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Abstract

Background: A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal
systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the
regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI), and investigated whether alterations of
fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.

Methods and Findings: LSI was induced by endotoxemia or cecal ligation and puncture (CLP) in fetuin-A knock-out or wild-
type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous
(endotoxin) or endogenous (IFN-c) stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was
assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir
around 24–48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic
changes were mirrored by an early cytokine IFN-c-mediated inhibition (up to 50–70%) of hepatic fetuin-A expression.
Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20–
100 mg/kg) dose-dependently increased animal survival rates. The protection was associated with a significant reduction in
systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-c- or LPS-induced HMGB1 release in vitro.

Conclusions: These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by
inhibiting active HMGB1 release.
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Introduction

Sepsis refers to a systemic inflammatory response syndrome

resulting from a microbial infection, and is partly propagated by

innate immune cells such as macrophages. Macrophages are

equipped with pattern recognition receptors (such as TLR2,

TLR4, and TLR9) [1–3], and can recognize pathogen-associated

molecular patterns (PAMPs, such as endotoxin) [3–6], as well as

damage-associated molecular patterns (DAMPs, such as HMGB1)

[3,4,7,8]. In response to various PAMPs or DAMPs, innate

immune cells release many cytokines (such as TNF-a, IL-1, or

IFN-c) to orchestrate an inflammatory response [9]. Although an

appropriate response is required to defend against infection, an

uncontrolled systemic inflammation may adversely contribute to

the pathogenesis of sepsis.

We discovered that HMGB1 is released by activated macrophages

[5], and contributes to the pathogenesis of sepsis [10]. Like other

danger signal molecules (such as heat shock proteins) [11,12],

extracellular HMGB1 functions as an alarmin signal to recruit, alert,

and activate innate immune cells [10,13]. For instance, HMGB1 can

activate immune cells to produce various cytokines and chemokines

[7,8,14–16], thereby sustaining a potentially injurious inflammatory

response in sepsis [10,13]. Consistently, anti-HMGB1 antibodies [5,17]

or inhibitors (e.g., tanshinones, ethyl pyruvate, nicotine, stearoyl

lysophosphatidylcholine, or epigallocatechin-3-gallate) [5,18–24] con-

fer protection in animal models of endotoxemia and sepsis.

The liver orchestrates a host defense response by altering (re-

prioritizing) the synthesis and systemic release of ‘‘acute phase

proteins’’ (APPs, such as fetuin-A, also termed the alpha-2-HS-

glycoprotein for the human homologue) [25]. The expression of
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fetuin-A is counter-regulated by proinflammatory cytokines such as

TNF-a, IL-1, and IL-6 [26], classifying it as a negative APP [27,28].

However, plasma fetuin-A levels were elevated in patients after

ischemic stroke [29,30] or cattle after trauma [31], implying that

fetuin-A may also function as a positive APP. A wide range of

biological functions have been proposed for fetuin-A based on either

its structural similarities to other proteins, or interaction with biogenic

molecules. For instance, fetuin-A shares sequence similarity to insulin

receptor tyrosine kinase [32,33] and type II TGF-b receptor [34],

and has thus been proposed as an inhibitor of insulin or TGF-

bsignaling pathways. As a glycoprotein, fetuin-A carries two N-linked

and three O-linked oligosaccharide chains that terminate with sialic

acid residues, and can bind biogenic cationic ions (e.g., Ca2+) and

other anti-inflammatory molecules (e.g., spermine) [35,36]. Accord-

ingly, fetuin-A has been proposed as an endogenous inhibitor of

pathological mineralization/calcification [37–40], and an opsonin of

cationic molecules (such as spermine) [36].

At extremely high concentrations (e.g., 3500 mg/ml), crude

bovine fetuin-A preparation (purity .98%, Sigma-Aldrich)

abolishes LPS (10 mg/ml)-induced release of nitric oxide and IL-

1b in macrophage cultures [41]. In animal models of carrageenan-

induced paw edema or cerebral ischemia, administration of fetuin-

A merely attenuated early, but not late, inflammatory response in

the paw [42] or ischemic brain [43]. It was previously unknown

whether: i) fetuin-A functions as a negative or positive APP in

lethal systemic inflammation (LSI), ii) other early proinflammatory

cytokines also counter-regulate hepatic fetuin-A expression, iii)

fetuin-A confers a long-lasting protection against LSI by inhibiting

late proinflammatory mediators. Here we showed that fetuin-A

functions as a negative APP, and confers protection against LSI

partly by attenuating HMGB1 release.

