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Gene regulatory networks (GRNs) are often inferred based on Gaussian graphical models that 
could identify the conditional dependence among genes by estimating the corresponding 
precision matrix. Classical Gaussian graphical models are usually designed for single 
network estimation and ignore existing knowledge such as pathway information. Therefore, 
they can neither make use of the common information shared by multiple networks, nor can 
they utilize useful prior information to guide the estimation. In this paper, we propose a new 
weighted fused pathway graphical lasso (WFPGL) to jointly estimate multiple networks by 
incorporating prior knowledge derived from known pathways and gene interactions. Based 
on the assumption that two genes are less likely to be connected if they do not participate 
together in any pathways, a pathway-based constraint is considered in our model. Moreover, 
we introduce a weighted fused lasso penalty in our model to take into account prior gene 
interaction data and common information shared by multiple networks. Our model is 
optimized based on the alternating direction method of multipliers (ADMM). Experiments on 
synthetic data demonstrate that our method outperforms other five state-of-the-art graphical 
models. We then apply our model to two real datasets. Hub genes in our identified state-
specific networks show some shared and specific patterns, which indicates the efficiency of 
our model in revealing the underlying mechanisms of complex diseases.

Keywords: Gaussian graphical model, precision matrix, prior information, fused lasso penalty, gene network 
analysis

INTRODUCTION

Most biological processes within cells involve multiple genes (Schlitt and Brazma, 2007; Zhang 
et al., 2014). Inferring the regulatory relationships between genes is important for understanding 
the functional organization within cells and helps to reveal the mechanisms of complex diseases 
(Liu et al., 2016). In recent years, a large number of works have been proposed for inferring gene 
regulatory networks (GRNs) from gene expression data (Schlitt and Brazma, 2007; Danaher et al., 
2014; Verfaillie et al., 2014; Zhang et al., 2014; Liu et al., 2016; Ou-Yang et al., 2017a, Ou-Yang et al., 
2017b). Despite their success in addressing some biological problems, revealing the comprehensive 
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GRNs is still a challenging task (Zhang et al., 2014; Grechkin 
et al., 2015).

Gaussian graphical model (GGM) is an attractive paradigm 
to depict the associations among biomolecules (Yuan and Lin, 
2007). In GGM, each node of the graph represents a random 
variable from a random vector subjected to multivariate 
normal distribution, and there is an edge between two nodes 
if the corresponding two random variables are conditionally 
dependent, which means the corresponding element of the 
precision matrix (or inverse covariance matrix) is non-zero 
(Dempster, 1972; Uhler, 2017). This property makes GGM 
so popular because we are able to get the network structure 
by just estimating the precision matrix (Yuan and Lin, 2007). 
Unfortunately, in the analysis of gene expression data, the 
number of samples is usually far less than the dimension of a 
random vector, which makes it hard to estimate the precision 
matrix directly (the empirical covariance is not invertible). 
By assuming that the precision matrix is sparse and the data 
samples are drawn independently from the same distribution, 
several approaches have been proposed to estimate the precision 
matrix (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; 
Banerjee et al., 2008).

However, as biological systems are highly dynamic (Ideker 
and Krogan, 2012), we are faced with observations collected 
from different states (Huang et al., 2018a). For example, the gene 
expression data can be collected from both the diseased and 
normal tissues (Tian et al., 2016; Ou-Yang et al., 2017a). Thus, 
if we estimate each state-specific network separately for each 
sample set, the common structures within different state-specific 
networks will be ignored. In contrast, inferring a single network 
from all sample sets may mask their differences. To address 
this problem, many works have been proposed in recent years 
to jointly estimate multiple graphical models (Guo et al., 2011; 
Danaher et al., 2014; Ou-Yang et al., 2017b). When the focus 
is to infer the differential network between two different states, 
instead of inferring two state-specific networks, some works have 
also been developed to estimate the differential network directly 
(Zhang and Zou, 2014; Yuan et al., 2017).

