliability and feasibility of the improved
algorithm in this paper are verified through experimental
comparisons and analyses. The steps of the improved algo-
rithm are as follows:

(1) The same random sampling strategy as P_RRT* is used;
(2) The selection strategy of the nearest neighbour node is

introduced. With a certain probability, the traditional
Euclidean distance method and the minimum cost func-
tion C (q) are used alternately to select the nearest
neighbour node so that the algorithmcan avoid obstacles
more effectively;

(3) The two expansion strategies for new nodes are intro-
duced, and on the basis of the traditional new nodes
adopting a target-biased strategy expansion, the second
expansion of newnodes is performed,whichmore effec-
tively improves the efficiency of the algorithm;

(4) The reselection of the parent node from the RRT*
algorithm and the rerouting operation from the RRT*
algorithm are performed on the new node, and an opti-
mal path is obtained.

(5) The redundant node removal operation and the maxi-
mum curvature constraint operation are performed on
the path after reselecting the parent node and the rerout-
ing operation. The redundant nodes in the path are
removed, and the maximum curvature constraint makes
the path smoother by adding points from the original
path to the left and right sides of the turning point at a
corner with a larger curvature.

(6) After the removal of redundant points and themaximum
curvature constraint operation, the path is fitted with the
Bezier curve, and a smooth path that is more consistent
with the manipulator motion is obtained.
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ThroughPython experiments, it can be determined that the
improved algorithm has higher search efficiency and higher
convergence rates, the search time and path length are effec-
tively reduced, and the average number of sampling nodes is
significantly reduced, which reduces the computer’s memory
consumption. The comparison of the average search times,
the average search success rates, and the motion trajectories
of the robotic arm obtained by the other algorithms in the
ROS simulation experiment also proves the superiority of
the improved algorithm.

This paper studies the spatial path planning of a robotic
arm; themethod canbe applied in unstructured environments,
such as logistics storage, material stacking, and cargo han-
dling. In the future, the dynamic path planning of a robotic
arm will be studied in a dynamic environment.
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