Results

Circulating fetuin-A levels were temporally reduced in
lethal endotoxemia and sepsis

To understand the role of fetuin-A in LSI, we measured its

circulating levels in murine models of lethal endotoxemia and

sepsis. Circulating fetuin-A levels were decreased in both

endotoxemic (Fig. 1A) and septic (Fig. 1B) mice in a time-

dependent fashion, with maximal reduction (by 50–60%) 24–48 h

after onset of these diseases. Afterwards, fetuin-A levels started to

increase, returning towards basal levels approximately 72 h post

endotoxemia (Fig. 1A) or sepsis (Fig. 1B), supporting the notion

that fetuin-A functions as a negative APP in murine models of LSI.

Role of early proinflammatory cytokines in the regulation
of hepatic fetuin-A expression

To understand the mechanisms underlying regulation of fetuin-A

expression during LSI, we examined the impact of early cytokines on

hepatic fetuin-A expression. Consistent with a previous report [26], an

early cytokine, TNF-a (50–100 ng/ml), effectively inhibited fetuin-A

expression in HepG2 cells (by .50–60%, data not shown). Moreover,

another early cytokine, IFN-c, at concentrations as low as 10–50 ng/

ml, markedly inhibited hepatic fetuin-A expression (by 50–70%) in a

time-dependent fashion (Fig. 2A, bottom panel). To confirm the

role of IFN-c in the regulation of fetuin-A expression, we investigated

whether disruption of IFN-c expression impairs endotoxin-mediated

down-regulation of fetuin-A expression. The basal hepatic (Fig. 2B,
top panel) and circulating (Fig. 2B, bottom panel) fetuin-A levels

were not significantly different between IFN-c-null and wild-type

Balb/C mice. However, at the dose (10 mg/kg) that significantly

reduced hepatic fetuin-A levels in wild-type mice (Fig. 2B, top
panel), LPS did not significantly reduce neither hepatic (Fig. 2B, top

panel) nor serum (Fig. 2B, bottom panel) fetuin-A levels in IFN-c-

knockout mice. These experimental data support an important role for

IFN-c in the counter-regulation of fetuin-A expression during an early

stage of endotoxemia.

To understand the potential role for IFN-c in the regulation of

LPS-induced HMGB1 release, we determined whether disruption

of IFN-c expression abrogated LPS-induced systemic HMGB1

accumulation. Consistent with previous report [5], endotoxemia

led to a significant increase in circulating HMGB1 levels in wild-

type Balb/C mice (Fig. 2C). However, this endotoxin-induced

systemic HMGB1 accumulation was almost completely abolished

in IFN-c-deficient mice (Fig. 2C), supporting an important role

for IFN-c in endotoxin-induced HMGB1 release.

Disruption of fetuin-A expression renders animals more
susceptible to endotoxemia and sepsis

To elucidate the role of fetuin-A in systemic inflammatory

diseases, we determined the influence of fetuin-A disruption on

endotoxemic and septic lethality. Sex- and body weight-

matched wild-type or fetuin-A-knockout (KO) C57BL/6J mice

were subjected to endotoxemia or sepsis, and animal survival

Figure 1. Circulating fetuin-A levels were temporally decreased
during endotoxemia and sepsis. Balb/C mice were subjected to
endotoxemia (LPS, 10 mg/kg, i.p.) or sepsis (induced by CLP), and
sacrificed at indicated time points to collect blood. Serum fetuin-A
levels were determined by Western blotting analysis with reference to
standard curve generated with purified fetuin-A at various dilutions,
and expressed as mean 6 SD of 3–6 independent experiments (N = 3–
6), with 4–6 animals included in each group. *, P,0.05 versus ‘‘0 h post
LPS’’ (Panel A) or ‘‘0 h post CLP’’ (Panel B).
doi:10.1371/journal.pone.0016945.g001

Protective Role of Fetuin-A in Sepsis
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rates were monitored. In an animal model of cerebral ischemia

(local inflammation), there was no difference in susceptibility

between sex- and body weight-matched (male, 27–30 g) wild-

type and fetuin-A KO mice [43]. However, the animal survival

rates were significantly lower in the fetuin-A KO mice as

compared with wild-type C57BL/6J mice following endotox-

emia (Fig. 3A, top panel) or sepsis (Fig. 3A, bottom
panel). Consistently, disruption of fetuin-A expression led to

significant elevation of serum HMGB1 levels at 48 h post

endotoxemia (8226 ng/ml for Fet +/+ mice, versus 181645 ng/ml for

Fet 2/2 mice; N = 10, P,0.05) or sepsis (125646 ng/ml for Fet +/+

mice, versus 271634 ng/ml for Fet 2/2 mice; N = 12, P,0.05). These

experimental data suggest a protective role for a liver-derived negative

APP, fetuin-A, in systemic inflammatory diseases.

