
Bioscience Reports (2020) 40 BSR20192593
https://doi.org/10.1042/BSR20192593

*These authors are co-authors.

Received: 25 July 2019
Revised: 19 August 2020
Accepted: 10 September 2020

Accepted Manuscript online:
21 September 2020
Version of Record published:
05 October 2020

Research Article

Prognostic value of aberrantly expressed methylation
genes in human hepatocellular carcinoma

Limin Zhen1,*, Gang Ning 2,*, Lina Wu1, Yongyuan Zheng1, Fangji Yang1, Tongtong Chen1, Wenxiong Xu1,
Ying Liu1, Chan Xie1 and Liang Peng1

1Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; 2Department of Gastroenterology and Hepatology, Guangzhou
Digestive Diseases Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong Province 510180,China

Correspondence: Chan Xie (happyxiechan@hotmail.com) or Liang Peng (pliang@mail.sysu.edu.cn)

Objectives: To identify the prognostic value of aberrantly methylated differentially expressed
genes (DEGs) in hepatocellular carcinoma (HCC) and to explore the underlying mechanisms
of tumorigenesis.
Methods: Gene expression profiles (GSE65372 and GSE37988) were analyzed using GEO2R
to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes
was performed by the Database for Annotation, Visualization, and Integrated Discovery
(DAVID). Cytoscape software was used to analyze the PPI network and to select hub genes.
Transcriptional and proteinic expression data of hub genes were obtained through UALCAN
and the Human Protein Reference Database. Finally, we analyzed the prognostic value of
hub genes with the Kaplan–Meier Plotter and MethSurv database.
Results: In total, 24 up-hypomethylated oncogenes and 37 down-hypermethylated tumor
suppressor genes (TSGs) were identified, and 8 hub genes, including 4 up-hypomethylated
oncogenes (CDC5L, MERTK, RHOA and YBX1) and 4 down-hypermethylated TSGs (BCR,
DFFA, SCUBE2 and TP63), were selected by PPI. Higher expression of methylated CDC5L-
cg05671347, MERTK-cg08279316, RHOA-cg05657651 and YBX1-cg16306148, and lower
expression of methylated BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089
and TP63-cg06520450, were associated with better overall survival (OS) in HCC patients.
Multivariate analysis also showed they were independent prognostic factors for OS of HCC
patients.
Conclusions: In summary, different expression of methylated genes above mentioned were
associated with better prognosis in HCC patients. Altering the methylation status of these
genes may be a therapeutic target for HCC, but it should be further evaluated in clinical
studies.

Introduction
Hepatocellular carcinoma (HCC) is a global malignant disease, ranking third in cancer-related mortality
and causing more than 600,000 deaths each year [1,2]. The mortality caused by HCC has increased sig-
nificantly in the past 20 years, and the deaths in the Asia-Pacific region account for the vast majority in
the world [3]. At present, the main treatments for HCC are surgical resection, liver transplantation, and
interventional therapy. However, the long-term prognosis is unsatisfactory, and the 5-year survival rate is
less than 30% [4]. A number of factors can cause HCC, such as chronic viral infections (hepatitis B virus
and hepatitis C virus), the deposition of iron and copper, fat accumulation, and so on [5].

It has been found that the occurrence and development of HCC is a multistage process that is caused
by the inactivation of tumor suppressor genes (TSGs) or the activation of proto-oncogenes by genetic
alterations and epigenetic abnormalities. As an important part of epigenetic regulation, DNA methylation
has been found to play a pivotal role in tumorigenesis [6,7].
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In HCC, abnormal methylation can affect the expression and functions of hub genes, thus taking part in various
processes of HCC development and progression [8]. Even though many studies have been performed to find aber-
rantly methylated genes in HCC [9–11], it is limited for individual studies in overlapping gene profiling and it may be
not enough to find pivotal genes and mechanisms in HCC. Therefore, the integrated gene profiles and their relation-
ship are still not addressed clearly. In the study, we combined gene expression levels and gene methylation profiles
in HCC and explored to confirm the key aberrantly methylated genes and their relationship, thus helping to identify
biomarkers for the diagnosis and prognosis of HCC.

Materials and methods
Gene Expression Omnibus (GEO), ONGene and TSGene database
GEO (https://www.ncbi.nlm.nih.gov/geo/) is an online microarray or gene profiling database that is developed by
NCBI. We used GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), an online analysis tool, to identify the differen-
tially expressed genes (DEGs) and differentially methylated genes (DMGs). The expression profiling from GSE65372,
subsuming 39 HCC tumors and 15 normal liver tissues, was obtained from GPL14951 Platforms. The gene methy-
lated profiling was gained from GSE37988, which included 62 HCC tumors and 62 adjacent non-tumor tissues,
based on GPL8490. The cut-off criteria of DEGs was P-value < 0.05, and | logFC | > 1. DMGs with P-value
< 0.05 and logFC < 0 regarded as hypomethylation, and with P-value < 0.05 and logFC > 0 as hypermethyla-
tion. We downloaded the oncogene information from the ONGene database (http://ongene.bioinfo-minzhao.org/),
and the TSG information from the TSGene database (https://bioinfo.uth.edu/TSGene/index.html). An online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to overlap DEGs, DMGs, oncogenes and TSGs.

