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Abstract

This paper proposes a novel adaptive online-feedback methodology for Brain Computer

Interfaces (BCI). The method uses ElectroEncephaloGraphic (EEG) signals and combines

motor with speech imagery to allow for tasks that involve multiple degrees of freedom

(DoF). The main approach utilizes the covariance matrix descriptor as feature, and the Rele-

vance Vector Machines (RVM) classifier. The novel contributions include, (1) a new method

to select representative data to update the RVM model, and (2) an online classifier which is

an adaptively-weighted mixture of RVM models to account for the users’ exploration and

exploitation processes during the learning phase. Instead of evaluating the subjects’ perfor-

mance solely based on the conventional metric of accuracy, we analyze their skill’s improve-

ment based on 3 other criteria, namely the confusion matrix’s quality, the separability of the

data, and their instability. After collecting calibration data for 8 minutes in the first run, 8 par-

ticipants were able to control the system while receiving visual feedback in the subsequent

runs. We observed significant improvement in all subjects, including two of them who fell

into the BCI illiteracy category. Our proposed BCI system complements the existing

approaches in several aspects. First, the co-adaptation paradigm not only adapts the classi-

fiers, but also allows the users to actively discover their own way to use the BCI through

their exploration and exploitation processes. Furthermore, the auto-calibrating system can

be used immediately with a minimal calibration time. Finally, this is the first work to combine

motor and speech imagery in an online feedback experiment to provide multiple DoF for BCI

control applications.
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Introduction

In an effort to ameliorate rehabilitation and neural pathology treatment, Brain Computer

Interfaces (BCI) aim to provide a solution where users can use brain signals to directly interact

with the environment. Originally developed for patients with severe paralysis, a majority of

research in BCI focuses on deciphering motor imagery to control external devices, such as a

wheelchair [1]. Despite being successful at a considerable number of subjects [2, 3], BCI based

on motor imagery still suffers from several deficiencies, which restrict its use in some practical

applications. First, the conventional BCI systems often require a lengthy, off-line calibration

step, which includes recording brain signals without feedback and training a statistic model,

before it can be used. Second, BCI illiteracy is a well-known phenomenon observed in a non-

negligible group of subjects, estimated at 15% to 30% [4], who are unable to generate modula-

tion of sensorimotor rhythms detectable by current methods [3, 5]. Third, BCI systems can

usually offer an only limited number of DoF. For instance, most BCI systems rely on binary

classification, such as left vs. right hand imagery, whereas the highest number of DoF is

achieved based on classification between four classes [6].

Recently, a new trend in BCI systems investigates the applicability of using speech imagery

for control applications. Preliminary results reported by [7–14] are encouraging. Moreover,

speech imagery also opens up the possibility of silent communication where sound recognition

is prohibited, such as in noisy surroundings or in the case of locked-in patients with speaking

disabilities. Compared to motor imagery, speech imagery is more natural, easier to perform

repeatedly, and more consistent across users, since humans often unintentionally do it in daily

activities, such as when reading a book silently, or during self-talking. Furthermore, speech

can include arbitrary instructions, thus a user can associate a meaningful word to a corre-

sponding action, which makes the interaction with the environment more intuitive.

Our primary aim in this work is alleviating the aforementioned drawbacks of current BCI

systems by proposing an adaptive, online-feedback methodology based on the combination of

motor and speech imagery tasks.

Related work

Adaptive online learning BCI systems have been proved to be more effective than the conven-

tional approaches. In adaptive online learning BCI, the classifier makes decisions and provides

continuous feedback to the users while periodically updating its model and parameters. The

adaptation techniques vary with respect to different aspects, i.e. the components that are being

adapted (adaptive features vs adaptive classifier), the type of training (supervised vs semi or

unsupervised learning), or at the user level, e.g. whether features are designed depending on

subjects. In practice, adaptive BCI systems are often implemented based on a combination of

different techniques.

Spuler et. al. [15] implemented an unsupervised, adaptive Support Vector Machine (SVM)

classifier [16] to deal with the shift in the data covariance. In [17], the same authors proposed

using PCA to improve the non-stationary effect in data during session transfer. Vidaurre et. al.

[18, 19] proposed a system utilizing adaptive autoregressive (AAR) model to extract features

and a quadratic discriminant analysis as a classifier. In [20], the authors investigated a combi-

nation of different features, such as AAR model parameters and Logarithmic Bandpower or

their concatenation, and different classifiers, namely adaptive information matrix and Kalman

adaptive LDA. In [5, 21], Vidaurre et. al. proposed a training paradigm comprising 3 adapta-

tion levels, progressing from simple Laplacian channels based features, that are subject-inde-

pendent in level 1, toward more complex ones, which included Laplacian channels, frequency

bands and Common Spatial Patterns (CSP) designed specifically for each subject in level 3.
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The LDA classifier in that work was also designed adaptively from supervised in level 1 and 2

toward unsupervised in level 3 to deal with data-drifting between experimental sections [22].

Faller et. al. [23, 24] proposed a BCI system that selects the most discriminating frequency

band using Fisher criteria, and retrains an LDA classifier after every 5 trials. Scherer et. al. [25]

implemented a similar strategy, while also performed a calibration step for each user to select

the 2 most discriminative among 4 tasks, such as subtraction, word association, hand or feet

motion imagery. Positive results from the mentioned work demonstrated that online adaptive

BCI learning is much more effective than the conventional offline, non-feedback systems.

Especially, the methods can be potentially applied to subjects with BCI illiteracy or severe

impairment [18].

However, the mentioned approaches were validated almost exclusively during binary classi-

fication of motor imagery tasks. More importantly, most of the adaptive systems focused on

improving the machine learning component, while only a few systems ([5, 21, 24, 26, 27]) took

into consideration the users’ adaptation counterpart.

First, we need to acknowledge that co-adaptation can introduce positive but also negative

effects if not performed properly. If the classifier is correctly modified, the users will learn the

system faster as they won’t need to change their mental processes as much. On the contrary,

an inappropriate adaptation process can create the feeling of using a different system each

time the classifier adapts. In that case, the user will need to change his/her mental processes

significantly and more frequently. This not only causes confusion but also discouragement

and frustration, which significantly impede the learning process.

Another fact that might have been overlooked by other adaptive systems is that, during the

process of learning how to use the system, the subject needs to explore and exploit different

ways to perform the mental tasks, while he/she may be also distracted by irrelevant thoughts

(internal noise). Hence, the features that we can extract from the EEG signals may be scattered

in the feature space, which at best can be represented by a mixture of Gaussian distributions.

Since the data can drift back and forth during the exploration and exploitation process, retrain-

ing a classifier and using a single model based on the most recent data may not be an effective

way to encourage the user adaptation, since older data/models might prove more effective.