Although the above methods for learning the structure of 
multiple GGMs have been successfully used to estimate the 
regulatory relationships among genes, their performance may 
be limited since they do not consider the existing knowledge 
about genes and their regulatory relationships. For example, a 
pathway is a set of components that interact with each other to 
perform specific biological tasks. Researches have found that 
many diseases arose from the joint action of multiple genes 
within a pathway (Peng et al., 2010). Therefore, pathway-based 
learning of gene regulatory networks may yield biological 
insights that are hard to detect by traditional GGMs (Grechkin 
et al., 2015). Although a pathway graphical lasso model has 
been proposed to incorporate pathway-based constraints into 
GGMs (Grechkin et al., 2015), it is designed for single network 
estimation and cannot jointly estimate multiple GGMs. 
Moreover, with the accumulation of high-throughput data, we 
are able to collect some literature-curated gene interactions from 
public database (Han et al., 2017; Xu et al., 2018). As the state-
specific gene regulatory relationships as well as their changes 

across multiple states are more likely to take place between 
genes that are known to have interactions, incorporating these 
prior information may help to identify the changes of GRNs 
more accurately (Xu et al., 2018).

To address the above problems, in this paper, we proposed 
a novel weighted fused pathway graphical lasso (WFPGL) 
to jointly estimate multiple gene networks as well as their 
difference by incorporating prior knowledge derived from 
known pathways and gene interactions. In particular, given a set 
of pathways, we first assume that regulatory relationships will 
not take place between genes that belong to different pathways. 
Here, the pathway information is assumed to be able to provide 
us prior knowledge that certain edges are unlikely to be present 
(Grechkin et al., 2015). Under this assumption, the incorrect 
links across pathways will be eliminated, as shown in Figure 1. 
To make use of the prior knowledge from public gene interaction 
database and draw support from multiple sample sets collected 
from different states, we introduce a weighted fused lasso penalty 
in our model. The proposed WFPGL is optimized by alternating 
direction method of multipliers (ADMM) (Boyd, 2010), and we 
follow the idea of pathway graphical lasso that decomposes the 
original problem into pathway-based subproblem to accelerate 
the optimization. To demonstrate the performance of our new 
algorithm, we first conduct simulation studies and compare 
our algorithm with other five state-of-the-art graphical models. 
Experiment results on synthetic data show that our WFPGL 
outperforms other related methods. We then apply our WFPGL 
on two real datasets. The first experiment is to estimate the gene 
regulatory networks of insulin sensitive and insulin resistant 
type 2 diabetes patients. Experiment results demonstrate that 
our method could identify some promising candidate genes 
related to insulin resistance. The second experiment is to jointly 
estimate the gene regulatory networks of four breast cancer 
subtypes. We find that our identified subtype-specific networks 
have some shared and specific structures, which may help to 
reveal the mechanisms of cancer differentiation. Overall, the 
experiment results on synthetic and real data demonstrate that 
our WFPGL could effectively utilize prior knowledge to jointly 
estimate multiple gene networks. The datasets and source codes 
of our proposed WFPGL are freely available at https://github.
com/NuosiWu/WFPGL.

The rest of this paper is organized as follows. In the section 
Weighted Fused Pathway Graphic Lasso, we formulate our 
WFPGL and describe the optimization processes. In the section 
Simulation Studies, we illustrate the performance of WFPGL and 
another five state-of-the-art methods on synthetic datasets. The 
section Real Data Analysis provides studies on two real datasets, 
and the section Conclusion discusses the utilization of the method.