Gene Ontology (GO) and pathway enrichment (Kyoto Encyclopedia of
Genes and Genomes, KEGG) analysis
GO is a standardized functional category system including three aspects: biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF), which offers a standardized series of dynamically latest annotations and
describes the features of genes and gene products in organisms [12]. KEGG is one of the databases commonly used in
pathway research, including metabolism, genetic processing, environmental processing, cellular processes, biological
systems, diseases, and drug development [13]. Functions of hypomethylated up-regulated oncogenes and hyperme-
thylated down-regulated TSGs were analyzed by GO and KEGG in the online Database for Annotation, Visualization,
and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/summary.jsp).

Protein–protein interaction (PPI) network generation and hub genes
selection
In organisms, proteins do not exist independently, and their functions must be regulated and mediated by other
proteins. The implementation of this regulation or mediation first requires binding or interaction between proteins.
Therefore, we constructed a PPI network to reveal the further functions of proteins. The PPI network was set up by
the Search Tool for the Retrieval of Interacting Genes (STRING) database (https://string-db.org/cgi/input.pl). Next,
we used the Cytoscape software to analyze the network and to select hub genes by cytoHubba. We used Molecular
Complex Detection (MCODE) by Cytoscape software to filter modules. Then hub genes were confirmed with an
algorithm degree >10 [14].

Transcriptional expression of hub genes in HCC
UALCAN (http://ualcan.path.uab.edu) is an interactive web resource for analyzing cancer gene expression data and
clinical data of 31 cancer types from the TCGA database [15]. We used the database to analyze transcriptional expres-
sion of target genes of HCC between tumor and normal samples and the association of the transcriptional expression
with relative clinicopathologic parameters.

Protein expression of hub genes in HCC
The Human Protein Atlas (https://www.proteinatlas.org) is a website tool, which is dedicated to providing tissues and
cell distribution information for 24,000 human proteins. This database uses proprietary antibodies to examine the
distribution and expression of each protein in 48 normal human tissues, 20 tumor tissues, 47 cell lines, and 12 blood
cells by immunohistochemistry (IHC) [16]. In the present study, we compared the protein expression of different
genes between human normal and HCC tissues by IHC levels.
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Figure 1. Identification of aberrantly methylated and differentially expressed genes, overlapping with oncogenes and tumor

suppressor genes (TSGs)

(A) Four hundred and forty-five hypomethylated up-regulated genes were identified, and twenty-four of them were oncogenes. (B)

Four hundred and sixty-seven hypermethylated and down-regulated genes were identified, and thirty-seven of them were TSGs.

Survival analysis of hub genes based on mRNA expression
The prognostic value of 8 hub genes expression levels was analyzed by a free online database, KaplannMeier (http:
//kmplot.com/analysis/), which was established using gene expression data and survival information of liver can-
cer and four other types of cancer including breast cancer, ovarian cancer, lung cancer, and gastric cancer [17–19].
Briefly, 8 different hub genes were input to the database (http://kmplot.com/analysis/index.php?p=service&cancer=
liver rnaseq). The median values of mRNA expression were used to differentiate high and low expression groupsin pa-
tients with cancer and were validated by K-M survival curves. The median values of mRNA expression, HRs, 95%CIs
and p values were displayed by K-M plotter. A P value < 0.05 was considered statically significant.

Survival analysis of hub genes methylation
The prognostic role of the methylation of 8 hub genes was analyzed using the MethSurv Database (https://biit.cs.ut.
ee/methsurv/). It is an open web tool to evaluate the prognostic values of CpG methylation data. This database can
provide the overall survival (OS) with DNA methylation levels in univariable and multivariable survival analysis. All
the information was based on CpG methylation that includes 7358 methylomes from 25 kinds of human cancers,
and the methylome data are from The Cancer Genome Atlas (TCGA) [20]. On the webpage, we can obtain much
important information about single CpG analysis, region-based analysis, and so on [20]. We employed the MethSurv
Database to screen the different methylated sites of 8 hub genes. Then, we validated the most pivotal methylated site
associated with HCC patient outcomes.

