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Abstract

Motivation

Next generation sequencing (NGS) technology has been widely used in biomedical

research, particularly on those genomics-related studies. One of NGS applications is the

high-throughput mRNA sequencing (RNA-seq), which is usually applied to evaluate gene

expression level (i.e. copies of isoforms), to identify differentially expressed genes, and to

discover potential alternative splicing events. Popular tools for differential expression (DE)

analysis using RNA-seq data include edgeR and DESeq. These methods tend to identify

DE genes at the gene-level, which only allows them to compare the total size of isoforms,

that is, sum of an isoform’s copy number times its length over all isoforms. Naturally, these

methods may fail to detect DE genes when the total size of isoforms remains similar but iso-

form-wise expression levels change dramatically. Other tools can perform isoform-level DE

analysis only if isoform structures are known but would still fail for many non-model species

whose isoform information are missing. To overcome these disadvantages, we developed

an isoform-free (without need to pre-specify isoform structures) splicing-graph based nega-

tive binomial (SGNB) model for differential expression analysis at isoform level. Our model

detects not only the change in the total size of isoforms but also the change in the isoform-

wise expression level and hence is more powerful.

Results

We performed extensive simulations to compare our method with edgeR and DESeq.

Under various scenarios, our method consistently achieved a higher detection power, while

controlling pre-specified type I error. We also applied our method to a real data set to illus-

trate its applicability in practice.
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1. Introduction

Next-generation sequencing technology (NGS) has been widely used in genomic studies [1].

One of its applications, the whole transcriptome sequencing (RNA-seq), makes it available to

evaluate gene expression level and discover potential alternative splicing events by generating

high-throughput sequencing data [2–4]. RNA-seq has shown the ability to create highly accu-

rate and replicable genetic data compared with traditional microarrays [5, 6]. There are two

types of RNA-seq data, single-end and paired-end. The single-end reads come from sequenc-

ing one end of the RNA-seq fragments while the paired-end reads come from sequencing both

ends of the RNA-seq fragments.

Nowadays, differential expression (DE) analysis using RNA-seq data is one of the most pop-

ular research areas and various statistical methodologies have been proposed for detecting dif-

ferentially expressed genes. Currently edgeR [7] and DESeq [8] are two popular R packages for

detecting DE genes at the gene-level. Because of ignoring the isoform structures, these two

methods are only sensitive to the change in the total size of isoforms, that is, sum of an iso-

form’s copy number times its length over all isoforms. Since different isoforms are translated

to different polypeptides, changes in the expression level of isoforms may cause the functional

shift of a gene. Thus, a gene should be considered as differentially expressed if any of its iso-

forms is differentially expressed. It may happen that the total size of isoforms from one specific

gene under different conditions are very similar but the isoform-wise copies are totally differ-

ent. In such situation, a gene-level analysis would miss this type of isoform-wise DE difference.

Some other methods have been proposed to provide the isoform-level analysis by pre-speci-

fying isoform structures [9, 10]. However, these methods may suffer when isoform structures

are limited, and may not even be applicable for many species, like non-model animals and

plants, whose isoform information are greatly missing. In addition, since reads from RNA-seq

data are usually short (~100bp), it is very hard to rebuild the complete isoform structure even

when exon structures are known.

In this paper, we propose an isoform-free model for identifying DE genes at the isoform-

level using RNA-seq reads without pre-specifying any isoform structures. We show that our

model achieves a higher detection power than edgeR and DESeq through extensive simula-

tions while controlling pre-specified type-I error.

2. Methods

Since NGS reads are independently sequenced during the sequencing procedure, hypothesis

testing for DE analyses can then be performed separately for each gene. For simplicity, we

describe our model by focusing on modeling RNA-seq data sequenced from one specific gene,

e.g. gene g. Also, we focus on using single-end RNA-seq data, as paired-end reads can be ana-

lyzed by treating the pair as two single-end reads.

2.1 Model

Firstly, we introduce a mechanism to summarize each RNA-seq read to a read type using the

definition below, which is the key to perform an isoform-level analysis without any pre-speci-

fied isoform structure information.