WEIGHTED FUSED PATHWAY GRAPHICAL 
LASSO

Problem Formulation
Suppose X(1), …, X(K) are K groups of sample sets that measure 
the gene expression levels of p genes across K different states. 
Each X(k) ∈ Rp×n

k may have a different sample size nk, and 
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FIGURE 1 | Illustration of the proposed method. (A) Graphical lasso just uses gene expression data to separately estimate each state-specific network, leading to 
incorrect estimation results. (B) The proposed weighted fused pathway graphical lasso jointly estimates multiple state-specific networks by considering the prior 
knowledge of gene interaction networks and pathways, which could eliminate the spurious links between different pathways and results in more accurate estimation 
of the networks across multiple states.
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samples within each group (or state) are independent and follow 
same multivariate Gaussian distribution. Then maximizing 
the likelihood functions of multiple Gaussian graphical model 
is equivalent to solving the following optimization problem 
(Uhler, 2017):

 
maximize tr( )( )

Θ
Θ Θnk

k k k

k

K

[log{det( )} ],( ) ( )−
=

∑ S
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 (1)

where S(k) is the sample covariance matrix for X(k) and Θ(k) is the 
inverse covariance matrix (or precision matrix).

To learn the parameters Θ(k) (which represent networks) for 
k = 1, …, K, additional penalty is often required to guarantee 
structural recovery especially for high-dimensional setting. 
Fused lasso penalty, which imposes sparse penalties not only on 
individual networks but also on the differences between each pair 
of networks, has been proven to be effective on joint estimation 
of multiple networks (Danaher et al., 2014). However, traditional 
fused lasso penalty does not take into account prior information. 
As the changes of GRNs across different states are more likely 
to take place between genes that are known to interact with 
each other (Xu et al., 2018), we encourage the identification of 
differential edges that appear in the known gene interaction 
network. Thus, given a prior gene interaction network with 
adjacency matrix G, we introduce the following weighted fused 
lasso penalty function:
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Here, λ1 > 0 is a tuning parameter controlling the sparsity 
of precision matrices, λ2 > 0 is a tuning parameter controlling 
the sparsity of the differential networks, and Wij is the weight 
assigned to a pair of genes. In this study, the weight is set as 
follows:
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where w ∈ [0, 1] is a predefined parameter. The smaller the 
value of w, the more likely the corresponding edge will be 
identified.

As we could make use of pathway information to specify sets 
of genes that are more likely to work together, incorporating 
pathway information may help to improve the structure learning 
of GRNs and achieve more meaningful and interpretable results. 
Following the ideal of pathway graphical lasso (Grechkin et al., 
2015), we constrain the graphical model so that the elements in 
precision matrices are fixed to 0 if the corresponding gene pairs 
are not together in any pathways.

Suppose there are J pathways within the p genes (denoted 
as Pt, t = 1, …, J), and considering the pathway constraints and 

the knowledge of prior gene interaction network, the objective 
function of our WFPGL model is as follows:
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where F({Θ(k)}) takes the form of function (2).

Optimization
Pathway Separable
Given J pathways, let Θt

k t J( )( , , )= 1  denote a sub-matrix of Θ(k), 
which models the sub-graph within the pt genes in t-th pathway 
(p1 + ⋯ + pJ = p). After some permutations of the rows and 
columns under the pathway constraints, Θ(k) can be rearranged 
into the following form:
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 contains the parameter 

in the rest of the pathways. Θ22
( )k  is the overlapping part of Θ1 

and Θother, which is a square matrix containing all links among 
the genes that co-occur in the pathways as well as the remaining 
pathways. Applying the Schur complement decomposition, we 
have

 det( ) det( ) det( ),( ) ( )Θ Θ Θk k k k= ⋅ −33 1 1∆  (6)

where ∆1 23 33
1

320 0( ) ( )[ ; ] ( ) [ , ]k k k k= ⋅ ⋅−Θ Θ Θ . If we hold the parameters 
from other pathways fixed and just update the parameters in the 
first pathway, ∆1

( )k  will be a constant matrix, and problem (1) boils 
down to maximizing the following function:

 n Sk
k k k k k[log{det( ) )}( ) ( ) ( ) ( ) ( )Θ Θ1 1 1 1 1− − −∆ ∆tr( ( )))],  (7)

where the matrix with subscript denotes the sub-matrix 
corresponding to the first pathway. Notice that (7) is exactly the 
likelihood function for updating Θ1 1