Unfortunately, no metric can indicate with absolute precision whether the updated model

converges or diverges from the user’s intent. In [28], Lotte et. al. pointed out that the classifica-

tion accuracy, a measurement that is often used in the literature, is a poor metric to evaluate

the user performance in online BCI training. Obviously, an enhancement in the prediction

accuracy could merely be attributed to better tuning parameters for the current data and not

necessarily to user improvement. Accordingly, a performance decrease could mainly occur

because the user does not perform well in that particular experiment for reasons unrelated to

the classifier, such as loss of focus or fatigue. Hence, co-adaptive systems must decouple the

performance of the user from that of the classifier to evaluate the improvement of each compo-

nent and their convergence.

Another ad-hoc problem for online-feedback adaptive classifiers is to decide the adaptive

rate. Adaptive algorithms can be divided into two main approaches: sample-based and batch-

based approaches. In the first method, such as [5, 18–21], the classifier modifies its parameters

after receiving each new data sample. The general form of this approach is θ(t + 1) = θ(t) + γe
(t), where θ is the classifier’s hyper-parameter, γ is the adaptive rate and e(t) is the error. Tun-

ing γ is critical since each user performs differently. A small γ leads to slow and ineffective

adaptation, while a large γmight lead to an unstable algorithm. This is also theoretically proved

from the mathematic model of the two-learners problems proposed by Muller et. al. [29].

In batch-based approaches, such as [23–25], a new classifier is often retrained after a certain

period of time or when the prediction fails below a certain accuracy level. The new classifier is
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often trained based on the new batch of data collected, but can reuse a portion of the previous

data batch. When to retrain and what portion of the recent and previous data are used for

retraining the classifier decide the adaptive rate in this case. Since EEG data are non-stationary

and shift overtime, including too many samples from old data will introduce outliers to the

training dataset, while using only new data can lead to an abrupt change in the classifier

parameters. Furthermore, if the classifier is retrained after observing a decrease in the predic-

tion accuracy, the new data may not be very discriminative to improve the model. In both

methods, selecting representative data during the online learning to update the classifier is still

an open question.

Regarding speech imagery, in our previous work [30], we conducted a literature review and

investigated the applicability of different types of speech imagery for control applications. The

main approach in [30] is based on a spatial covariance matrix (COV) descriptor and a Rele-

vance Vector Machines (RVM) classifier. The COV descriptor has been widely used in com-

puter vision [31–33], and recently adopted in BCI research as an effective feature for motor

imagery classification [34–39]. Wang et. al. [40] did an investigation to combine motor and

speech imagery to improve the DOF for BCI. However, their work was conducted offline with-

out feedback. Moreover, they only investigated binary classication, either between two speech

imagery tasks or between 1 motor imagery and 1 speech imagery task. Hence, it still cannot

improve the number of DOF for a BCI system.

In this paper, we extend our previous work developed in [30] by proposing a multi-class,

adaptive online-feedback BCI training paradigm toward the following objectives:

• Provide a simple but robust method to select data for updating the classifier.

• Propose an adaptive online-feedback methodology to improve the user learning experience

by encouraging their exploration and exploitation process.

• Combine different modalities, e.g motor imagery and speech imagery, to perform control of

multiple DoF.

Materials and methods

Experiment protocol

Main procedure. Eight healthy subjects (S1-8, 6 males and 2 females, ages 22-32) per-

formed four mental tasks, namely two motor imageries of moving left hand (class 1) and right
hand (class 3), and two speech imageries of saying a long word (class 2) and a short word (class

4). All subjects were right-handed except subject S3. S1 and S4 had experience in both off-line

motor and speech imagery. S5, S6 and S8 had experience in off-line speech imagery, and the

other subject participated in an EEG experiment for the first time. The experiment was

approved by the ASU IRB (Protocols: 1309009601, STUDY00001345) and each participant

signed an informed consent form before the experiment. The subjects were sitting in front of a

computer monitor in a quiet and dark room. They were instructed to relax and keep both

hands still for 5 minutes or until their hands felt numb before the experiment started. For

motor imagery, the subjects were asked to imagine the kinesthetic sensation of closing and

opening their hands without performing any actual motion. For speech imagery, they were

instructed to pronounce a short word or long word internally in their minds and avoid any

overt vocalization or muscle movements.

Inspired by our previous work [41], we associated the mental tasks with commands to con-

trol a swarm of robots’ behavior in simulation. Specifically, at the beginning of each trial, the

swarm of robots is represented by yellow particles in a rectangular formation shown on the left
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of the screen, while a target is shown on the right. If the target is represented by orange con-

centric squares as shown in Fig 1a, the required mental task is to imagine moving the left hand
to increase the swarm density (class 1). When the target is presented as an orange disk as

shown in Fig 1b, the subject needs to imagine moving his/her right hand to control the shape
of the swarm (class 3). When the target is displayed as two black squares as shown in Fig 1c,

the subject needs to imagine saying the long word “concentrate” to concentrate the swarm

toward the center and to pass it through (class 2). Finally, if the target is a single black square

as shown in Fig 1d, the subject needs to imagine saying the short word “split” to split the

swarm and avoid the obstacle (class 4). Subjects were asked to look only at the swarm to avoid

any eye motion during the experiment.

Each experiment was conducted in a single day and approximately lasted for 2 hours,

which included 30 minutes for preparation and 90 minutes for the main procedure. The main

procedure had a total of 7 runs with 2−3 minutes break between them or until the subject felt

ready for the next one. A single run was comprised of 40 trials, 10 for each class, which were

shown randomly. There were random 2s or 3s pause between two consecutive trials, and a 10s

break after the 15th and 30th trials in each run. The trial duration was 10s, and during the first

2s, the swarm and the target stayed still on the left and the right of the screen respectively, as

illustrated in Fig 1(a), 1(b), 1(c) and 1(d). In this first 2s, the subject was also preparing to per-

form the corresponding imagination task. After that, the target moved from the right to the

left, while the swarm maintained its center’s initial position but changed its formation accord-

ing to the classifier prediction, as shown in the left of Fig 1(e), 1(f), 1(g) and 1(h). This motion

simulation was intended to reduce user’s eye motion given the mentioned visual feedback. The

classifier updated the prediction every 0.25s, hence a trial was completed after 33 steps, as

shown in the right of Fig 1(e), 1(f), 1(g) and 1(h).

The first run (run 0) was used to collect data for training the initial model, thus we simu-

lated the prediction of the classifier by randomly showing the correct (expected) motion of the

swarms with 80% probability and an unexpected random motion with 20% probability. The

purpose was to help the subjects get used to the distraction of the prediction’s inaccuracy. The

subjects were aware of this, but were asked to treat it as true feedback. In run 1 to 4, the

swarm’s motion was updated only when the classifier predicted correctly, otherwise it stayed

still. Finally, in the last two runs, the classifier updated the swarm motion without the afore-

mentioned constraint. This incremental change of the challenge level was chosen in order to

help the user be more concentrated and confident during the adaptation, while also help us

investigate different levels of the exploration and exploitation processes.