Definition 1. Assume exons are coded as sequential integers starting from 1 (e.g. 1, 2, 3 . . .).

For a specific RNA-seq read, its read type is defined as a string of ordered exon IDs, to which

the read is mapped. For example, read type "1" means the read is mapped to exon 1; read type

"1–2" means one part of the read is mapped to exon 1 and the other part is mapped to exon 2.

Read type of each read can be found by using the exons’ information in a gene annotation

file. Since there may be overlaps between exon regions in the annotation file, we need to
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process the file to re-group exons into un-overlapped exons, so that no ambiguous read type

can occur when reads are tagged with read types. Fig 1 shows an example that when exon 1

and exon 2 have overlapping region, a read (the red bar) that is mapped to the overlapping

region would not have a clear definition of its read type. However, after processing them into

non-overlapping exons, the read can be defined as read type "2" without ambiguity.

Secondly, we introduce the notations. Let gene g, be any gene from a set of distinct genes

{1,. . ., G} and it has Ig distinct isoforms. For each sample j, j = 1,. . ., J, let Xgihj be the number

of type h read sequenced from isoform i of gene g in sample j, h = 1. . .. Hg. Let Nj be the total

number of mapped reads from sample j and let kgi be the number of copies of isoform i of gene

g. lgih represents the number of nucleotides which can be the starting positions of type h read

on isoform i of gene g, and lgi: ¼
XHg

h¼1
lgih. Note that since all isoforms share the same underly-

ing exon structure, for a specific read type h, the number of nucleotides that can be the starting

positions of this read type would be the same for each isoform that can generate this read type.

Therefore, lgih can only take two values, either 0 if isoform i can’t generate read type h, or lg.h if

isoform i can generate read type h.

Following the assumption that the sequencing process is a simple random sampling [9], we

assume

Xgihj � Poisson Nj

kgilgih
XG

g¼1

XIg

i¼1
kgilgi:

0

@

1

A:

Let S ¼
XG

g¼1

XIg

i¼1
kgilgi:, and pgih = lgih/lgi., we have

Xgihj � Poisson Nj

pgihkgilgi:
S

� �

:

S represents the overall transcriptome size and pgih is the probability of getting a type h read

given that the read is sequenced from isoform i. However, Xgihj is not observable in practice,

instead, only Xghj is observable with a different Poisson distribution under the simple random

sampling assumption:

Xghj ¼
XIg

i¼1

Xgihj � Poisson Nj

XIg

i¼1
pgihkgilgi:
S

0

@

1

A:

In order to reduce the bias caused by different transcriptome sizes and to adapt the varia-

tion due to biological replication, we propose to adjust the transcriptome size with trimmed

mean of M values (TMM) normalization [11]and extend the distribution assumption of Xghj

Fig 1. Overlapping exons from a gene annotation file (left) are converted to non-overlapping exons (right). The read type of a RNA-seq read (the red bar) may be

ambiguous in the original annotation file but is unique in our converted file.

https://doi.org/10.1371/journal.pone.0266162.g001
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from Poisson distribution to Negative Binomial distribution [12, 13]. That is, the copy number

kgi is not a constant but a random variable Kgij, whose expectation is kgi.

XghjjfKgij; i¼1;...; Igg � Poisson Nj

X

i
pgihKgijlgi:
Sj

 !

ð1Þ

where Sj ¼
XG

g¼1

XIg

i¼1
kgijlgi:, overall transcriptome size for sample j.

Following general notations in TMM normalization, (1) can be re-expressed as

XghjjΘghj � Poisson N�j Θghj

� �
, where N�j ¼ Nj � Sr=Sj; Sr, is the transcriptome size of a refer-

ence (or base-line) sample r, and Θghj = Si pgih Kgij lgi /Sr. We assume that for any sample j,
Θghj follows a Gamma distribution with the mean equaling Si pgih kgi lgi. /Sr and the shape

parameter equaling 1/φgh. By integrating out Θ and assuming Sj is a constant number, we

can get the marginal distribution of Xghj, that is

Xghj � NB N�j ygh;φgh

� �
; ð2Þ

where θgh = E[Θghj] = Si pgih kgij lgi. /Sr. θgh can be treated as a relative expression level of

type h read without adjusting for its length lgi..φgh is generally assumed to be the same

across different experiment conditions.