Results
Identification of DEGs and DMGs in patients with HCC
We obtained DEGs from GSE65372 and DMGs from GSE37988. Overlapping the up-regulated genes, hypomethy-
lated genes and oncogenes, we obtained 445 hypomethylated and up-regulated genes, and 24 of them were oncogenes
(Figure 1A). Similarly, 467 hypermethylated and down-regulated genes were obtained, and 37 of them were TSGs
(Figure 1B).
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Table 1 Gene ontology analysis of aberrantly methylated-differentially expressed oncogenes and TSGs in
hepatocellular carcinoma

CategoryGO analysis Term
Gene
count % P value

Up-regulated and hypomethylated expression

GOTERM BP DIRECT GO:0043066∼negative regulation of apoptotic process 5 7.91 3.11E-04

GOTERM BP DIRECT GO:0008283∼cell proliferation 4 6.33 1.31E-03

GOTERM BP DIRECT GO:0060571∼morphogenesis of an epithelial fold 2 3.16 4.55E-03

GOTERM BP DIRECT GO:0051092∼positive regulation of NF-kappaB transcription factor
activity

3 4.74 8.30E-03

GOTERM BP DIRECT GO:0043123∼positive regulation of I-kappaB kinase/NF-kappaB
signaling

3 4.74 1.57E-02

GOTERM CC DIRECT GO:0005925∼focal adhesion 5 7.91 6.56E-04

GOTERM CC DIRECT GO:0005730∼nucleolus 6 9.49 8.58E-04

GOTERM CC DIRECT GO:0030496∼midbody 3 4.74 7.44E-3

GOTERM CC DIRECT GO:0070062∼extracellular exosome 8 12.65 1.52E-02

GOTERM CC DIRECT GO:0043234∼protein complex 3 4.74 2.26E-02

GOTERM MF DIRECT GO:0001077∼transcriptional activator activity, RNA polymerase II
core promoter proximal region sequence-specific binding

4 6.33 3.15E-03

GOTERM MF DIRECT GO:0000978∼RNA polymerase II core promoter proximal region
sequence-specific DNA binding

4 6.33 9.03E-03

GOTERM MF DIRECT GO:0004871∼signal transducer activity 3 4.74 1.87E-02

GOTERM MF DIRECT GO:0031683∼G-protein beta/gamma-subunit complex binding 2 3.16 2.38E-02

GOTERM MF DIRECT GO:0003924∼GTPase activity 3 4.74 3.12E-02

Down-regulated and hypermethylated expression

GOTERM BP DIRECT GO:0010332∼response to gamma radiation 4 7.04 1.76E-05

GOTERM BP DIRECT GO:0042475∼odontogenesis of dentin-containing tooth 4 7.04 8.69E-05

GOTERM BP DIRECT GO:0043065∼positive regulation of apoptotic process 5 8.80 1.17E-04

GOTERM BP DIRECT GO:0008285∼negative regulation of cell proliferation 5 8.80 1.17E-03

GOTERM BP DIRECT GO:0000122∼negative regulation of transcription from RNA
polymerase II promoter

6 10.56 1.27E-03

GOTERM CC DIRECT GO:0005829∼cytosol 12 21.12 5.66E-07

GOTERM CC DIRECT GO:0016363∼nuclear matrix 4 7.04 1.41E-04

GOTERM CC DIRECT GO:0000790∼nuclear chromatin 4 7.04 2.67E-03

GOTERM CC DIRECT GO:0035097∼histone methyltransferase complex 2 3.52 1.25E-02

GOTERM CC DIRECT GO:0000159∼protein phosphatase type 2A complex 2 3.52 3.70E-02

GOTERM MF DIRECT GO:0008601∼protein phosphatase type 2A regulator activity 2 3.52 2.89E-02

Further functions and pathways of hypomethylated up-regulated
oncogenes and hypermethylated down-regulated TSGs in HCC patients
To explore the further functions and pathways, DAVID was performed to analyze the information of hypomethylated
up-regulated oncogenes and hypermethylated down-regulated TSGs, respectively. A P value < 0.05 was regarded as
significant. As shown in Table 1, hypomethylated up-regulated oncogenes were enriched in the negative regulation
of the apoptotic process, cell proliferation, morphogenesis of an epithelial fold, positive regulation of NF-kappaB
transcription factor activity, positive regulation of I-kappaB kinase/NF-kappaB signaling, which played an important
role in biological procession. For hypermethylated down-regulated TSGs, biological processes, such as response to
gamma radiation, odontogenesis of dentin-containing tooth, positive regulation of the apoptotic process, and nega-
tive regulation of cell proliferation, were significantly enriched after GO annotation. The results of KEGG pathway
enrichment were shown in Table 2. The enrichment analysis suggested that pathways in cancer, sphingolipid signal-
ing, platelet activation, regulation of actin cytoskeleton, and the rap1 signaling were in hypomethylated up-regulated
oncogenes, while the neurotrophin signaling pathway, apoptosis, and pathways in cancer were in hypermethylated
down-regulated TSGs.