Data acquisition and conditioning. The EEG signals were acquired using a BrainPro-

ducts ActiCHamp amplifier system from 64 electrodes placed according to the 10/20 Interna-

tional system [42]. Among them, 60 channels were used to extract the features, while 4 other

were used to keep track of the ElectroOculoGraphic (EOG) components [43]. The data were

recorded at 1000Hz and then downsampled to 256Hz for processing. A 5th order Butterworth

bandpass filter between 8-70 Hz was applied to remove any low-frequency trends in the data

as well as possible artifacts related to ElectroMyoGraphic (EMG) activity. This frequency band

is selected as we found it is efficient for speech imagery [30]. A notch filter at 60Hz was also

applied in order to remove line noise. Finally, an EOG artifact removal algorithm [43] was

applied on the data to eliminate any eye blinking or eye movement artifacts.

Preliminary

Following the standard notations, we denote <n as an n dimension real space, In 2 <n×n the

identity matrix and AT the transpose of A. diag(x) is the diagonal matrix constructed from x,
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and λi = eigi(A) is the ith eigenvalue of A. k � k denotes the vector Euclidean norm or matrix

Frobenius norm.

Common Spatial Pattern (CSP). CSP [44–47] is an effective method to extract discrimi-

native channels for the mental tasks. CSP seeks for the linear transform W mapping the data

collected from N channels to a space of n< N useful channels, Y = WT X. Grosse-Wentrup

[48] combined Mutual Information and Joint Approximate Diagonalization to generalize CSP

for multi-class applications. In this work, we will apply this approach [48] for spatial filter as it

is suitable for multiple tasks.

Distance on Riemannian Manifold. Definition 0.1 An n × n matrix A is Symmetric Posi-
tive Definite (SPD) if A = AT, xT Ax> 0, 8x 6¼ 0. Equivalently, λ(A)> 0. A SPD matrix is con-
sidered as a point on the Riemannian Manifold denoted by Symþn [49].

Definition 0.2 Let X 2 <n×T be the EEG signals of n channels and T time samples, the Spatial
Covariance Matrix (COV) descriptor is defined as C ¼ XXT

T� 1
2 Symþn .

Definition 0.3 Ak, exp(A) and log(A) of a SPD matrix A 2 <n×n are defined through its
eigenvaluesΛ and eigenvectors U as [49]:

Ak ≜U diagð½lk
1
; � � � ; l

k
n�ÞU

T ¼ ULkUT;

expðAÞ ≜U diagð½el1 ; � � � ; eln �ÞUT ¼ UeLUT;

logðAÞ ≜U diagð½logðl1Þ; � � � ; logðlnÞ�ÞU
T ¼ U logðLÞUT:

Since SPD matrices are in the Riemannian Manifold, Riemanian distance is more effective

than Euclidean distance to discriminate them. In [50], a detailed description and a comparison

of the performance between different metrics on Symþn is conducted in the context of BCI

applications. In this work, we use two distance metrics:

1. Riemannian Distance [51] between S1 and S2 which is

d2
RðS1; S2Þ≜ k logðS

� 1

1
S2Þ k

2 ¼
Xn

i¼1

ðlogðliÞÞ
2
; ð1Þ

where li ¼ eigiðS
� 1

1
S2Þ. This metric is invariant to affine transforms and inversion. How-

ever, it is computationally expensive, and often approximated by the Euclidean distance

between their tangent vectors.

2. Euclidean Distance between Tangent Vectors

Fig 1. Simulation of swarm motion controlled by the proposed BCI system. Figs (a) and (b) assign the task of

imagining moving the left hand (class 1) and the right hand (class 3) to control the swarm density and the shape of the

formation, respectively. Figs (c) and (d) assign the task of imagining saying the words “concentrate” (class 2) and

“split” (class 4) to concentrate and split the swarm, respectively. Fig (e,f,g,h) show the system’s feedback to the

corresponding imagery of the users.

https://doi.org/10.1371/journal.pone.0212620.g001
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• The tangent vector T of a point S at the reference point C is defined as

T ¼ logC S≜ log C�
1
2 SC�

1
2

� �
: ð2Þ

• The distance between S1 and S2 on the Riemannian manifold can be derived through the

Euclidean distance between the tangent vectors as

d2
TSðS1; S2ÞC ≜ k T1 � T2 k

2: ð3Þ

The reference point C can be selected as In, or the geometric mean of the dataset. For better

accuracy, the geometric mean is often used, and this process is called normalization. In this

work, we use the geometric Karcher mean [52], which can be obtained by an iteration algo-

rithm described in Algorithm 1 [53, 54].

Algorithm 1 Riemannian Mean of Covariance Matrices

Input: Training dataset fSig
n
i¼1
2 Symþm, and tolerance �b > 0

Output: Mean �S of fSig
n
i¼1

.

Initialize: Mean �S0 ¼
1

n

P
Si.

Procedure: For k = 0. . .niter, do:

1. For i = 1. . .n, find tangent vector: Ti ¼ log�Sk
ðSiÞ.

2. Find the Euclidean mean: �Tk ¼
1

n

Pn
i¼1

Ti.

3. Map �T k back to Sym
þ

m: �Skþ1 ¼
�S

1
2

k exp �T kð Þ
�S

1
2

k.

3. If kTk − Tk−1k< �b, break.

Relevance Vector Machine classifier. RVM [55] is an extension of the more popular Sup-

port Vector Machines (SVM) classifier. Different from SVM, RVM has the following

advantages:

• RVM is a native multiple-class Bayesian Classifier, and its prediction output is the probabi-

listic confidence of a sample belonging to different classes.

• RVM assumes that the whole dataset can be represented by sparse representative data points.

To construct the decision boundary, the weights of these data points, i.e. the relevance vec-

tors, are optimized automatically based on the Bayesian principle. Thus RVM avoids the

over-fitting problem without the tuning requirement for the hyper-parameters, such as the

cross-validation in SVM.

• RVM is a sparse classifier. Thus, RVM can predict data more efficiently and faster than

SVM.

More details in comparing RVM and SVM usage in BCI can be found in our previous work

[30, 50]. In this paper, we use the multi class RVM (mRVM) proposed by [56, 57].

Proposed method

Spatial filter and data selection for training. If the COV is computed from all channels,

the feature vector not only contains noise but is also high dimensional, thus computationally

expensive to process. Hence, selecting relevant channels is critical to improve the accuracy and

efficiency. This is done by applying an appropriate filter using the CSP methodology described

further below.
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Furthermore, since the classifier predicts the mental tasks every 0.25s, a 10s trial yields total

Nseg = 33 segments of 2s duration with 1.75s overlap. All segments in a trial have the same

label, which is the task assigned at the beginning of each trial as illustrated in Fig 1. Hence,

from each run, we obtain 330 data points (10 trials x 33 segments) for each class or 1320

labeled samples in total.