Suppose we have two experimental conditions, i.e. 0 and 1, shown as the superscript. The

analysis objective is to test if each isoform of a given gene g has different expression level under

two conditions with the null hypothesis stated below

H0 : k0

gi ¼ k1

gi; i ¼ 1; 2; . . . ; Ig ; ð3Þ

where {1,. . ., Ig} is a set of all distinct isoforms of gene g and k0
gi; k

1
gi are the expected expression

levels of isoform i of gene g under condition 0 and 1, respectively. This null hypothesis by

using model (2) can be re-written as

H0 : y
0

gh ¼ y
1

gh; h ¼ 1; 2; . . . ; Hg ; ð4Þ

where {1,. . .Hg} is the set of all distinct read types that can be generated by gene g’s isoforms.

From the negative binomial model (2), we can describe the relationship between the isoform

expression level kgi and the read type expression level θgh in a matrix form, that is

yg

*

¼

yg1

..

.

ygHg

2

6
6
6
4

3

7
7
7
5
¼

pg11 � � � pgIg1

..

. . .
. ..

.

pg1Hg
� � � pgIgHg

2

6
6
6
4

3

7
7
7
5

kg1lg1:

Sr

..

.

kgIg lgIg :
Sr

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼ Pg kg
*
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For two experiment conditions (e = 0 or 1), we have

y
e
g

*

¼

y
e
g1

..

.

y
e
gHg

2

6
6
6
4

3

7
7
7
5

and keg
*

¼

keg1
lg1:

Sr

..

.

kegIg lgIg :
Sr

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

If the rank of matrix Pg equals the number of its columns, i.e. Pg is a full column rank

matrix, then k0
g

*

¼ k1
g

*

if and only if y
0

g

*

¼ y
1

g

*

.

2.2 Parameter estimation and statistical inference

With each observed Xghj and its marginal distribution (2), we can use the quantile-adjusted

conditional maximum likelihood (CML) to estimate the parameter φgh [13] and EM algorithm

to estimate the parameter θgh for a given φgh. Specifically, if all samples have the same total

number of sequenced reads, i.e. N�j ¼ N� for all j, we can eliminate the θgh by conditioning on

its sufficient statistic, Zgh ¼
XJ

j¼1
Xghj � NB JN�ygh; J

� 1φgh

� �
, and get the conditional likeli-

hood function of φgh,

lXghj jZgh¼z
¼

XJ

j¼1

logG xghj þ φ� 1

gh

� �
" #

þ logG Jφ� 1

gh

� �
� logG z þ Jφ� 1

gh

� �
� JlogG φ� 1

gh

� �

So we could iteratively generate pseudo data Xpseudo
ghj

� �
which have the same N�j and update

cφgh until cφgh converges. During this procedure, θgh needs to be estimated in order to create

pseudo data. EM algorithm will be used to update θgh for a fixed cφgh . Detailed steps for parame-

ter estimation can be found in A1 in S1 File.

An exact test based on the pseudo data mentioned above can be used for hypothesis testing

[13] Now we have Xe;pseudo
ghj � NB N�yegh; bφgh

� �
and Ze

gh ¼
XJe

j¼1
Xe; pseudo

ghj � NB JeN�y
e
gh; J

� 1
e bφgh

� �
,

where {1,. . ., Je} is a set of all samples under condition e.
Under H0,

Zgh ¼ Z0

gh þ Z1

gh � NB J0 þ J1ð ÞN�ygh; J0 þ J1ð Þ
� 1
bφgh

� �

P-value from this exact test is based on the conditional distribution of Z0
ghjZgh for a single

read type h. Details can be found in A2 in S1 File.

P-value for gene g at the gene level can be obtained from using Bonferroni method on all p-

values of its read types. That is, a gene g will be identified as a DE gene if any of its read type

has a p-value smaller than pre-specified type I error divided by the number of read types.