Supplementation of fetuin-A conferred protection
against lethal endotoxemia and sepsis

To confirm the role of fetuin-A in LSI, we examined its effects

on animal survival in endotoxemia or sepsis. Repetitive adminis-

tration of fetuin-A (20–100 mg/kg) promoted a dose-dependent

protection against lethal endotoxemia (P,0.05, Fig. 3B, top
panel). In contrast, administration of a control protein,

asialofetuin-A, even at doses up to 100 mg/kg, did not

significantly affect animal survival rates (Fig. 3B, top panel),
suggesting a requirement for the presence of sialic acid in fetuin-A-

mediated protection. In an animal model of sepsis, delayed

administration of fetuin-A (20–100 mg/kg), beginning 24 h after

the onset of sepsis and followed by an additional dose at 48 h post

Figure 2. IFN-c counter-regulates hepatic fetuin-A expression. A). IFN-c decreased fetuin-A expression levels in hepatocytes. HepG2 cells were
stimulated with IFN-c for 16 h at different doses (Top Panel), or at 50 ng/ml for different time periods (Bottom Panel), and cellular fetuin-A/b-actin
ratio was assessed by Western blotting analysis. B, C). Disruption of IFN-c expression rendered mice resistant to LPS-induced down-regulation of hepatic
fetuin-A expression. LPS (10 mg/kg) was administered into wild-type or IFN-c-knockout Balb/C mice, liver and blood was harvested at 24 h (Panel B)
or 52 h (Panel C) post endotoxemia to assess fetuin-A (Panel B) or HMGB1 (Panel C) levels by Western blotting analysis. Hepatic fetuin-A levels, as
a ratio to b-actin, were expressed as mean 6 SD of multiple independent experiments (N = 3–5). *, P,0.05 versus control (‘‘-LPS’’).
doi:10.1371/journal.pone.0016945.g002
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CLP, dose-dependently and significantly increased long-term

animal survival rates from 45% to 90% (P,0.05, Fig. 3B,
bottom panel). Although we did not observe any difference in

the mortality rates between sex- and age-matched Balb/C and

C57BL/6 mice in animal models of sepsis (induced by CLP), we

noticed that wild-type C57BL/6J mice were somewhat less

susceptible to endotoxemia than sex- and age-matched Balb/C

mice (Fig. 3A, 3B, top panels).

Previously, it was shown that at high concentrations (e.g.,

3500 mg/ml), fetuin-A (purity .98%, Sigma-Aldrich) itself

slightly induced nitric oxide release in macrophage cultures

[41], possibly because of chemical impurities contained in the

fetuin-A preparation [41]. Indeed, SDS-PAGE analysis of

‘‘purified’’ fetuin-A preparation (Calbiochem, Cat. No.

#341506) revealed multiple contaminating proteins that co-

purified with the typical fetuin-A ‘‘doublet’’ bands on SDS-

PAGE gels (Fig. 4A). This fetuin-A ‘‘doublet’’ may represent

variable post-translation modifications (such as glycosylation

and/or phosphorylation), and could be separated from other

contaminating proteins by gel filtration (Fig. 4A, left panel),
and from each other by ion-exchange chromatography (Fig. 4A,
right panel). Even at lower doses (10 mg/kg), delayed

administration of this highly purified fetuin-A significantly

increased animal survival rates from 45% to 90% (N = 22

mice/group, P,0.05). Taken together, these experimental data

suggest that fetuin-A is protective against lethal systemic

inflammatory diseases.

To gain insight into its protective mechanism, we evaluated

the effects of fetuin-A on systemic accumulation of HMGB1

during a late stage of endotoxemia and sepsis. Administration of

fetuin-A significantly reduced endotoxemia- or sepsis-induced

increase of circulating HMGB1 levels at 52 h post endotoxemia

(Fig. 4B, top panel) or sepsis (Fig. 4B, bottom panel),
suggesting that fetuin-A confers protection by inhibiting

systemic accumulation of late proinflammatory mediator of

these diseases.