However, not all datapoints are useful to train the model, thus selecting representative ones

is necessary to reduce the noise and improve the training speed. Because the users were asked

to repeat each mental task several times until the end of a trial, e.g. imaging of saying “split” at

the same way and the same rhythm, each trial is expected to contain repetitions of a central

unique pattern. Thus, from 33 data points in one trial, we can select representative data as the

k-nearest neighbors (k-NN) of their Riemannian mean. Parameter k is important, as selecting

a few will not capture the diversity, while too many will include noisy data. Hence, k is chosen

by a cross-validation procedure described shortly.

Let {Xi,j} be the dataset collected in one run, where Xi,j 2 <
D×T is the 2s segment data with

D = 60 channels and T = 512 being the number of datapoints (2s at 256Hz); i = 1: Nseg is the

segment index, and j = 1: Ntrial is the trial index, ŷðXijÞ and yj are the predicted and the true

label of sample Xi,j. We propose Algorithm 2 to simultaneously compute the spatial filter and

select representative data for training the classifiers.

Algorithm 2 Spatial Filter and Sample Selection for Training

Input: Dataset {Xi,j} and number of CSP channels d< D.

Output: CSP matrix W 2 <D×d and the set T = {Tj}, where Tj = {i} is the index set of seg-

ments Xi,j chosen from trial j.
Initialize: W by computing the CSP matrix using all segment {Xi,j} for run 0. Otherwise, W

is the CSP matrix from the previous run.

Pre-filter: Select samples that have: PðŷðXijÞ ¼ yjÞ > �f .

Procedure:

1. Apply spatial filter on the data: Zi,j = WT Xi,j and Cij ¼
Zi;jZTi;j
T� 1

.

2. For each trial j
• Find the mean μj of fCijgi¼1:Nseg

using Algorithm 1.

• Select Tj = {i}, s.t. Cij is a k-NN of μj based on (1).

3. Compute newW as a CSP matrix of the selected index T = {Tj} using the multi-class

CSP algorithm [48].

In Algorithm 2, the Pre-filter step can be applied, where PðŷðXijÞ ¼ yjÞ is the probability

predicted by the previous model during the online testing. We can choose �f small, e.g. �f = 0.1

< Pchance = 0.25, to reject certainly noisy samples, but keep the data selection of a new run as

independent to the models build from previous runs as possible to accommodate the user

exploration process.

Training of a Relevance Vector Machine model. Fig 2 summarizes the steps of training

each RVM model.

1. Step 1: We apply Algorithm 2 on the raw dataset from the most recent run. This yields a

subset of representative data {Xi,j} and a CSP matrix W 2 <D×d.

2. Step 2: We extract the tangent vector as features. First, we apply the spatial filter and com-

pute the COV matrix C 2 Symd
þ

. Then, we compute the mean μ of the dataset {Cij} using

Algorithm 1, and use μ as the reference point to normalize this dataset. The final feature

vector Tn is obtained by vectorizing the upper half of matrix logð�CÞ and scale the off-diago-

nal elements by
ffiffiffi
2
p

.
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3. Step 3: We train the RVM model [56, 57] using the distance metrics (3). The model can pre-

dict the probability P(c|X) of a sample X belonging to a class c.

Mixture of RVM models. Fig 3 illustrates the process of updating the proposed mixture

of RVM classifiers. Concretely, we collect a dataset Dr = {Xi,j} after each run r to train a set of

RVM models fRk
rg, each of which corresponds to a selection of k = 8, ‥, 12 data points. The

model R�r ðXÞ with k = k� is selected to combine with other optimal models fR�t ; t < rg

Fig 2. Training Procedure for a sub-model Relevance Vector Machine.

https://doi.org/10.1371/journal.pone.0212620.g002

Fig 3. Procedure of the proposed online learning mixture of RVM models. Symbols⊚ and� represent the In and

Out connection respectively.

https://doi.org/10.1371/journal.pone.0212620.g003
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obtained previously to form the mixture models:

PrðXÞ ¼ R�RðXÞ [ R�R� 1
ðXÞ [ fR�t<R� 1

ðXÞg ð4Þ

The number of data points k is also an important factor to balance between the noise and

the user exploration process. After the run r, we perform two modifications to the mixture of

models:

• We update the model R�r� 1
. To select the optimal model R�r� 1

from the set fRk
r� 1
g, the dataset

Dr is used for cross-validation. We rank the performance of Rk
r� 1

based on the quality p(Q) of

the confusion matrix Q tested on Dr:

pðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðqÞmeanðqÞ

p
ð5Þ

where q is the diagonal of Q. Note that, in contrast to the average accuracy, i.e. mean(q), the

quality p(Q) emphasizes on the performance balance between the classes, s.t. p(Q) is maxi-

mized if min(q) = mean(q), or the accuracies for all classes are equal.

• We add the new trained model R�r by inferring. Here, due to absence of Dr+1, we can not

cross-validate the model set fRk
rg prior to the run r + 1. Hence, the optimal index k� obtained

from the cross-validation on the set fRk
r� 1
g is used to infer the optimal model of the set fRk

rg.

In run 1, we heuristically select the model fRk�¼9

0
g as k� = 9 often yields satisfied results in

our preliminary study.

The mixture of RVM models is then defined as

PrðXtÞ ¼
Xr

i¼rþ1� m

wiðtÞR
�

i ðXtÞ; ð6Þ

where m is the number of sub-models, and wi(t) is the time-dependent weight of each sub-

model R�i ðXtÞ. The next section will discuss how to update the weight wi(t) online.

Online adaptive mixture of RVM models

Since each sub-classifier Ri(X) is equipped with a spatial filter Wi and a mean μi 2 Symþd , a test

sample Xt is mapped to m points Ci ¼WT
i
XXT

T� 1
W i 2 Symþd as illustrated in Fig 4.

Each Ci is then fed to each sub-model Ri(X) to compute their response. Moreover, d(Ci, μj),
the Riemannian distance from Ci to the mean μj, also reflects how similar the sample to the

dataset Dj is, thus how suitable to use the sub-model Rj(X) to predict the sample. Hence, we

define the weight w(t) in (6) as

wiðtÞ ¼
biðtÞPr

j¼rþ1� m bjðtÞ
; biðtÞ ¼

ai
�diðtÞ

ð7Þ

where �dj is the mean of the set d(Ci, μj).
In (7), ai can be used to specify the fixed prior of each model. Specifically, we set ai = p(Qi)

for the model R�i ðXÞ; i < r, where Qi is the confusion matrix of Ri tested on Dr. ar takes the

maximum value of {p(Qi)}. The model i can be suppressed, i.e. set ai = 0 if p(Qi)< �, where �

(default � = 0.25) is a threshold depending on the subjects.