2.3 Model simplification

In lieu of a large number of hypothesis tests for each gene (50–100 tests on average) due to the

abundance of different read types, we introduce a splicing graph-based model, which aims to

reduce the computational complexity while maintaining type-I error control and power.
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Recall that, as long as matrix Pg is a full column rank matrix, null hypothesis (3) and (4) are

equivalent. Elements in matrix Pg are

pgih ¼
lgih
lgi:
¼

lg:h
lgi:
; if isoform i can generate h

0; if isoform i can0t generate h

8
><

>:

Therefore, we want to reduce the number of read types, but keep the column rank of Pg as

full. We know that, if the corresponding rows of two read types in Pg are proportional to each

other, then after summing them together, both row rank and column rank of Pg do not change.

Summing two rows together in Pg is equivalent to combine two read types together to make a

new type of read, and this leads to a reduction in the number of read types from two to one.

Definition 2. Given two read types h and h’, if the set of isoforms that can generate h is the
same as the set of isoforms that can generate h’, we call these two read types ‘always showing
together’.

For any two read types h and h’ that are always showing together, their corresponding rows

in Pg are listed below

lg:h
lg1:

0 . . .
lg:h
lgIg :

lg:h0
lg1:

0 . . .
lg:h0
lgIg :

2

6
6
6
6
4

3

7
7
7
7
5

It is obvious that ‘always showing together’ means that lgih/lgi. and lgih’/lgi., i = 1,. . ., Ig, are

either both zeros or non-zero numbers with values lg.h/lgi. and lg.h’/lgi.. So the ‘always showing

together’ read types will have their corresponding rows in Pg proportional to each other. Then

we could just conduct one hypothesis testing by combining these ‘always showing together’

read types.

To find the read types that are ‘always showing together’, we could use a splicing graph

model. The line graph model [14, 15] is appropriate for this goal. Moreover, pseudo start and

end nodes provide a possibility to modify the complexity of the graph by adding or removing

potential paths between other true nodes and the pseudo start/end nodes. In our method, a

simple graph model was used so that the start node connects to only the left most node and

only the right most node connects to the end node (Fig 2).

If the splicing graph model correctly reflects the connection between nodes, we can get the

following result: If two nodes are connected and the out degree of the smaller node (in lexico-

graphic order) equals the in degree of the larger node, which is 1, then these two types of read

must ‘always showing together’. The reason is that, given two types of read h< h’ satisfying

this condition, if there is an isoform can generate h but not h’, there must be another path com-

ing out from h to a node other than h’; if there is an isoform can generate h’ but not h, there

Fig 2. An example splicing graph for model simplification. The ‘start’ and ‘end’ nodes are pseudo nodes. In this example, there are four exons represented by 1, 2, 3, and

4. Each node represents a possible read type, and nodes are connected in a way that a node shares the same starting exons with a node to its left and shares the same ending

exons with a node to its right. An arrow connecting two nodes points to the end direction. A4 in S1 File delineates the steps of how to construct a splicing graph.

https://doi.org/10.1371/journal.pone.0266162.g002
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must be another path coming into h’ from a node other than h. Strategies to construct a line

graph model based on existing read types are given in A4 in S1 File.

3. Results

3.1 Simulation setting

Extensive simulations were performed to compare our proposed method SGNB with popularly

used edgeR and DESeq without pre-specifying any isoform structures. Without loss of general-

ity, we simulated single-end RNA-seq reads from an R package–‘polyester’ [16] using about

1800 genes from human chromosome 1. This R package ‘polyester’ simulates RNA-seq count

data mimicking all sequencing steps from cutting transcripts into short fragments, then

sequencing one end of the fragments to get raw RNA-seq data.

We assume the distribution of isoforms’ copy numbers to negative binomial, and used a

large variance to cover a large range of copy numbers. A negative binomial distribution with μ
= 10 and σ2 = 210 was chosen to randomly create the isoforms’ copy numbers. The average

fragment length in ‘polyester’ was set to 250 base pairs with a standard error of 25 base pairs.