Protein–protein interaction (PPI) network analysis
The PPI network was constructed by STRING database. There were 24 nodes and 21 edges for the 24 hypomethy-
lated up-regulated oncogenes, and the PPI enrichment P value was 0.029 (Figure 2A). For 37 hypermethylated
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Figure 2. The PPI network for aberrantly methylated differentially expressed genes

(A) PPI for hypomethylated up-regulated oncogenes. (B) PPI for hypermethylated down-regulated TSGs.
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Table 2 KEGG pathway analysis of aberrantly methylated-differentially expressed oncogenes and TSGs in
hepatocellular carcinoma

Pathway ID Pathway name
Gene
no. % P value Genes

Up-regulated and hypomethylated expression

hsa05200: Pathways in cancer 6 9.50 3.59E-04 GNA13, EGFR, AR, GNAI2, RHOA, PIK3R1

hsa04071 Sphingolipid signaling pathway 4 6.30 9.97E-04 GNA13, GNAI2, RHOA, PIK3R1

hsa04611 Platelet activation 4 6.30 1.18E-03 GNA13, GNAI2, RHOA, PIK3R1

hsa04810 Regulation of actin cytoskeleton 4 6.30 5.07E-03 GNA13, EGFR, RHOA, PIK3R1

hsa04015 Rap1 signaling pathway 4 6.30 5.20E-03 EGFR, GNAI2, RHOA, PIK3R1

Down-regulated and hypermethylated expression

hsa04722 Neurotrophin signaling pathway 4 7.04 5.53E-03 PRDM4, BAX, FOXO3, PRKCD

hsa04210 Apoptosis 3 5.28 1.38E-02 DFFA, BAX, CASP8

hsa05200 Pathways in cancer 5 8.80 2.94E-02 BMP4, BCR, BAX, CASP8, PML

down-regulated TSGs, 36 nodes and 17 edges were identified with an enrichment P value of 0.000669 (Figure 2B).
Next, we analyzed the PPI network data by Cytoscape software using the cytoHubba program to select the hub genes.
In total, we identified 8 hub genes, 4 hypomethylated up-regulated oncogenes (CDC5L, MERTK, RHOA and YBX1)
and 4 hypermethylated down-regulated TSGs (BCR, DFFA, SCUBE2, and TP63).

The transcriptional and proteinic expression levels of 8 hub genes in
HCC patients
The mRNA expression levels of 8 hub genes were evaluated in the UALCAN database, which involves 31 cancer types
of TCGA by 3 RNA-seq and clinical datasets. As shown in Figure 3A, mRNA expression of CDC5L (P<1.00E-12),
MERTK (P=3.77E-05), RHOA (P=1.62E-12), and YBX1 (P=1.62E-12) were obviously higher in HCC tissues com-
pared with normal liver samples. In contrast, mRNA levels of BCR (P<1.00E-12), DFFA (P=1.62E-12), SCUBE2
(P=7.73E-05) and TP63 (P=4.42E-04) were found to be significantly lower in HCC compared with normal liver
tissues (Figure 3B). To further explore the protein expression level of 8 hub genes, we used the Human Protein Atlas
database. Medium expression of CDC5L and RHOA, high expression of MERTK and YBX1 was found in HCC tissues
by IHC staining, while medium expression of MERTK was observed; CDC5L, RHOA, and YBX1 were not detected in
normal liver tissues (Figure 4A). As shown in Figure 4B, protein expression was not detected in HCC patient tissues
for any hypermethylated down-regulated TSGs, while medium expression of BCR, DFFA and SCUBE2, high expres-
sion of TP63 was found in normal liver samples. Taken together, our results showed that higher transcriptional and
proteinic expression of CDC5L, MERTK, RHOA and YBX1, and lower transcriptional and proteinic expression of
BCR, DFFA, SCUBE2 and TP63, were observed in patients with HCC.

Prognostic value of mRNA expression and DNA methylation expression of
8 hub genes in HCC PATIENTS
To evaluate the relationship of mRNA expression and DNA methylation expression of 8 hub genes with survival in
liver cancer patients, we used two databases, including Kaplan–Meier plotter (http://kmplot.com/analysis/) and Meth-
Surv (https://biit.cs.ut.ee/methsurv/). As is shown in Figure 5, HCC patients with lower mRNA levels of RHOA (HR =
1.52, 95% CI: 1.08–2.14, P=0.016) and YBX1 (HR = 2.61, 95% CI: 1.83–3.73, P=4.3E-08) had higher overall survival
(OS) (Figure 5C1,D1), while mRNA expression of CDC5L (HR = 0.84, 95% CI: 0.58–1.21, P=0.34) and MERTK (HR
= 0.86, 95% CI: 0.61–1.21, P=0.38) was not associated with liver cancer patient survival (Figure 5A1,B1). In addi-
tion, we also used the MethSurv database to analyze the prognostic value of the DNA methylation of these genes. Our
results showed that univariable and multivariable survival analyses according to the methylation of CpG sites by Cox
proportional-hazards models based on TCGA database (level 3 data, HM450K). In the univariable analysis, higher
DNA methylation of these four hypomethylated up-regulated oncogenes was associated with significantly higher
OS in HCC patients (CDC5L-cg05671347, HR = 0.466, 95% CI: 0.298–0.727, P=9.5E-05; MERTK-cg08279316,
HR = 0.671, 95% CI: 0.463–0.971, P=0.00027; RHOA-cg05657651, HR = 0.567, 95% CI: 0.402–0.801, P=0.0015;
YBX1-cg16306148, HR = 0.518, 95% CI: 0.364–0.739, P=0.00044) (Figure 5A2,B2,C2,D2).