Highly purified fetuin-A inhibited active HMGB1 release
in macrophage cultures

To elucidate the mechanisms underlying fetuin-A-mediated

suppression of systemic HMGB1 accumulation in vivo, we

examined the effects of fetuin-A on IFN-c- and endotoxin-

induced HMGB1 release in macrophage cultures. Following extensive

purification by gel filtration (Fig. 4A, left panel) and ion-exchange

chromatography (Fig. 4A, right panel), the intact fetuin-A was

capable of inhibiting IFN-c- (Fig. 4C) and LPS-induced

Figure 3. Distinct effects of fetuin-A depletion or supplementation on endotoxemic and septic lethality. A). Disruption of fetuin-A
expression rendered mice more susceptible to lethal endotoxemia and sepsis. Sex-, body weight-, and genetic background-matched wild-type or fetuin-
A-deficient (fet2/2) C57BL/6 mice (male, 27–29 g) were subjected to endotoxemia or sepsis, and animal survival was monitored. The Kaplan-Meier
method was used to compare mortality rates between groups of two independent experiments with similar results. *, p,0.05 vs wild-type mice in
endotoxemia (Top Panel) or sepsis (Bottom Panel). B). Supplementation of fetuin-A protected mice against lethal endotoxemia or sepsis. Balb/C mice
were challenged with lethal dose of endotoxin, and intraperitoneally administered with saline (0.2 ml/mouse), fetuin-A (‘‘Fet’’), or asialofetuin-A (‘‘A-
Fet’’) at +0.5 and +24 h after endotoxemia. In separate experiments, Balb/C mice were subjected to sepsis (induced by CLP), and administered with
fetuin-A at indicated doses at +24, and +48 h after CLP, and animal survival was monitored. *, P,0.05 versus saline.
doi:10.1371/journal.pone.0016945.g003
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HMGB1 release (Fig. 4D, top panel). Even at the concentra-

tions (e.g., 100 mg/ml) that almost completely abrogated LPS-

induced HMGB1 release, fetuin-A only partly inhibited LPS-

induced TNF-a secretion (Fig. 4D, bottom panel), suggesting

that highly purified fetuin-A is an effective negative regulator of

HMGB1 release.

Fetuin-A did not inhibit endotoxin-induced autophagy,
but reduced cytoplasmic HMGB1 levels

A previous study has implicated a potential role for autophagy

in the regulation of endotoxin-induced HMGB1 release, because

an HMGB1 inhibitor, quercetin, simultaneously inhibits LPS-

Figure 4. Highly purified fetuin-A inhibited HMGB1 release in vivo and in vitro. A). Purification of fetuin-A by gel filtration and ion-exchange
chromatography. Bovine fetuin-A was obtained from Calbiochem, and further purified by gel filtration and ion-exchange chromatography. Lane ‘‘0’’:
crude fetuin-A from Calbiochem (Cat. #341506), Lane 1–4: consecutive gel filtration fractions. Gel filtration fraction #4 was further purified by ion-
exchange chromatography. Lane 5–6: two major ion-exchange fractions containing a lower (Lane 5) and higher (Lane 6, ‘‘intact’’) molecular weight
protein. B). Administration of fetuin-A decreased circulating HMGB1 levels in endotoxemia and sepsis. Balb/C mice were subjected to lethal endotoxemia
or sepsis, and treated with fetuin-A at +0.5, +24, and +48 h post endotoxemia, or +24 and +48 h post CLP. Blood were collected from normal,
endotoxemic (52 h post LPS), or septic (52 h post CLP) mice, respectively. Serum HMGB1 levels were determined by Western blot analysis, and
expressed as mean 6 SD of two independent experiments in triplicates (N = 6). *, P,0.05 versus control ‘‘+LPS’’ or ‘‘+CLP’’ group. C, D). Highly purified
intact fetuin-A inhibited IFN-c- or LPS-induced HMGB1 release in primary peritoneal macrophages. Peritoneal macrophages were isolated form Balb/C
mice, and stimulated with IFN-c or LPS at indicated concentrations in the absence or presence of highly purified intact fetuin-A for 16 h. The culture
medium was assayed for HMGB1 levels by Western blotting analysis (Panel C, D) and TNF-a levels by ELISA (Panel D), and expressed as Mean 6 S.D.
of two independent experiments in triplicates (N = 6). *, P,0.05 vs ‘‘+ IFN-c’’ (Panel C) or ‘‘+ LPS’’ (Panel D).
doi:10.1371/journal.pone.0016945.g004
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induced formation of LC3-containing cytoplasmic vesicles (autop-