The read length was set to be 100 base pairs. Since it is estimated that there were 20,000 protein

coding genes and a total 20 × 106 of RNA-seq reads is usually normal, we set 1000 RNA-seq

reads for each gene. 1.8 × 106 total RNA-seq reads were generated for 1800 genes. We assigned

the same number of subjects to each condition (e.g. normal and disease), and let it range from

5 to 20 with a step size of 5 (i.e. sample size N = 10, 20, 30 and 40). The default setting of disper-

sion parameter in ‘polyester’ for controlling per-transcript mean/variance relationship in

‘polyester’ is ‘3 / reads per transcript’, which generates a low-variance situation. The dispersion

in reality may vary in a large range, therefore we simulated data using two dispersion parame-

ters, a small one (‘5 / reads per transcript’) and a large one (‘30 / reads per transcript’).

For each simulation scenario, 10 datasets were generated to evaluate the model perfor-

mance. Type I errors were assessed by setting all genes to be non-differentially expressed. For

power comparison, ~30% of genes were set to be the DE genes, which means that for each of

these genes, there was at least one of its isoforms having different copies under different condi-

tions. For the isoforms of DE genes, we sampled their log fold changes from a normal distribu-

tion with μ = 0 and σ2 = 1 which implies relatively small fold changes. Our intention is to

better differentiate methods in this case as all methods are very sensitive to a large fold change

which will give us a perfect power curve.

For computational efficiency, a smaller-scale simulation study was performed to confirm if

our method is more sensitive in detecting expression level change at isoform-level than edgeR

and DESeq. In this simulation, the ‘whole transcriptome’ contains 10 genes and 1 of them (has

2 isoforms with similar length) is the DE gene. All rest simulation parameters are the same

with other larger-scale simulations, except the copy numbers of isoforms for the DE gene. In

order to change the isoform-wise expression while keeping the total size of isoforms similar

across two conditions, we set the copy numbers of the DE gene’s isoforms to be 10 and 50

under one condition and 50 and 10 under another condition.

3.2 Simulation results

Firstly, we evaluated the performances of type I error control across different models (SGNB

with model simplification, SGNB without model simplification, edgeR and DESeq) by com-

paring the true false positive rate with different p-value thresholds between 0 and 0.05 (Fig 3

for small dispersion and Fig 4 for large dispersion).

In Figs 3 and 4, the red solid line is for SGNB with model simplification and the green dash

line for SGNB without model simplification. Figs 3 and 4 suggest that when the dispersion is
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small, SGNB without model simplification performs better than SGNB with model simplifica-

tion; and when the dispersion is large, they have the similar performance. Compared with

edgeR and DESeq, SGNB with model simplification only can achieve a similar type I error

control performance when the sample size is large, while edgeR and DESeq have a good type I

error control across all the sample size settings. Also, SGNB with model simplification needs

Fig 3. Type I error control with small dispersion by P-value< 0.05.

https://doi.org/10.1371/journal.pone.0266162.g003
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more samples to control type I error under the large dispersion setting than the small disper-

sion setting. This suggests that SGNB is more suitable for studies with sample size > 30.

Secondly, we compared average false discovery rate (FDR) and true positive rate (TPR)

among these 4 methods when DE genes exist from the 10 simulation runs at different sample-

size setting (Fig 5, exact numerical values can be found in A3 in S1 File). We selected DE genes

Fig 4. Type I error control with large dispersion by P-value< 0.05.

https://doi.org/10.1371/journal.pone.0266162.g004
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at a significance level of 0.05 with Bonferroni adjustment for the number of genes. These figures

suggested that both SGNBs (with and without model simplification) had a higher TPR than

edgeR and DESeq at the expense of a slightly higher FDR. TPR was increased about 10 percent

by SGNB than edgeR and DESeq while there was only a tiny increase in FDR. SGNB with

model simplification always has a higher TPR than SGNB without the model simplification.