6 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Measuring mRNA expression of 8 hub genes in the UALCAN

(A) Box plots of hypomethylated up-regulated oncogenes (CDC5L, MERTK, RHOA, YBX1) in primary HCC tissues and normal liver

samples. (B) Box plots of hypermethylated down-regulated TSGs (BCR, DFFA, SCUBE2, TP63) in primary HCC tissues and normal

liver samples; ***P<0.001.
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Figure 4. Relative immunohistochemistry results of 8 hub genes in HCC tissues and normal liver tissues from Human Protein

Atlas database

(A) The protein expression levels of hypomethylated up-regulated oncogenes in HCC and normal liver tissues by IHC images. (B)

The protein expression levels of hypermethylated down-regulated TSGs in HCC and normal liver tissues.
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Figure 5. Prognostic value of mRNA expression (Kaplan-Meier plotter), methylation of hypomethylated upregulated onco-

genes in HCC patients (MethSurv)

Figure 5 (A1), (B1), (C1), (D1) showed the relation of mRNA expression of hypomethylated upregulated oncogenes with the prog-

nosis in HCC patients using Kaplan–Meier plotter (http://kmplot.com/analysis/). Figure 5 (A2), (B2), (C2), (D2) showed the results

of methylated level of hypomethylated up-regulated oncogenes with the prognosis in HCC patients by univariate analysis using

MethSurv (https://biit.cs.ut.ee/methsurv/).

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9

http://kmplot.com/analysis/
https://biit.cs.ut.ee/methsurv/


Bioscience Reports (2020) 40 BSR20192593
https://doi.org/10.1042/BSR20192593

Table 3 Survival analysis summary after covariate adjustment (including age, sex, stage, and grade) of
aberrantly methylated-differentially expressed oncogenes and TSGs based on TCGA database in HCC patients

Gene symbol HR 95% CI
Wald P
value

Current
split

Mean/q25/
maxstat Range

Up-regulated and hypomethylated expression

CDC5L-cg05671347 (hypermethylation) 0.561 0.328–0.959 0.035 Mean 0.06 0.021–0.314

MERTK-cg08279316 (hypermethylation) 0.734 0.479–1.124 0.15 Mean 0.03 0.018–0.239

RHOA-cg05657651 (hypermethylation) 0.567 0.402–0.801 0.0013 maxstat 0.919 0.484–0.963

YBX1-cg16306148 (hypermethylation) 0.518 0.364–0.739 0.00028 q25 0.017 0.013–0.052

Down-regulated and hypermethylated expression

BCR-cg25410636 (hypermethylation) 1.759 1.101–2.81 0.018 maxstat 0.761 0.575–0.915

DFFA-cg20696875 (hypermethylation) 2.124 1.26–3.58 0.0047 maxstat 0.04 0.021–0.498

SCUBE2-cg19000089 (hypermethylation) 1.631 1.083–2.455 0.019 maxstat 0.766 0.074–0.932

TP63-cg06520450 (hypermethylation) 1.991 1.324–2.994 0.00094 maxstat 0.901 0.089–0.944

Next, we also used Kaplan–Meier plotter to analyze the relationship of mRNA expression of hypermethylated
down-regulated TSGs with OS in HCC patients. We found that mRNA expression levels of all the hypermethy-
lated down-regulated TSGs (BCR, DFFA, SCUBE2, TP63) were not associated with OS (BCR, HR = 0.81, 95% CI:
0.57–1.16, P=0.25; DFFA, HR = 1.29, 95% CI: 0.91–1.83, P=0.15; SCUBE2, HR = 0.74, 95% CI: 0.52–1.04, P=0.084;
TP63, HR = 0.75, 95% CI: 0.52–1.09, P=0.13) (Figure 6A1,B1,C1,D1). However, the methylation of these 4 genes was
markedly correlative with HCC patient survival. Our results revealed that HCC patients with hypermethylation of
these four genes had better OS (BCR-cg25410636, HR = 2.309, 95% CI: 1.51–3.529, P=3.2E-05; DFFA-cg20696875,
HR = 2.102, 95% CI: 1.315–3.357, P=0.00078; SCUBE2-cg19000089, HR = 1.495, 95% CI: 1.048–2.134, P=0.025;
TP63-cg06520450, HR = 2.00, 95% CI: 1.415–2.826, P=0.00013) (Figure 6A2,B2,C2,D2). These results indicated that
DNA methylation levels of these hub genes were significantly associated with the prognosis of liver cancer patients
and that they may be exploited as useful biomarkers for the prediction of liver cancer patient survival.