In summary, our model utilizes two adaptation techniques.
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• First, we update the components of the mixture of RVM models after each completed run to

account for the data-shifting. In here, the feature adaptation is performed by recomputing

the CSP and the COV reference matrix. This mini-batch adaptation approach also offers an

adequate time for the user to adapt. Hence, during human adapting process, components of

the mixture model are fixed. Thus, we interchangeably keep one part of the co-adaptive eco-

system constant while the other adapts in order to safely prevent the potential diverge of the

two systems if they adapt simultaneously.

• During the online test/feedback, the weight of each model changes between runs as

described in (7). Hence, the mixtured models adapt to the user by incorporating the super-

vised knowledge collected previously through ai and the user tendency during learning

through �di.

Results

Evaluation

To evaluate the performance of the adaptive classifier, we compute the classification accuracy

as a reference criterion since it is commonly used by other online BCI methods [5, 18–24, 26,

58]. The accuracy is computed for every segment in each trial, which yields a total of 1320 data

points for each run. To make a conservative evaluation, we include all segments even though

many of them can be safely removed, e.g. discard a segment if its maximum probability is less

than 30%. These segments could be due to the user’s unintented moments, thus discarding

them may further increase the reported accuracy.

We then show that a more proper and restrictive criterion is the quality of the confusion

matrix. Note that, the chance level for four classes, i.e. always picking the same one choice

among four, yields 25% accuracy, but 0 if we consider the quality of the confusion matrix. The

Fig 4. Estimate weights wi for the mixture of RVM models.

https://doi.org/10.1371/journal.pone.0212620.g004
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confusion matrix quality is a more proper metric of the classifier’s efficiency because it takes

into account not only the overall accuracy of the classifier but also its class-wise imbalance. In

particular, it penalizes classifiers whose accuracy rate is extremely high for only a few particular

classes, while extremely low for the others, thus biasing the overall accuracy and hiding their

inefficency. At the same time, this criterion favors classifiers with high accuracy across all clas-

ses. Even if the overall accuracy is lower in these cases, the classifier with the highest quality

value lead to a more balanced performance across all classes.

As mentioned, the accuracy and the confusion matrix quality cannot properly explain

whether the classifier performance is improved due to user adaptation, or classifier adaptation

or both. Hence, we further evaluate the performance of the user independently of the classifier

based on two criteria, namely the separability and the instability of the data.

Separability between two classes A and B is defined as s A;Bð Þ ¼
dðmA;mBÞffiffiffiffiffiffiffi
sAsB
p ; where μi is the Rie-

mannian mean of class i, and σi is the standard deviation of the distances from all samples

belonging to class i to μi. Hence, a larger s(A, B) indicates that the two classes A and B are

more separable. A slightly different criterion was also proposed in [28].

To evaluate the data instability, we first perform PCA on the tangent vectors of each class,

where the Riemannian mean of each class is used as the reference point to normalize this

class’s data. The tangent vector represents the direction of each point relative to the mean,

thus, essentially capturing the directional distribution of dataset in the Riemannian space.

Hence, we denote the data’s instability as the number of principle components that can repre-

sent 95% of the data. The more components we choose, the higher variance and higher insta-

bility the data have.

To compute the separability and instability, we first remove any irrelevant channels by

applying the multi-class CSP [48] with 12 CSP channels. Since each component of the RVM

mixture model is equipped with a CSP matrix obtained from the data in the previous run, we

can re-apply the CSP matrix obtained from the dataset Dr−1 to Dr (Method 1). In this way, we

can reconstruct the separability and instability of data during the experiment. Another way is

to compute a new CSP matrix using Dr for run r (Method 2). Note that, this CSP matrix can

only be obtained after completing the run r, hence it is not available during the online testing.

To evaluate the user performance independently of the classifiers, we prefer the second

method.

Classification results

Tables 1 and 2 report the prediction accuracy and the quality of confusion matrix (QCM)

respectively.

Fig 5, which visualizes Table 2, shows that the classification results are improved after each

run, and tend to reach the maximum at the run D4, right before changing the feedback’s diffi-

culty level. When the feedback in run D5 became more aggressive by removing the constraints,

the performance decreased as expected. As shown in last row of Table 2, we observed the aver-

ages of run D5 and D6 decreased about 10% relative to run D3 and D4. However, in run D6,

subjects S2, S3, S6 were able to regain control, as the quality increased relatively to run D5. For

subjects S5, S7, S8, we observed a slight decrease, approximately 3%.

To show that QCM is more proper to evaluate the classification performance than accuracy,

we can look at several particular data pairs colored in both Tables 1 and 2. In these data pairs,

although the accuracy slightly changed (< 4%), their QCM could reduce (orange color) or

increase (blue color) significantly (> 10%). This is due to the bias in classification results,

which the accuracy metric fails to capture.
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To evaluate if our proposed protocol can improve the performance significantly, we con-

ducted the Wilcoxon left-tail signed rank test on the user performance given in Tables 1 and 2.

The test results with 5% significant level are shown in Table 3, in which the first row are the p-

values when compared between run Di−1 and run Di, and the second row is between D1 and

Di. Bold number indicates that the improvement was statistically significant (< 5%), and

indeed appeared in run D3 and D4.

To evaluate the improvement of each individual subject under the constrained feedback, we

computed the slope a of the linear regression (y = ar + b) for QCM data (y) over run r = 1, . . .,

4. The results are shown in Table 4, which indicate that all but subject S5 had their performance

improve over time (a> 0), and subject S7 had the highest improvement (a = 11.5). Subject S5

had a large step improvement in run D3(12.9%), also the highest QCM (67.0) of all subjects,

but then steeply decreased in run D4(−21.5%). Thus, although we observe the improvement of

the subject S5 at the intermediate step during the experiment, the slope a is negative (also refer

to Fig 5).

User performance via data’s separability

Tables 5–12 report the data separability score for each pair of classes for each subject, and the

corresponding p-value of Wilcoxon left tail signed rank test. Table 13 shows that different

types of imagery are more separable than similar ones, and ranks their separability in ascend-

ing order. Concretely, the separability of the speech imagery pair (2-4) and the motor imagery

Table 1. Prediction accuracy at each run Di.