hagosome) and HMGB1 release [44]. To elucidate mechanisms

underlying fetuin-A-mediated suppression of HMGB1 release, we

determined whether fetuin-A affects LPS-induced formation of

LC3-containing cytoplasmic vesicles (autophagosomes). Consistent

with a previous report [45], LPS induced the formation of LC3-

containing cytoplasmic vesicles (autophagosomes) in GFP-LC3-

transfected macrophage cultures (Fig. 5A). In contrast to

quercetin, however, fetuin-A failed to inhibit LPS-induced

formation of LC3-containing punctuate structures in macrophage

cultures (Fig. 5A, top panels). By itself, fetuin-A stimulated the

formation of LC3-containing punctate structures (data not shown),

suggesting a possibility that fetuin-A inhibits HMGB1 release

potentially by stimulating its autophagic degradation.

In addition, we determined whether fetuin-A affects cytoplasmic

HMGB1 levels in endotoxin-stimulated macrophages. Quiescent

macrophages constitutively expressed HMGB1 and maintained an

intracellular ‘‘pool’’ of HMGB1 predominantly in the nucleus

(Fig. 5A, left panels). At 16 h post LPS stimulation, marked

HMGB1 staining was observed in cytoplasmic vesicles (Fig. 5A,
middle panels). However, fetuin-A markedly reduced HMGB1

staining in cytoplasmic regions (Fig. 5A, right panels), suggesting

a possibility that fetuin-A attenuates HMGB1 release by reducing its

cytoplasmic levels. To further test this possibility, cytoplasmic and

nuclear fractions were isolated from primary macrophages, and

immunoblotted with antibodies specific for HMGB1, PCNA (a

nuclear protein), or b-actin (a cytoplasmic protein), respectively. In

murine macrophage-like RAW 264.7 cells, LPS merely induced

cytoplasmic HMGB1 translocation and release, but did not increase

nuclear (or total cellular) HMGB1 levels [5]. In primary murine

peritoneal macrophages, however, LPS significantly elevated

HMGB1 levels in both cytoplasmic and nuclear fractions

(Fig. 5B). At the concentrations (100 mg/ml) that significantly

inhibited LPS-induced HMGB1 release, fetuin-A significantly

reduced both nuclear and cytoplasmic HMGB1 levels (Fig. 5B).

Discussion

In response to infection or injury, the liver re-prioritizes the synthesis

and systemic release of many APPs. One hepatic protein, fetuin-A, has

previously been suggested either as a negative or positive APP following

infection- or injury-elicited inflammation [29–31]. In the present study,

we found that circulating fetuin-A levels were time-dependently

decreased during endotoxemia and sepsis, supporting the notion that

fetuin-A functions as a negative APP during LSI.

During endotoxemia or sepsis, multiple early cytokines (such as

TNF-a and IFN-c) are responsible for counter-regulating hepatic

fetuin-A expression, thereby reducing circulating fetuin-A levels

(Fig. 6). Indeed, disruption of IFN-c expression impaired

endotoxin-induced suppression of hepatic fetuin-A expression in

vivo. It is thus plausible that IFN-c, a proinflammatory cytokine

predominantly derived from spleen [46], contributes to lethal

endotoxemia [47,48] or sepsis [49] partly by stimulating HMGB1

release [50] and partly by inhibiting hepatic fetuin-A expression.

A previously under-appreciated protective role for fetuin-A in LSI

has been suggested in the present study. First, the disruption of fetuin-A

expression rendered mice more susceptible to endotoxemia or sepsis.

Second, repetitive administration of fetuin-A conferred a dose-

dependent protection against these systemic inflammatory diseases.

In light of our observation that administration of fetuin-A markedly

reduced circulating levels of HMGB1, but not TNF-a (data not

shown), we propose that fetuin-A confers protection against lethal

endotoxemia and sepsis partly by inhibiting late mediators of these

diseases. Nevertheless, the current study can not exclude other

alternative mechanisms by which fetuin-A confers these protective

effects. For instance, fetuin-A may be capable of binding bacteria

[51,52], thereby affecting macrophage-mediated pathogen elimination.