Finally, we then tried to assess the independent prognostic value of DNA methylation levels of these hub genes in
terms of OS in liver cancer patients. In multivariable survival analysis, clinical information including age, sex, clinical
stage, grade, weight and height were adjusted. For hypomethylated up-regulated oncogenes, our results showed that
HCC patients with higher methylated expression of CDC5L-cg05671347 (HR = 0.561, 95% CI: 0.328–959, P=0.035),
RHOA-cg05657651 (HR = 0.567, 95% CI: 0.402–0.801, P=0.0013), and YBX1-cg16304148 (HR = 0.518, 95% CI:
0.364–739, P=0.00028) had higher OS. However, the methylation level of MERTK-cg08279316 was not associated
with OS in HCC (HR = 0.734, 95% CI: 0.479–1.124, P=0.15) (Table 3). In regard to hypermethylated down-regulated
TSGs, methylation of four genes was significantly related with OS in HCC patients. Our results showed that lower
methylated expression of these four genes was associated with better OS (BCR-cg25410636, HR = 1.759, 95% CI:
1.101–2.81, P=0.018; DFFA-cg20696875, HR = 2.124, 95% CI: 1.26–3.58, P=0.0047; SCUBE2-cg19000089, HR =
1.631, 95% CI: 1.083–2.455, P=0.019; TP63-cg06520450, HR = 1.991, 95% CI: 1.324–2.994, P=0.00094) (Table 3).
Taken together, our results show that DNA methylation expressions of CDC5L-cg05671347, RHOA-cg05657651,
YBX1-cg1630414, BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089 and TP63-cg06520450 were indepen-
dent prognostic factors for OS in HCC patients.

Discussion
HCC is a multistage process caused by the inactivation of TSG or the activation of proto-oncogenes by genetic alter-
ations and epigenetic abnormalities. Currently, it is found that hypermethylation of the CpG island in the promoter
region of TSGs can enhance the spatial structure of chromatin, block the transcription of genes, silence the expres-
sion of TSGs, and down-regulate the expression of proto-oncogene by recruiting methylation-binding proteins and
related complexes [21]. Therefore, the hypermethylation of the promoter region of the TSGs and the hypomethylation
of the oncogene promoter region are closely related to oncogenesis of HCC. In our study, gene expression profiles and
gene methylation profiles of HCC were jointly analyzed to find key aberrantly methylated genes, which may help to
identify biomarker for diagnosis and prognosis of HCC.

It would greatly benefit the diagnosis, therapy and prognosis of HCC to illuminate the potential mechanisms of the
initiation and evolution. In the present study, we identified 24 hypomethylated up-regulated oncogenes and 37 hyper-
methylated down-regulated TSGs by several kinds of bioinformatics online tools. Elucidating these genes in pathways
and verifying hub genes with abnormal methylation may give us a new thinking for latent mechanisms of HCC. As
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Figure 6. Prognostic value of mRNA expression, methylation of hypermethylated downregulated TSGs in HCC patients

Figure 6 (A1), (B1), (C1), (D1) showed the correlation of mRNA expression of hypermethylated down-regulated TSGs with

the prognosis in HCC patients using Kaplan–Meier plotter. Figure 6 (A2), (B2), (C2), (D2) showed the results of methylated

level of hypermethylated down-regulated TSGs with the prognosis in HCC patients by univariate analysis using MethSurv

(https://biit.cs.ut.ee/methsurv/).
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was shown by GO analysis, hypomethylated oncogenes in HCC were enriched in biological processes, including the
negative regulation of the apoptotic process and cell proliferation, while positive regulation of the apoptotic process,
negative regulation of cell proliferation and negative regulation of transcription from RNA polymerase II promoter
were enriched in hypermethylated TSGs. The molecular function of hypomethylated oncogenes was enriched with
transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding, and
RNA polymerase II core promoter proximal region sequence-specific DNA binding. It is reasonable that minimal
cell apoptosis, frequent cell proliferation, transcriptional activation of oncogenes and DNA-binding regulation are
important in the progression of cancers, including HCC. KEGG pathway enrichment demonstrated that pathways
in cancer were significantly enriched both in oncogenes and TSGs. These pathways include p53 signaling and Wnt,
which are frequently dysregulated in HCC [22,23].

The free online tool, STRING, was used to constructed the PPI network; then, we screened eight hub genes by Cy-
toscape software, including four hypomethylated up-regulated oncogenes (CDC5L, MERTK, RHOA and YBX1) and
four hypermethylated down-regulated TSGs (BCR, DFFA, SCUBE2, and TP63). Higher transcriptional and proteinic
expression levels of CDC5L, MERTK, RHOA and YBX1, and lower transcriptional and proteinic expression levels of
BCR, DFFA, SCUBE2 and TP63, were found in HCC patients. In addition, higher methylation of CDC5L-cg05671347,
MERTK-cg08279316, RHOA-cg05657651 and YBX1-cg16306148, and lower methylation of BCR-cg25410636,
DFFA-cg20696875, SCUBE2-cg19000089 and TP63-cg06520450, were significantly associated with better OS in
HCC patients. Multivariate analysis also showed that higher methylation of CDC5L-cg05671347, RHOA-cg05657651
and YBX1-cg16306148, and lower methylation of BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089 and
TP63-cg06520450, were independent prognostic factors for OS in HCC patients.