Constrained Feedback Full feedback

Sub D1 D2 D3 D4 D5 D6

S1 42.5 46.4 49.7 49.6 58.9 55.8

S2 37.5 45.5 54.2 50.1 47.6 52.1

S3 31.8 32.3 32.0 34.8 32.9 36.8

S4 52.0 59.0 58.5 55.1 54.4 54.6

S5 68.6 70.6 73.4 65.8 61.5 61.9

S6 34.1 34.0 42.5 48.3 33.0 58.1

S7 48.4 52.2 53.3 64.9 51.2 63.6

S8 34.7 30.6 43.7 42.6 36.9 30.7

Avg 44.1 46.4 51.6 51.0 47.1 52.5

https://doi.org/10.1371/journal.pone.0212620.t001

Table 2. Quality of Confusion Matrix (QCM) at each run Di.

Constrained Feedback Full feedback

Sub D1 D2 D3 D4 D5 D6

S1 29.6 39.0 41.3 41.4 52.8 36.5

S2 30.5 33.6 45.8 47.1 41.1 44.1

S3 18.4 18.7 32.3 27.9 16.5 19.5

S4 41.8 50.0 50.2 48.0 40.6 31.5

S5 56.4 54.1 67.0 45.5 44.9 41.3

S6 21.5 27.4 35.7 42.8 21.5 50.7

S7 31.1 21.4 37.9 63.8 46.4 42.8

S8 10.2 14.3 27.2 36.1 13.4 11.4

Avg 29.9 32.3 42.2 44.1 34.6 34.7

https://doi.org/10.1371/journal.pone.0212620.t002
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pair (1-3) are the lowest, while the ones for the pair (“Left hand”-“Split”) (1-4) and (“Right

Hand”,“Split”)(3-4) are the most discriminable.

The signed rank test in Tables 5–12 also shows that the improvement of separability is not

consistent among classes. Only subject S6 showed a significant improvement for all pairwise

classes between run Di relative to D1. However, for other subjects, the change of separability is

random across pair-wise classes and runs.

Feature separability visualization

Following the conventional methods, we analyze the difference of the CSP topology plot

between the first run and the run with the highest separability for each subject. The multi-clas-

ses CSP method [48] forms the CSP matrix by first performing Independent Component

Analysis and then ranking the components based on their Mutual Information scores with

each mental task from highest to lowest. Hence, the first 4 components theoretically contain

the most information about the classes and are selected to be shown in Fig 6.

However, the explanation for the CSP topology using this method is not as straight forward

as the conventional binary CSP which has a few components. At best, we can observe the com-

ponents at the middle and parietal sides of the brain, which lie over the motor cortex area (C3,

C4,CZ) and Wernicke’s area, for Subject S1, S4, S5, S7 and S8. The ranking of components

may not be consistent, as we can see that the component CSP2 in the first run reappears as
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Fig 5. Confusion matrix’s quality of subjects S1-S8 over runs D1 −D6.

https://doi.org/10.1371/journal.pone.0212620.g005

Table 3. P-value of Wilcoxon left-tail signed rank test on performance using Accuracy (Table 1) and QMC (Table 2).

Accuracy Quality of Confusion Matrix

Run D2 D3 D4 D5 D6 D2 D3 D4 D5 D6

Di−1 0.07 0.02 0.57 0.96 0.125 0.15 0.004 0.32 0.98 0.77

D1 0.07 0.003 0.01 0.08 0.055 0.15 0.004 0.02 0.23 0.19

https://doi.org/10.1371/journal.pone.0212620.t003
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CSP1 for Subject 1, or CSP 1 reappears as CSP 3 for subject 4, and CSP 4 reappears as CSP 2

for subject 5. Hence, this justifies the usage of a high number of CSP components, up to 12 in

our method, to capture the most significant information at the preprocessing step.

While the CSP topology can help us understand the important channels, the Riemannian

feature does not rely on each single CSP channel, but further captures the relationship between

them. Hence, to better understand the data separability, we further visualize the distribution of

the COV features.

Here, although we defined the separability using the Riemannian distance [51], visualizing

the COV descriptor in the original Riemannian manifold is challenging. Therefore, we first

map the COV descriptors into the Tangent vectors in Euclidean space, then map these highly

dimensional vectors into 2D plane using the well-known method t-Distributed Stochastic

Neighbor Embedding (t-SNE) [59]. We emphasize that mapping from the Riemannian space

into the Euclidean space flattens the manifold and cannot fully preserve the distance between

the features. However, we can then utilize well-established methods in Euclidean space for the

visualization with acceptable accuracy.

Fig 7 shows the visualization of the tangent vector embedded in 2D space by the t-SNE algo-

rithm for Subject 5 on run 1 and run 6. There are totally 330 features for each class, represented

by markers of different colors and shapes in the figure. t-SNE is a nonlinear, unsupervised

dimension reduction technique that can preserve as much as possible the relative distances

between objects from the original space to the lower dimensional space. Our implementation

used the built-in Matlab tSNE function, and set the hyper parameter perplexity equal to 20.

Note that, although t-SNE is one of the best techniques currently, it can’t create a unique solu-

tion and still suffers from the intrinsic information loss of the embedding process. Neverthe-

less, it helps us gain some insights about the data distribution. As seen in Fig 7, features from

the same trial are mapped close together into a small fragment.

Furthermore, class 1 (red) and class 3 (blue) are well separated from class 2 (purple) and

class 4 (black), while the pair (1-3) and the pair (2-4) are not linearly separable. This matches

with our previous claim of separability, that “the separability of the speech imagery pair (2-4)

and the motor imagery pair (1-3) are the lowest, while the ones for the pair (“Left hand”-

“Split”) (1-4) and (“Right Hand”,“Split”)(3-4) are the most discriminable.” However, it is not

Table 4. Linear regression of QCM for each subject S1−8 over runs D1−4.

S1 S2 S3 S4 S5 S6 S7 S8

a 3.77 6.19 4.22 1.86 −1.99 7.2 11.5 9.08

b 28.4 23.8 13.8 42.9 60.7 13.9 9.5 −0.8

https://doi.org/10.1371/journal.pone.0212620.t004

Table 5. Separability score of data for each class pair. (a)-(h) are the separability value of subject S1.

Pair D1 D2 D3 D4 D5 D6

1 − 2 2.14 2.52 1.84 2.24 2.26 2.77

1 − 3 1.45 1.20 1.35 0.79 1.21 1.61

1 − 4 2.15 1.94 3.63 2.38 2.47 3.50

2 − 3 2.26 2.54 1.90 1.45 1.82 3.29

2 − 4 0.86 1.06 1.32 1.12 0.96 1.85

3 − 4 2.23 1.92 3.68 1.51 1.95 4.07

w.r.t Di−1 0.50 0.28 0.97 0.08 0.02

w.r.t D1 0.50 0.22 0.84 0.72 0.02

https://doi.org/10.1371/journal.pone.0212620.t005
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clear how to compare the level of separability between two runs using tSNE visualization, since

the solutions are not unique and depend on selecting the hyper-parameter.