( ) ( )k k− ∆ , and ∆1
( )k  is constant 

and can be pre-calculated. Updating Θ1
( )k  within a certain 

pathway via maximizing likelihood function only requires 
information from the corresponding pathway itself. We define a 
function with such property to be pathway separable.
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Optimization Work Flow
Problem (4) is converted into the following equivalent problem:

minimize tr
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which can be solved with the ADMM method (Boyd, 2010) by 
minimizing the following augmented Lagrangian function:
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where <A, B> = tr (ABT),║A║ denotes the Frobenius norm of 
matrix A, μ > 0 is a penalty parameter, and Y(k) is a Lagrangian 
multiplier. We let V(k) = Y(k)/μ, and (9) can be rewritten as the 
ultimate objective function:
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ALGORITHM 1 Framework of alternating direction method of multipliers 
(ADMM).

Input: S, nk, μ, λ1, λ2

Initializing: μ = 1, Θ0 0 00 0( )
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( ), , ,k k kI V Z= = =
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5: i ← i + 1
6: end while

ADMM solves above problem by three steps in every iteration, 
as shown in Algorithm 1.

ADMM Solver
It is easy to verify that || ||( ) ( ) ( )Θ k k k

FZ V− + 2  is pathway separable. 
This allows us to use a block-coordinate descent approach for 
accelerating the updating of Θ(k) (Tseng, 2001; Grechkin et al., 
2015). By updating Θt

k( )  in each pathway individually while 
leaving the parameters in other pathway fixed, the complexity of 
the problem is narrowed down, and the pathway constraints on 
the precision matrix naturally meet since the parameters outside 

the pathway remain 0. Specifically, let Tt
k

t
k

t
k( ) ( ) ( )= −Θ ∆ , and we 

update Θt
k( )  by solving the subproblem, as follows:
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Here, the subscript t of a matrix denotes the index of the 
sub-matrix that corresponds to the t-th pathway. Grechkin et al. 
(2015) have introduced an efficient message passing algorithm 
to calculate ∆t

k( )  efficiently. The solution to this problem is 
UCUT, where UDUT represents the eigendecomposition of 
S n Z Vt
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The solution to this problem can be obtained by the method 
introduced in Hoefling (2010). The last step for each iteration is 
to update V(k) as V(k) + Θ(k) − Z(k). We stop the algorithm until 
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SIMULATION STUDIES

We compare the performance of WFPGL with that of five state-
of-the-art graphical models: 1) graphical lasso (GL) (Meinshausen 
and Bühlmann, 2006), which is a classical algorithm for precision 
matrix estimation; 2) pathway graphical lasso (PGL) (Grechkin 
et al., 2015), which is a framework that uses pathway knowledge to 
estimate single Gaussian graphical model; 3) fused graphical lasso 
(FGL) (Danaher et al., 2014), which is a method for joint estimation 
of multiple precision matrices across multiple states; 4) differential 
network estimation via D-trace loss (Dtrace) (Yuan et al., 2017), 
which is a method for direct estimation of a differential network 
between two states; and 5) weighted D-trace loss (WDtrace) 
(Xu et al., 2018), which is an algorithm proposed for inferring 
differential network rewiring by integrating static gene regulatory 
network information. We implement GL and FGL with their R 
packages and perform PGL and WFPGL in python environment 
and using Matlab to carry out Dtrace and WDtrace.

WFPGL has three tuning parameters, i.e., the sparsity 
controllers λ1 and λ2 and the weight of prior information w. 
For w, as suggested by Xu et al. (2018), we set w = 0.3 in the 
following experiments.

To evaluate the performance of various, we adopt four 
evaluation metrics named true-positive rate (TPR), false-positive 
rate (FPR), true-positive differential rate (TPDR), and false-positive 
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differential rate (FPDR). Let θij and θ̂ij  denote the elements in true 
precision matrix and the estimated precision matrix, respectively. 
The definitions of these four metrics are as follows:
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According to the above definitions, TPR and FPR measure 
the accuracy of network estimation, whereas TPDR and FPDR 
measure the accuracy of differential network estimation.