CDC5L is a DNA-binding protein and transcriptional activator involved in cell cycle control [24,25]. It has found
that CDC5L is closely associated with cell division and cell proliferation. Studies have found that CDC5L was highly
expressed in HCC tissues and was significantly related to AJCC stage, tumor size, and Ki-67. High expression of
CDC5L was an independent prognostic factor for poor survival of HCC patients. In vitro studies showed that over-
expression of CDC5L contributed to cell cycle progress of HCC cells, while down-regulation of CDC5L resulted in
cell cycle arrest at G2/M phase and reduced cell proliferation of HCC cells [26]. Moreover, higher phosphorylation of
CDC5L was found in HCC cell line, MHCC97-H (high metastasis), indicating that it may participate in the metasta-
sis of HCC [27]. Similarly, in our study, higher transcriptional and proteinic expression levels of CDC5L were found
in HCC patients. Additionally, higher methylation of CDC5L-cg05671347 was associated with better OS of HCC
patients and was also an independent prognostic factor for OS of HCC patients. Together with other studies, our
results suggest that CDC5L plays an important role in the tumorigenesis of HCC, and thus, is a potential prognostic
biomarker for HCC patients.

MERTK is a member of the MER / AXL / TYRO3 receptor kinase family that transduces signals from the extracellu-
lar matrix to the cytoplasm by binding to several ligands, including LGALS3, TUB, TULP1 and GAS6. MERTK regu-
lates many physiological processes, such as cell proliferation, migration, differentiation, and phagocytosis of apoptotic
cells [28]. MERTK is overexpressed in a variety of tumors, and its overexpression promotes tumor cell proliferation,
migration, and invasion [29–32]. Our results showed that the mRNA and protein expression levels of MERTK were
higher in HCC tissues, and patients with lower methylation of MERTK-cg08279316 had a poorer prognosis in uni-
variate analysis. However, through multivariate analysis, we found higher methylation of MERTK-cg08279316 was
not associated with OS in HCC patients, which suggests that MERTK-cg08279316 may not be a good prognostic
biomarker for HCC.

RHOA encodes a member of the Rho family of small GTPases that acts as a molecular switch in the signal transduc-
tion cascade [33]. Overexpression of this gene is associated with tumor cell proliferation and metastasis [34,35]. Gou
et al found that high expression of RhoA protein was recognized in HCC compared with the paired nontumor tissues
and was associated with poorer disease-free survival (DFS) in HCC patients, suggesting RhoA was a useful marker
for predicting early recurrence in early-stage HCC [36]. Mechanistically, Fukui et al showed that down-regulation of
RhoA expression led to a significant inhibition of cell growth, induction of apoptosis, and reduction in the migration
of HepG2 and Hep3B cells [37]. Moreover, Galectin 3, MENA, long noncoding RNA AFAP1-AS1 could promote
HCC cell proliferation and invasion via the up-regulation of RhoA/Rac2 signaling [38–40]. In our study, higher tran-
scriptional and proteinic expression levels of RHOA were found in HCC patients. Additionally, higher methylation
of RHOA-cg05657651 was associated with better OS of HCC patients and was also an independent prognostic factor
for OS of HCC patients. Together with other studies, our results indicated that RHOA may be exploited as a potential
prognostic biomarker for HCC patients.

YBX1 encodes a highly conserved cold shock domain protein that acts as a DNA and RNA binding protein in-
volved in many cellular processes, including transcriptional regulation and translation, premRNA splicing, DNA
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repair and mRNA packaging [41]. Abnormal expression of this gene is associated with cell proliferation in many
cancers, which may be a prognostic marker for poor prognosis and resistance in certain cancers, including HCC
[42,43]. Ali et al. found lncRNA affected PAN-cancer by activating the YBX1/ hnRNPK complex through regulating
the FGF/FGFR, PI3K/AKT and MAPK pathways [44]. Zhang et al. showed that in human gastric cancer, YBX1 inter-
acted with HOXC-AS3 and took part in HOXC-AS3-mediated gene transcriptional regulation in tumorigenesis [45].
There were some studies demonstrated that YBX1 could affect the RNA binding during oxidative stress to promote
the tumorigenesis [46,47]. In our study, elevated transcriptional and proteinic expressions of YBX1 were found in
HCC patients, and in K-M plotter, patients with higher expression of YBX1 had a significantly poorer prognosis. In
contrast, hypermethylation at cg16306148 was a good predictor of prognosis for HCC, suggesting it can be a prognosis
marker.