User exploration and exploitation via data’s instability

The degree of user’s adaptation can be observed via the data’s instability of each class. Con-

cretely, a high instability score corresponds to highly variant data, which indicates a high level

of exploration. In reverse, a smaller one can be associated with low exploration, e.g, high level

of exploitation. Here, we define the data’s instability for each class, not for the whole dataset.

Thus, other factors that may affect the data variance, such as technical reasons, should lead to a

consistent increasing or decreasing for all classes in a run. However, the data instability vary

randomly across classes and runs. Since the user exploitation and exploration process for each

Table 6. Separability score of data for each class pair. (a)-(h) are the separability value of subject S2.

Pair D1 D2 D3 D4 D5 D6

1 − 2 2.64 1.54 1.30 1.88 0.76 1.74

1 − 3 1.20 0.96 0.70 1.14 0.88 1.33

1 − 4 2.22 2.13 0.95 1.52 0.97 0.92

2 − 3 2.30 1.61 1.26 1.02 1.31 2.94

2 − 4 1.20 1.01 0.48 0.38 0.41 0.57

3 − 4 2.02 2.34 0.96 0.86 1.76 1.62

w.r.t Di−1 0.92 1.00 0.22 0.66 0.08

w.r.t D1 0.92 1.00 1.00 1.00 0.89

https://doi.org/10.1371/journal.pone.0212620.t006

Table 7. Separability score of data for each class pair. (a)-(h) are the separability value of subject S3.

Pair D1 D2 D3 D4 D5 D6

1 − 2 1.43 1.63 2.01 1.51 1.48 1.49

1 − 3 0.87 1.14 1.29 0.86 1.04 1.20

1 − 4 2.58 1.57 2.36 1.32 1.31 1.15

2 − 3 1.45 1.52 1.64 1.49 1.18 1.94

2 − 4 2.07 1.01 1.46 1.11 0.72 0.90

3 − 4 2.41 1.35 1.78 1.19 0.97 1.38

w.r.t Di−1 0.84 0.02 1.00 0.95 0.08

w.r.t D1 0.84 0.72 0.89 0.95 0.84

https://doi.org/10.1371/journal.pone.0212620.t007

Table 8. Separability score of data for each class pair. (a)-(h) are the separability value of subject S4.

Pair D1 D2 D3 D4 D5 D6

1 − 2 3.64 3.73 2.56 2.66 3.02 3.66

1 − 3 1.42 1.92 1.75 1.70 3.67 1.75

1 − 4 3.57 3.17 2.92 3.45 3.65 3.05

2 − 3 3.04 5.05 3.71 3.41 4.39 3.14

2 − 4 1.81 1.97 1.47 1.64 1.03 1.29

3 − 4 3.04 4.39 4.33 4.52 5.42 2.67

w.r.t Di−1 0.08 1.00 0.22 0.08 0.92

w.r.t D1 0.08 0.50 0.34 0.16 0.84

https://doi.org/10.1371/journal.pone.0212620.t008
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class is the main contributor for class-wise variance, we can use this metric to quantify user

adaptation level.

Fig 8 shows the evolution of the data instability through the runs. As we should expect, dif-

ferent users have different levels of adaptation for each class, depending on the feedback from

the classifier. However, we can still observe the tendency of reducing instability from run 1 to

run 4 or even run 5, such as in Subjects S2, S3, S4 and S8, which indicates that the users became

more familiar to the systems and tried to apply what they had learned, e.g. exploitation. In run

6, we observe the increase of instability for subjects S1, S3, S6, S7 and S8. This indicates that

the users felt unsatisfied with results in run 5, and explored new skills to deal with the change

of feedback.

Table 9. Separability score of data for each class pair. (a)-(h) are the separability value of subject S5.

Pair D1 D2 D3 D4 D5 D6

1 − 2 3.40 2.89 3.74 3.46 3.69 4.94

1 − 3 0.95 1.09 1.38 2.02 1.91 2.45

1 − 4 3.48 3.09 6.45 3.57 4.23 5.04

2 − 3 3.70 2.85 2.87 6.39 4.74 6.58

2 − 4 1.04 0.62 1.02 0.86 0.80 1.03

3 − 4 3.82 3.08 5.00 6.67 5.49 6.77

w.r.t Di−1 0.98 0.02 0.34 0.78 0.02

w.r.t D1 0.98 0.16 0.08 0.03 0.03

https://doi.org/10.1371/journal.pone.0212620.t009

Table 10. Separability score of data for each class pair. (a)-(h) are the separability value of subject S6.

Pair D1 D2 D3 D4 D5 D6

1 − 2 1.31 2.11 2.23 2.67 3.16 2.07

1 − 3 0.62 1.28 1.04 1.44 1.34 0.87

1 − 4 1.16 1.97 1.83 2.24 2.58 1.70

2 − 3 0.96 2.53 1.30 2.78 1.59 1.61

2 − 4 0.56 1.22 0.72 1.37 0.97 0.99

3 − 4 0.82 2.30 1.04 2.28 1.27 1.29

w.r.t Di−1 0.02 0.98 0.02 0.84 0.84

w.r.t D1 0.02 0.02 0.02 0.02 0.02

https://doi.org/10.1371/journal.pone.0212620.t010

Table 11. Separability score of data for each class pair. (a)-(h) are the separability value of subject S7.

Pair D1 D2 D3 D4 D5 D6

1 − 2 2.41 3.54 2.22 2.09 1.58 3.71

1 − 3 0.73 0.94 0.70 1.02 0.74 2.35

1 − 4 1.83 3.41 2.49 2.20 1.45 3.38

2 − 3 1.80 1.74 1.90 2.01 1.70 3.51

2 − 4 0.61 0.86 0.92 0.59 0.45 0.68

3 − 4 1.29 1.59 2.03 2.02 1.48 3.04

w.r.t Di−1 0.03 0.78 0.78 1.00 0.02

w.r.t D1 0.03 0.11 0.16 0.89 0.02

https://doi.org/10.1371/journal.pone.0212620.t011
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Discussion

Effectiveness of the mixture models

According to the experiment results, only Subject S6 showed improvement in both QCM and

the data separability. Especially, subject S6 started near the chance level, i.e. 21.5% QCM, but

achieved a consistent improvement up to 43% QCM. For this subject, the overall improvement

can be contributed to both user and machine in the co-adaptation eco-system.

For other subjects, although the data separability varied randomly, e.g. increase in several pair-

wise classes but decrease in the other, owning to the adaptive mixtures of classifier, the classifica-

tion results still improved. For this group of subjects, the machine learning part is the main reason

leading to the overall improvement. Note that, subject S8 also started near the chance level, i.e.

10.2% QCM, but achieved a consistent improvement up to 36% confusion matrix quality.