Experiments on Two Groups of Samples
In this section, we first consider the situation when there are 
two groups of samples corresponding to two different states. The 
main generation procedure of the synthetic datasets is described 
as follows.

STEP 1: PATHWAY DEFINITION
For ease of simulation study, we simply put successive 

features into one pathway and let the intersection 
of two pathways to be non-empty set only when the 
pathways are “neighbors.” We create 10 pathways 
with same size that covers all 400 features with nol = 
5 features overlapped in neighbor pathway. Let Pt 
(t = 1, …, 10) represent a pathway set in which 
the element indicates the index of feature. In such 
configuration, pathways are generated as P1 = {1, 
2, …, 45}, P2 = (41, 42, …, 85}, …, P10 = (361, 362, 
…, 400}.

STEP 2: NETWORK CONSTRUCTION
We first build a random scale-free network for the state 

1, denoted by its adjacency binary matrix M(1). 
M ( )1  is a copy of M(1) with each non-zero element 

substituted by a uniform distribution value on 
[−0.6, −0.3] ∪ [0.3, 0.6]. Then M ( )2  is generated 
by the copy of M ( )1 , with about r = 30% non-zero 
elements vanished.

STEP 3: PRIOR NETWORK GENERATION
We select a proportion (η) of edges from M(1) and 

connect the corresponding features in prior gene 
interaction network G.

STEP 4: PRECISION MATRIX CALCULATION
To ensure the positive definiteness of the covariance 

matrix, we get the real precision matrix Θ( )k  as




Θ( ) ( ) ,k kM Q I= + σ

where ⚬ is Hadamard product operator, Q is a p × p binary 
“pathway network” matrix in which the “1” element indicates the 
corresponding feature pairs that co-occur in any of the pathways, 
σ is the absolute value of the minimum eigenvalues of ( )( )



M Qk  
for k = 1, 2, and I is identity matrix.

After the precision matrix Θ( )k  for each state is settled in Step 4, 
the synthetic gene expression data could be generated with zero 
means and Σ Θ= −



1 .
We generate 50 random two-state datasets with the same 

setting: nk = 100 samples for both two states, 10 pathways with 
an overlapping number nol = 5 covering all p = 400 genes as 
introduced in Step 1.

As defined in Step 3 of dataset generation, prior rate η 
controls the proportion of true edges that is covered by prior 
gene interaction network. Note that the edges in the prior gene 
interaction network are not necessarily differential edges. We 
set η to be 0, 0.4, and 0.8 to see its impact on the performance 
of WFPGL.

Figure 2 presents the average performance of various 
methods over 50 random generations of data with different 
values of parameters. In particular, for GL, PGL, Dtrace, and 
WDtrace that have one sparsity-controlling parameter, we 
vary the value of the parameter and show their performance. 
For FGL and WFPGL that have two tuning parameters, i.e., λ1 
and λ2, which control the sparsity of individual networks and 
their difference, respectively, we fix the value of λ2 and show 
their performance with the value of λ1 varied. The performance 
of different methods is shown in distinct colors. Dtrace and 
WDtrace do not have TPR and FPR, since these two methods 
directly estimate the differential network between two states 
and do not predict the individual networks. For GL, PGL, 
Dtrace, and WDtrace, each curve depicts the performance 
from a wide range of the sparsity-controlling parameter. For 
FGL and WFPGL, we pick up three curves here to show their 
performance. Each curve presents the results with λ2 being 
fixed to a certain value: solid line for λ2 = 0.0001, dashed line 
for λ2 = 0.001, and dotted line for λ2 = 0.01.

The plots on the left side of Figure 2 show the performance of 
various methods for individual network estimation. We can find 
that pathway-based methods WFPGL and PGL dominate other 
methods that do not use pathway information. Joint estimation 
methods outperform single network estimation methods 
(WFPGL performs better than PGL, and FGL performs better 
than GL). This may be because the joint estimation methods 
can draw support from multiple sample sets to achieve a more 
accurate estimation. Though λ2 controls the sparsity of differential 
networks, it also affects the accuracy of individual network 
estimation with larger values result in a better prediction.