Furthermore, fetuin-A may facilitate macrophages-mediated ingestion

and elimination of apoptotic neutrophils [53,54], thereby preventing

secondary necrosis and passive leakage of injurious molecules (e.g.,

proteases, reactive oxygen species, and HMGB1) [55].

In vitro, highly purified intact fetuin-A effectively inhibited IFN-

c- and endotoxin-induced HMGB1 release in macrophage

cultures. These inhibitory effects were concentration-dependent,

and required the presence of sialic acid in the intact fetuin-A.

Although it is difficult to correlate the concentration-effect

relationship of fetuin-A in vitro and in vivo, a single injection of

fetuin-A at 100 mg/kg could theoretically produce a minimal

tissue level of 100 mg/ml fetuin-A (assuming even distribution in

all tissues including bone, muscle, blood, and others). It is thus

possible that the fetuin-A-mediated inhibition of IFN-c- or LPS-

induced HMGB1 release in vitro partly accounts for the observed

inhibition of serum HMGB1 levels in vivo. We propose that

endogenous fetuin-A functions as a negative regulator of HMGB1

release during lethal systemic inflammation. First, the time-

dependent decrease of circulating fetuin-A levels is accompanied

by parallel but contrary changes - a time-dependent increase - of

circulating HMGB1 levels in animal model of endotoxemia [5] or

sepsis [17]. Second, disruption of fetuin-A expression led to

significant elevation of serum HMGB1 levels during endotoxemia

and sepsis. Lastly, supplementation of fetuin-A resulted in

significant reduction of circulating HMGB1 levels during

endotoxemia and sepsis.

The mechanisms underlying fetuin-A-mediated suppression of

HMGB1 release may be complex. For instance, fetuin-A may

attenuate systemic HMGB1 accumulation indirectly by facilitating

macrophage-mediated phagocytotic elimination of apoptotic cells

[54]. This is relevant because prolonged accumulation of apoptotic

cells may allow these cells to enter secondary necrosis, leading to

rapid HMGB1 leakage. In addition, at the concentrations

(100 mg/ml) that significantly inhibited LPS-induced HMGB1

release, fetuin-A stimulated the formation of LC3-containing

punctuate structures (likely autophagosomes), and impaired LPS-

induced elevation of both cytoplasmic and nuclear HMGB1 levels.

At present, it is not yet known whether fetuin-A reduces

cytoplasmic HMGB1 levels by transcriptionally down-regulating

HMGB1 expression, or stimulating its degradation in an

autophagy-dependent fashion. Nevertheless, the fetuin-A-mediat-

ed reduction of cytoplasmic HMGB1 levels may underlie its

inhibition of endotoxin-induced HMGB1 release in macrophage

cultures.

In summary, we demonstrated that circulating fetuin-A levels

was time-dependently reduced during lethal endotoxemia and

sepsis, supporting the notion that fetuin-A functions as a negative

APP during LSI. The temporal decrease of circulating fetuin-A

levels ensures a rigorous innate immune response manifested by

excessive accumulation of early (e.g., IFN-c) and late (e.g.,

HMGB1) proinflammatory mediators. Supplementation with

exogenous fetuin-A could tilt the balance towards inhibiting active

HMGB1 release (Fig. 6). Thus, fetuin-A occupies an important

protective role against LSI by counter-regulating systemic

accumulation of late mediators (e.g., HMGB1).

Materials and Methods

Animal models of lethal endotoxemia and sepsis
This study was approved and performed in accordance with the