The function of the normal BCR gene product is not clear, but the BCR/ABL fusion protein has been researched
deeply. The abnormal expression of BCR/ABL may lead to many diseases, including chronic granulocytes leukemia,
acute lymphocyte leukemia and the related pathways, including endometrial cancer and the PI3K/Akt pathway
[48–51]. However, there is limited research on the methylation status of the BCR gene in liver cancer. Miyazaki et
al. used IHC and Western blot to show that the BCR protein level was higher in HCC than in liver tissues adjacent
to HCC tissue [52]. In contrast, our results showed that the expression levels of BCR mRNA and protein in HCC
tissues were decreased, but it was not an independent risk factor for the prognosis of HCC in K-M plotter. However,
we found lower methylation of its cg25410636 site led to a better prognosis for HCC patients. BCR-cg25410636 may
become a potential prognostic factor in HCC, and we need further research to confirm it.

DFFA is an apoptosis-related gene that is expressed in many normal tissues such as liver, colon, lung, breast, and
epithelial tissues, and it is overexpressed in peripheral blood mononuclear cells. Its expression is suppressed to differ-
ent degrees in tumor cells, including gastrointestinal cancer, bladder cancer, and so on [53,54]. Toraih et al observed
that DFFA was the target gene of microRNA, through regulating cell apoptosis to affect the initiation and develop-
ment of renal cell carcinoma [53]. Kekeeva et al. elucidated that DFFA was associated with bladder carcinogenesis
[54]. Pei et al. further demonstrated that AT2R promotes the tumorigenesis of bladder cancer by downregulation of
DFFA [55]. There are few studies on the methylation of DFFA. In our study, we showed that although DFFA had
low transcription and protein expression levels in HCC tissues, it was not an independent factor affecting prognosis.
The lower methylation at cg20696875, the better prognosis in patients with HCC. The mechanism may be due to the
suppressing expression after methylation of the DFFA promoter region in HCC tissues, which cannot be precisely
regulated during cell differentiation, so it can successfully pass through the G/S phase checkpoint in the cell cycle and
enter the cell differentiation and proliferative phase. This cell selection advantage leads to infinite proliferation, and
it eventually promotes the development of HCC.

Similarly, SCUBE2 is an important TSG. It has attracted attention because of its low expression in breast cancer
tissues [56,57]. However, studies on its methylation have not been reported. Lin et al. found that SCUBE2 regu-
lated TGF-β signaling and vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2
(VEGFR2) binding and activity (affecting VEGF signaling pathways), to influence biological processes [58]. In our
study, although the mRNA and protein expressions of SCUBE2 were higher in HCC patients, these differences were
not associated with the prognosis of HCC. However, the lower methylation at the SCUBE2-cg19000089 site, the better
prognosis for patients with HCC. It may affect biological processes such as angiogenesis and reduce the blood supply
of tumors by regulating the above-mentioned signaling pathways.

As a sequence-specific DNA-binding transcriptional activator or suppressor, TP63 may have to combine with
TP73/p73 to initiate p53/TP53-dependent apoptosis in response to genotoxic damage and the presence of activated
oncogenes. It activates the Notch signaling pathway by induction of JAG1 and JAG2. Papakonstantinou found differ-
ent levels of methylation of TP63 in different subtypes of chronic lymphocytic leukemia [59]. Childs et al. identified
that the alteration of TP63-rs9854771 might be a new risk region in pancreatic cancer via a genome-wide associa-
tion study from multiple centers [60]. In the present study, we found that both mRNA and protein expression levels
of TP63 were up-regulated in HCC tissues, though it was not a dependent prognostic factor in OS of HCC. How-
ever, we verified that the lower methylation of the cg06520450 locus, the better HCC prognosis, suggesting that this
methylated site is a good biomarker for the prognosis in HCC patients.

There were several limitations in our study. First, although higher methylation of CDC5L-cg05671347,
MERTK-cg08279316, RHOA-cg05657651 and YBX1-cg16306148, and lower methylation of BCR-cg25410636,
DFFA-cg20696875, SCUBE2-cg19000089 and TP63-cg06520450, were associated with better OS in HCC patients,
all the data analyzed in our study were retrieved from online databases. Additional studies with larger sample sizes
are required to validate our findings and to explore the clinical application of the methylated sites in the treatment of
HCC. Second, we did not assess the potential diagnostic and therapeutic roles of these methylated sites in HCC, so
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future studies are needed to explore whether they could be exploited as diagnostic markers or as therapeutic targets.
Finally, we did not explore the potential mechanisms of distinct methylated sites in HCC. In future studies, it is worth
investigating the detailed mechanism between the distinct methylated sites and HCC prognosis.

Conclusions
Our results suggest that higher methylation of CDC5L-cg05671347, MERTK-cg08279316, RHOA-cg05657651
and YBX1-cg16306148, and lower methylation of BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089 and
TP63-cg06520450, were associated with better OS in HCC patients, with the exception of MERTK-cg08279316, they
were independent prognostic factors for OS in HCC patients. Because gene methylation is reversible, recovering the
normal methylation status of these genes may be a new direction for reversing and treating HCC.
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