Fig 5. False discovery rate and true positive rate vs. sample size at 0.05 significance level. a) Small dispersion. b) Large dispersion.

https://doi.org/10.1371/journal.pone.0266162.g005
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In the comparison above, different methods called different number of DE genes at the

same pre-specified significant level. We also compared the average FDR and TPR against the

same number of DE genes called as shown in Figs 6–9. It clearly shows that given the same

fixed number of DE genes called, SGNB outperforms edgeR and DESeq in terms of having

lower FDR and higher TPR.

Fig 6. False discovery rate vs. number of DE gene called with small dispersion.

https://doi.org/10.1371/journal.pone.0266162.g006
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Finally, we had a simulation setting to compare the capabilities of SGNB, edgeR and DESeq

in detecting isoform-wise expression level change. Among 10 genes, there was 1 DE gene

whose total size of isoforms kept unchanged but the isoform-level expression changed. This

gene has 2 isoforms. The SGNB with model simplification detected it 100 times during 100

runs, while the edgeR and DESeq detected it only once during 100 runs.

Fig 7. False discovery rate vs. number of DE gene called with large dispersion.

https://doi.org/10.1371/journal.pone.0266162.g007

PLOS ONE A model for isoform-level differential expression analysis using RNA-seq data

PLOS ONE | https://doi.org/10.1371/journal.pone.0266162 May 16, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0266162.g007
https://doi.org/10.1371/journal.pone.0266162


3.3 Real data analysis

The real data comes from a published study as in [17]. There are 17 samples from human clas-

sical monocyte subsets and 17 samples from nonclassical monocyte subsets. The author com-

pared the DE genes called by different methods combinations against a reference DE gene

dataset which comes from the DE analysis of 4 published microarray datasets. However, these

Fig 8. True positive rate vs. number of DE gene called with small dispersion.

https://doi.org/10.1371/journal.pone.0266162.g008
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DE genes may not be a good reference for our analysis, since they are detected under a gene-

level analysis without considering isoforms.

We mapped the RNA-seq data with TopHat. DE genes were called at 0.05 and 0.01 signifi-

cance levels with Bonferroni adjustment. A Venn diagram is generated to compare DE genes

called by edgeR, DESeq, and SGNB with model simplification (Fig 10 using significance level

Fig 9. True positive rate vs. number of DE gene called with large dispersion.

https://doi.org/10.1371/journal.pone.0266162.g009
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of 0.05 and Fig 11 from controlling FDR at 5%). SGNB without model simplification was not

used since it was not as good as SGNB with model simplification as suggested by our simula-

tion studies.

At the significance level of 0.05, as shown in Fig 10, there are 1391 genes called as DE genes

by SGNB, 532 genes called by edgeR, and 1106 genes called by DESeq. The number of common

Fig 10. Venn diagram of DE genes detected using different methods. Bonferroni adjustment was made at the significance level of 0.05.

https://doi.org/10.1371/journal.pone.0266162.g010
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genes called by SGNB and edgeR is 450, which is 84.6% of genes called by edgeR. The number

of common genes called by SGNB and DESeq is 852, which is 77.0% of genes called by DESeq.

Therefore, SGNB also detected majority of genes called by the other two methods in addition to

detecting 529 genes that were not called by the other two methods. Similar findings can be

found from Fig 11 using a significance level of 0.01 and Bonferroni adjustment.

Fig 11. Venn diagram of DE genes detected using different methods and controlling FDR at 5% [18].

https://doi.org/10.1371/journal.pone.0266162.g011

PLOS ONE A model for isoform-level differential expression analysis using RNA-seq data

PLOS ONE | https://doi.org/10.1371/journal.pone.0266162 May 16, 2022 16 / 19

https://doi.org/10.1371/journal.pone.0266162.g011
https://doi.org/10.1371/journal.pone.0266162


4. Discussion

In this paper, we proposed a new isoform-free model, SGNB, for detecting DE genes at the iso-

form-level. This method is more sensitive to the level change of isoform-wise expression, while

keeping the benefit of a gene-level method that does not require pre-specifying the isoform

structure. Although our method needs to use the gene annotation file, we only need to know

exons’ ranges but not the exact isoforms’ structures. Based on gene annotation file, we can per-

form test on the unique read level and use Bonferroni adjustment to get a gene-level p-value in

order to maintain the overall type-I error control at the gene-level. We compared our method

with edgeR and DESeq in terms of type I error control, true positive rate, and false discovery

rate. At the expense of slightly increasing false discovery rate, our new method can dramati-

cally increase true positive rate due to its capability in identifying isoform-wise change in

expression level.