guidelines for the care and use of laboratory animals at the

Protective Role of Fetuin-A in Sepsis

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16945



Figure 5. Fetuin-A did not affect LPS-induced formation of LC3-containing cytoplasmic vesicles, but attenuated cytoplasmic
HMGB1 levels. A). Fetuin-A did not affect LPS-induced formation of autophagosomes, but reduced cytoplasmic HMGB1 staining. GFP-LC3 transfected
macrophages were stimulated with LPS (200 ng/ml) in the absence or presence of fetuin-A, and immunostained with HMGB1-specific antibodies.
Note that HMGB1 was predominantly localized in the nuclear region of un-stimulated macrophages (control) (left panels), but in both cytoplasmic
and nuclear regions of LPS-stimulated macrophages (middle panels). Fetuin-A reduced cytoplasmic HMGB1 staining in LPS-stimulated macrophages
(LPS + fetuin-A). Images are representative of three independent experiments with similar results. B). Fetuin-A reduced cytoplasmic and nuclear HMGB1
levels in LPS-stimulated macrophages. Thioglycollate-elicited peritoneal murine macrophages were stimulated with LPS in the absence or presence of
fetuin-A (100 mg/ml) for 16 h, and cytoplasmic nuclear fractions were isolated, and assayed for levels of HMGB1 with reference to a nuclear (PCNA) or
cytoplasmic (b-actin) markers. Blots are representative of two independent experiments with similar results. Bar graphs were mean 6 SD of two
independent experiments in duplicates (N = 4). #, P,0.05 vs negative control ‘‘- LPS’’; *, P,0.05 vs positive control ‘‘+ LPS’’.
doi:10.1371/journal.pone.0016945.g005
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Feinstein Institute for Medical Research. Sex-, weight-, and

genetic background-matched (male, 23–25 g) wild-type and fetuin-

A-deficient C57BL/6J mice were obtained from the Jackson

Laboratory (Bar Harbor, ME, USA) and Dr. Willi Jahnen-

Dechent’s laboratory, respectively. Wild-type Balb/C mice and

IFN-c-deficient Balb/C mice were also obtained from the Jackson

Laboratory.

Endotoxemia was induced by intraperitoneal injection of

endotoxin (lipopolysaccharide, LPS, E. coli 0111:B4, Sigma-

Aldrich, 10 mg/kg) as previously described [5]. As a clinically

relevant model, sepsis was induced by cecal ligation and puncture

(CLP) as previously described [20,22,56]. Purified fetuin-A

(Calbiochem, Cat. No. #341506) or asialofetuin-A (sialic acid

residues of fetuin-A removed by neuraminidase) were adminis-

tered intraperitoneally into mice, and animal survival rates were

monitored. In parallel experiments, mice were euthanized at

indicated time points to collect blood (by cardiac puncture) or liver

tissue, to measure HMGB1 or fetuin-A by Western blotting

analysis.

Cell culture
Murine macrophage-like RAW 264.7 cells and human

hepatocyte HepG2 cells were obtained from the American Type

Culture Collection (ATCC, Rockville, MD). GFP-LC3-transfected

RAW 264.7 cells were established as previously described [45].

Primary peritoneal macrophages were isolated from Balb/C mice

(male, 7–8 weeks, 20–25 grams) at 3 days after intraperitoneal

injection of 2 ml thioglycollate broth (4%) as previously described

[20,22,50,57]. Murine macrophages were pre-cultured in DMEM

medium (Gibco BRL, Grand Island, NY) supplemented with 10%

fetal bovine serum (FBS), 2 mmol/L glutamine, and 1% penicillin.

Adherent macrophages or HepG2 cells were gently washed with,

and cultured in, OPTI-MEM I medium 2 h before stimulation

with LPS, or IFN-c (Sigma-Aldrich, Cat. No. 14777, Louis, MO),

in the absence or presence of fetuin-A at indicated concentrations.

At indicated time points after stimulation, intracellular or

extracellular levels of HMGB1, TNF-a, or fetuin-A, were

determined by Western blotting analysis or ELISA as previously

described [20,50].

Purification of intact fetuin-A
Gel filtration chromatography was performed using a HiPrepTM

26/60 Sephacryl S-100 high resolution column. Sample was

eluted by 1x PBS at a flow rate of 1.0 ml/min, and gel filtration

fractions were subjected to protein analysis by SDS-PAGE gel

electrophoresis. The filtration fraction enriched in fetuin-A protein

was further purified by ion-exchange chromatography. Briefly, gel

filtration fraction was loaded onto a 5-ml HiTrapTM SP HP

column pre-equilibrated in buffer A (50 mM NaAc, pH 7.5), and

the column was washed with 5% Buffer B (1.0 M NaCl in 50 mM

NaAc) until the A280 dropped below 1% of its maximum. Proteins

bound to the column were eluted by a linear gradient of 0–20%

Buffer B over 40 min at a flow rate of 2.5 ml/min, and ion-

exchange fractions were subjected to purity analysis by SDS-

PAGE gel electrophoresis.