How did the user learn to adapt to the BCI system

After the experiment, we had a short discussion with each participant and received very posi-

tive feedback. All of the subjects that participated in the previous offline BCI experiment

reported that they were much more involved and concentrated in this experiment. For novice

subjects with BCI, they shared a similar opinion that the experiment was actually quite fun,

and more like playing a game.

For the question of how they performed imagination, some of their answers were: “At the

beginning, I was not quite sure how to perform motor imagery. Later, I imagined that I

grasped a ball, and I was changing the intensity when I grasped it. For speech imagery, some-

times I also imagined tearing a paper when I was saying “split”. For “concentration”, I adjusted

the speed of saying the word.” (S7). “I imagined that I closed my hand and punched something

when I performed motor imagery.” (S4). “I imagined how to pronounce the word and how it

sounded in my head.” (S5). All the subjects admitted that the full-feedback was very challeng-

ing at the first time (run 5), but got used to it later (run 6).

Table 12. Separability score of data for each class pair. (a)-(h) are the separability value of subject S8.

Pair D1 D2 D3 D4 D5 D6

1 − 2 1.67 1.11 1.55 1.06 1.11 0.93

1 − 3 1.27 0.91 1.20 0.65 0.85 0.74

1 − 4 1.45 0.79 1.32 0.90 0.98 0.80

2 − 3 1.80 1.35 1.63 1.08 1.38 1.42

2 − 4 1.60 0.90 1.39 1.16 1.24 1.19

3 − 4 1.50 0.91 1.33 0.87 1.16 1.18

w.r.t Di−1 1.00 0.02 1.00 0.02 0.95

w.r.t D1 1.00 1.00 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0212620.t012

Table 13. Range of separability score for each mental task pair taken from all subject’s runs.

Pair Min Median Max Rank

1 − 2 2.14 2.52 1.84 3

1 − 3 1.45 1.20 1.35 2

1 − 4 2.15 1.94 3.63 5

2 − 3 2.26 2.54 1.90 4

2 − 4 0.86 1.06 1.32 1

3 − 4 2.23 1.92 3.68 6

https://doi.org/10.1371/journal.pone.0212620.t013
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Comparison to literature

A comprehensive comparison with online BCI systems in literature is difficult since the

approaches are very different in experimental protocols, and subject categories. In general, the

majority of online BCI systems [5, 19–24, 26, 58] use binary classification, and aim to obtain

Fig 6. Multi-class Common Spatial Pattern topology. The first 4 CSP patterns extracted from Run 1 (first row) and the run thats has the highest

averaged separability (second row) of 8 subjects.

https://doi.org/10.1371/journal.pone.0212620.g006
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classification accuracies above 70%, or equivalent with a Cohen’s κ = 0.4. An equal κ value for

the case of 4 classes yields 55% accuracy. A grand average of the accuracy in our results is

52.5%, which is only slightly below the requirement. In addition, except subjects S3 and S8, all

other subjects had accuracy scores significantly above the chance level. Nevertheless, as men-

tioned, our approach uses accuracy only as a reference metric.

For adaptive multi-class BCI systems, there are only a few previous works. Nicolas-Alonso

et. al. [60] proposed an intricate algorithm, where the features are extracted from 9 Finite

Impulse Response (FIR) bandpass filters, each of which is followed by a CSP filter. The most

discriminant features are then selected based on mutual information by 10-fold cross valida-

tion training section. Each new feature vector is then centralized by subtracting for the mean

of the training dataset. This mean vector is also re-estimated after every new sample using a

forgetting factor. Finally, a semi-supervised Spectral Regression Kernel Discriminant Analysis

is used to classify the feature. In their later work [61], the same procedure of extracting features

is combined with a stacked classifier, in which the output from several regularized LDA (level

0) on different domains, such as spatial, spectral and temporal information, are stacked to the

final classifier (level 1). Our system shares several characteristics with this approach, such as

reestimating the feature mean and combining a set of classifiers. However, our approach

updates the model after each run, and utilizes a mixture of models. This is because we aim to

fix the Machine Learning part during the online test so that the human can explore and exploit

techniques to adapt toward the system. Deliberating feature extraction for each subject such as

in [60, 61] can potentially improve our proposed method.

The approach proposed by Spuler et. al. [15] adopts a new sample to retrain SVM if its pre-

diction probability is greater than pthreshold = 0.8. A problem is that the selection then critically

depends on the pre-trained classifier. For multiple-class prediction, if the pre-trained classifier

is biased away a particular class, at the extreme, it will never predict a sample as this class.

Consequently, no new sample of this class will be added to update the model, thus lead to

Fig 7. t-SNE visualization of tangent vector feature for run 1 and run 6 of subject 5.

https://doi.org/10.1371/journal.pone.0212620.g007
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imbalance of the training data and continue falsifying the bias. In contrast, our approach

decouples the selection of new samples from the performance of the classifier so that, a new

training dataset is always balanced, and can reflect what the user is exploring. Thus, a new

RVM trained on this set can adapt toward the user tendency, rather than force the user to fol-

low an initial, possibly inaccurate, pre-trained system.

Fig 8. Data instability for each class along the runs. The legend notations of each class (C1-C4) are given in (a).

https://doi.org/10.1371/journal.pone.0212620.g008
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The closest work to ours can be referred to the method proposed by Llera et. al. [62], in

which the tangent vector of spatial covariance matrix is used as the feature, and the binary

pooled mean LDA introduced in [22] is generalized for the multi-class case. Different from

our approach, their method follows the sample-based adaptation, where the LDA’s mean is

updated after every new sample in an unsupervised manner, e.g. for all data points. Our

approach, in contrast, essentially follows the batch-based adaptation, where we update the geo-

desic mean reference point and RVM model every run. Moreover, not all but only representa-

tive data are selected to update the models.

Conclusion

This paper proposed an adaptive, visual feedback based online BCI paradigm toward improv-

ing the efficiency of the conventional offline BCI. The framework successfully addresses our

objectives. First, the system only needs a minimal time to calibrate, i.e. 8 minutes for 4 classes,

and the users immediately receive feedback on how to use the system. Second, the mechanism

of selecting representative data for updating the models and the adaptive mixture of RVM

models results in the improvement of classification performance, while encouraging partici-

pants to explore and exploit their mental processes in their own way. Third, we combined dif-

ferent modalities of mental tasks, namely motor imagery and speech imagery, to increase the

DoF for BCI applications. All participants demonstrated significant improvements based on

the confusion matrix quality criterion. Data separability is used to evaluate the user perfor-

mance separately, and demonstrate the effectiveness of the co-adaptive system. Furthermore,

the instability of data is used as the indication of the exploration and exploitation learning pro-

cess. We received very positive feedback from users, which once again emphasizes the impor-

tance of early feedback on BCI applications. The proposed method can be improved further by

refining spatial filter and incorporating features from the frequency domain. A future work

can also be extending to a higher number of DoF, and subject- dependent features.
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