The plots on the right side of Figure 2 show the results of 
differential network prediction. WFPGL also outperforms other 
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methods, since it uses both two views of prior knowledge, followed 
by PGL that only uses pathway information and WDtrace that 
only uses prior gene interaction network knowledge. GL, FGL, 
and Dtrace, which do not use any prior knowledge, cannot 
identify differential networks accurately. There is a distinct 
improvement on the performance of WFPGL and WDtrace 

when the value of η increases, which indicates the effectiveness 
of using prior gene interactions.

To evaluate the performance of various methods without 
prior network information or prior pathway information, we 
show the results of various methods without prior network 
information (i.e., η = 0) in Figure 2, and we show the results 

FIGURE 2 | The experiment results of various methods on two groups of samples, with the value of η changing at (A) η = 0, (B) η = 0.4, and (C) η = 0.8. The 
performance of various methods on individual network estimation [with respect to true-positive rate (TPR) and false-positive rate (FPR)] is shown on the left side, 
while the performance of various methods on differential network estimation [with respect to true-positive differential rate (TPDR) and false-positive differential rate 
(FPDR)] is shown on the right side. For weighted fused pathway graphical lasso (WFPGL) and fused graphical lasso (FGL), different line styles correspond to different 
choices of λ2: solid line for λ2 = 0.0001, dashed line for λ2 = 0.001, and dotted line for λ2 = 0.01.
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of various methods without prior pathway information in the 
Supplementary Material (Figure S1). In fact, when there is no 
prior network information, our method degenerates to a fused 
pathway graphical lasso model. When there is no prior pathway 
information, our method degenerates to a weighted fused 
graphical lasso model. We can find from Figure 2 and Figure S1 
that when there is no prior network or prior pathway information, 
our method could still achieve competitive performance with 
other comparative methods.

Experiments on Three and Four Groups 
of Samples
We generate three groups of samples (corresponding to three 
different states) with p = 400 features and n = 50 samples per 
group, and we assume that there are eight pathways covering all 
features with the overlapping nol = 10. The first two networks are 
generated in the same way as the above section, except that only 

r = 10% edges are deleted from state 1 to form the network of 
state 2 (Step 2). The precision matrix for state 3 is copied from 
state 2, with the removed elements in state 2 being reassigned 
by uniform distributed values [−0.6, −0.3] ∪ [0.3, 0.6] with the 
possibility of 0.5.

To further test the robustness of WFPGL, we generated a 
dataset with four different states. In particular, we generated 
four groups of samples with p = 200 features and n = 50 samples 
per group, covered by five pathways with nov = 8. The first three 
networks are generated the same way as the above section except 
that the different rate is set to be r = 20%. Then we randomly 
deleted 20% non-zero elements from state 1 to build the network 
of state 4. 

Similarly, 50 random datasets are generated for the above 
two situations, and Figure 3 shows the averaged results with η = 
0.8. Because Dtrace and WDtrace cannot handle the estimation 
of multiple differential networks, we compare WFPGL with 
GL, PGL, and FGL. WFPGL still outperforms others on both 

FIGURE 3 | The experiment results of various methods on multiple groups of samples: (A) Dataset 1 for three states. (B) Dataset 2 for four states. The performance 
of various methods on individual network estimation (with respect to TPR and FPR) is shown on the left side, while the performance of various methods on 
differential network estimation (with respect to TPDR and FPDR) is shown on the right side. For WFPGL and FGL, different line styles corresponding to different 
choices of λ2: solid line for λ2 = 0.0001, dashed line for λ2 = 0.001, and dotted line for λ2 = 0.01.
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individual and differential network estimations, followed by 
PGL, which uses pathway information only. FGL and GL do not 
perform well on these datasets, though FGL performs slightly 
better than GL on individual network estimation.