From the enlarged type I error control graphs (Figs 3 and 4), we see that our proposed

method SGNB with model simplification had slightly inflated type I error compared to edgeR

and DESeq when sample size is small (e.g. N<30). But when the sample size is large (e.g.

N�30), SGNB with model simplification performs similarly as edgeR and DESeq. So we sug-

gest that our method should be used with a large sample size. Right now with quick advance in

technology, it is neither too expensive nor time consuming to get RNA-seq data and hence a

large sample size in practice becomes more and more feasible.

The model simplification procedure is an important feature of our method. It can not only

save the computing time by reducing a big number of parameters to be estimated and hypothe-

sis tests to be tested (reduced the number of hypothesis from about 47,000 to 17,000 on average

based on our simulations), but also have benefits on improving FDR and TPR. From Fig 5A

and 5B, we can see that SGNB with model simplification always had a little bit higher TPR

than SGNB without model simplification and a lower FDR when the sample size is large

(N�30). The similar benefits can be seen from Figs 6–9. With the same number of DE genes

called, SGNB with model simplification consistently had a higher TPR and a lower FDR.

The key idea in model simplification is to combine the rows in matrix Pg according to a

splicing graph while keeping its column rank as full. We show that when the original Pg is a

full rank matrix, the hypothesis (3) and (4) will be equivalent. It’s hard to prove that under

what condition Pg would be a full rank matrix, but it should be a reasonable assumption since

that matrix usually has a large number of rows (equaling to the number of read types) and a

small number of columns (equaling to the number of isoforms). Moreover, the splicing graph

built based on our algorithm may not be exactly accurate because of the complicated unknown

structure of isoforms and we may even wrongly combine read types whose rows are not pro-

portional to each other in matrix Pg. However, as long as we can keep the rank of matrix Pg,
wrongly combined read types should not affect the hypothesis testing. Our simulations have

shown that the model simplification procedure works well, since there is no power reduction

compared to the model without simplification but saving much time in computation.

Currently there are other methods proposed to improve on the disadvantage of using only

the total sizes of the isoforms of a gene for calling a DE gene (e.g., DEXseq from [19]; diffSpli-

ceDGE from [20]). DEXseq tests for differential exon usage as defined as number of transcripts

from the gene that contain this exon/number of all transcripts from the gene. It can then call a

DE gene if it contains at least one differentially used exon. Similarly, diffSpliceDGE also detects

differential exon usage using a negative binomial generalized log-linear model fit at the exon

level. Our method will be another one added to this pool of methods that researchers may use.

We applied all three methods to our real data example for a comparison. Our method detected

a different set of DE genes from DEXseq and diffSpliceDGE as expected. But both at the
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significance level of 1% with Bonferroni adjustment and controlling FDR at 1%, our method

actually reported more number of DE genes. The detailed information is listed in A5 in S1

File. However, validity of the additional DE genes detected by our method needs to be con-

firmed by biological experiments. In addition, further evaluation and comparison of our

method with other methods that use known isoform structures are very interesting and we

plan to pursue hem in more detailed and comprehensive future analyses. We have put our pro-

posed method in an R package ‘SGNB’ and the example R scripts used for real data analysis

can be found in A6 in S1 File. We also used such R scripts for detailed explanation of how to

use main function fit_SGNB_exact() in the readme and vignette file of our R package.

Our method is best suited for the single-end RNA-seq reads. For paired-end reads, since we

do not know what nucleotides are there in the insertion part, it will be hard to summarize a

paired-end read to a read type. However, we can simply treat it as two single-end reads by

ignoring the insertion information of the paired-end reads, which may lead to a non-efficient

use of the data. Research is ongoing to have a model that is also well suited for paired-end

reads.
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