Western blotting analysis
Following SDS-PAGE electrophoresis, proteins were hybridized

with specific primary antibodies. Rat HMGB1-specific and bovine

fetuin-A-specific polyclonal antibodies were generated in rabbits as

previously described [5,43]. Human fetuin-A-specific polyclonal

antibodies were obtained from Santa Cruz (Cat. No. sc-9663).

Monoclonal antibodies against b-actin were obtained from Abcam

(Cat. No. mAbcam 8226). After incubation with the alkaline

phosphotase-conjugated secondary antibodies, the signal was

detected with the colormetric alkaline phosphatase assay kit (Bio-

Rad Laboratories). The relative band intensity was quantified by

using the NIH Image 1.59 software to determine fetuin-A levels

with reference to b-actin, or HMGB1 levels with reference to

standard curves generated with purified HMGB1 as previously

described [22,43].

TNF-a ELISA
TNF-a levels were determined using ELISA kits (Catalog no.

MTA00, R & D Systems, Minneapolis, MN) with reference to

standard curves of purified recombinant TNF-a at various

dilutions as previously described [20,22].

Visualization of LC3-containing cytoplasmic vesicles

(autophagosomes). Autophagy, literally meaning ‘‘self-

eating’’, refers to an evolutionarily conserved process for

degrading organelles and cytoplasmic macromolecules. It begins

with the formation of double-membraned structures called

phagophores, which elongate and engulf portions of cytoplasm

to form autophagosomes. The basic principle of autophagy assays

is to measure the transfer of a soluble, membrane-impermeant

LC3 protein from cytosol to autophagic vesicles (autophagosomes).

Murine macrophage-like RAW 264.7 cells stably transfected with

GFP-LC3 were stimulated with LPS in the absence or presence of

Figure 6. Hypothetical role of fetuin-A in lethal systemic
inflammation. Fetuin-A is predominantly synthesized in, and consti-
tutively secreted by the liver to maintain abundant basal circulating
levels (e.g., 1100–1350 mg/ml in mice). In response to lethal endotox-
emia (LPS) or sepsis (CLP), innate immune cells (such as macrophages)
sequentially release early (e.g., TNF-a and IFN-c) and late (e.g., HMGB1)
proinflammatory mediators. These early proinflammatory cytokines
(e.g., TNF-a, IFN-c and perhaps others) participate in the down-
regulation of hepatic fetuin-A expression, allowing propagation of a
rigorous inflammatory response manifested by excess accumulation of
late proinflammatory mediators (such as HMGB1). On the other hand,
fetuin-A functions as a negative regulator of the innate immune
response by inhibiting LPS- or IFN-c-induced HMGB1 release in
macrophages.
doi:10.1371/journal.pone.0016945.g006
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fetuin-A for 16 h, and cells were examined for the presence GFP-

LC3-II punctate structures under fluorescence microscope as

previously described [45].

Fluorescence Immunostaining
Macrophage cultures were fixed with 2% formalin (10 min),

and permeabilized with 0.1% Triton X-100 (in PBS, 1 min, room

temperature). After extensive washing with 1x PBS, cells were

incubated sequentially with antigen-affinity-purified rabbit anti-

HMGB1 antibodies or anti-fetuin-A polyclonal Abs, donkey anti-

rabbit secondary antibodies conjugated with red Alexa fluor 594

(Invitrogen, Cat # 404239, Eugene, OR), and Vectashield

mounting medium with DAPI (Vector, Cat #1200, Burlingame,

CA). Images were captured using a fluorescence microscope (Carl

Zeiss Microimaging) as previously described [43]. Alternatively,

localization of HMGB1 was examined by a cell fractionation/

Western blotting technique as previously described [20]. After

fractionation, the protein content of different fractions was

determined by a Bradford method, and each fraction was assayed

for levels of various protein by Western blotting analysis using

primary antibodies specific for HMGB1, a cytoplasmic protein (b-

actin, Santa Cruz Biotechnology), and a nuclear protein (PCNA,

BD Biosciences).

Statistical Analysis
Data are expressed as mean 6 SD of at least 2–3 independent

experiments (n = 2–3). One-way ANOVA was used for compar-

ison among all different groups. When the ANOVA was

significant, post-hoc testing of differences between groups was

performed using Tukey’s test. A P value ,0.05 was considered

statistically significant. The Kaplan-Meier method was used to

compare the differences in mortality rates between groups. A P

value ,0.05 was considered statistically significant.
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