REAL DATA ANALYSIS

In this section, we use WFPGL to estimate the gene 
regulatory  networks of type 2 diabetes patients and breast 
cancer patients, with 8,444 known gene interactions from 
TRRUST database (Han et al., 2017) as prior network 
information and pathways collected from Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (Kanehisa, 2000) 
as prior pathway information. The tuning parameters (λ1, λ2) 
are determined based on the following Akaike information 
criterion (AIC):

AIC( , )= tr( ) ( )λ λ1 2 2[ ˆ logdet( ˆ )( ) ( )n S n nk
k k

k
k

eΘ Θ− + (( )],k

k

K

=
∑

1

where Θ̂( )k  is the estimated precision matrix by using the 
tuning parameters λ1 and λ2, and 2ne

k( )  is the number of non-
zero entities in Θ̂( )k . We select the parameters λ1 and λ2, which 
obtain the outputs that minimize AIC(λ1, λ2) to generate the final 
estimation of Θ(k).

Insulin Resistance in Type 2 Diabetes
We downloaded the gene expression data of type 2 diabetes 
patients from (Elbein et al., 2012), which contain 31 insulin-
resistant (IR) samples and 31 insulin-sensitive (IS) samples. 
Four relevant pathways are used as prior pathway information, 
i.e., type 2 diabetes mellitus pathway, Wnt signaling pathway, 
AMPK signaling pathway, and PI3K–AKT signaling pathway. 
These four pathways are all implicated in type 2 diabetes. Wnt 
co-receptor (LRP-5) and the Wnt pathway effector TCF7L2 have 
been revealed in the development of diabetes (Ip et al., 2012). 
Targeted drugs have been designed to treat type 2 diabetes by 
activating AMPK signaling pathway (Jeon, 2016) or PI3K–AKT 
signaling pathway (Huang et al., 2018b).

We normalize each gene to have 0 mean and 1 standard 
deviation. By merging rows with the same gene name based 
on their average, 442 genes are covered by the prior pathway 
information. According to the experiences in simulation studies, 
we set w = 0.3 and choose λ1 (ranging from 0.05 to 0.5) and λ2 
(ranging from 0.1 to 1) based on AIC. Networks for both IR and 
IS samples are built, and we calculate their difference to identify 
the network rewiring associated with insulin resistance.

For real data analysis, due to the lack of ground truth, it is 
hard to know whether the predicted regulatory relationships 
are real. As the changes of gene regulatory relationships are 
often derived by the aberrations of certain genes, we assess 
the performance of our method by quantifying how hub 
nodes in our estimated differential networks capture known 
functionally important genes. Table 1 shows the top 10 hub 
genes in our predicted differential network between IR and 
IS patients. Among these genes, overexpression of MYC is 
verified to prevent insulin resistance (Riu et al., 2003); TP53 
is found to be responsible for the formation of tissue-specific 
insulin resistance (Strycharz et al., 2017). In liver, inactivation 
of RELA leads to the improvement of insulin sensitivity (Ke 
et al., 2015); whole-body insulin sensitivity improves when 
VEGFA is overexpressed in adipose tissue (Fatima et al., 
2017); PRKAA2 gene interfering insulin resistance has been 
observed in the Japanese population (Horikoshi et al., 2006). 
Although not confirmed, indirect evidence like statistics 
(Naderpoor et al., 2017) or mouse experiments (Williams 
et al., 2015) indicate that EGFR and ITGA1 may be good 
candidates for insulin resistance. Besides, how RAC1 relates to 
insulin sensitivity after exercise has attracted a lot of attention 
(Maarbjerg et al., 2011).

Breast Cancer Subtypes
We consider the gene expression data from The Cancer Genome 
Atlas (Cancer Genome Atlas Research Network et al., 2013) that 
measure the expression levels of 17,327 genes in 511 patients with 
breast cancer. The observations are classified into four subtypes: 
95 for basal-like, 58 for HER2 enriched, and 231 and 127 for 
luminal A and luminal B, respectively. In this study, we consider 
seven pathways, namely, apoptosis pathway, hedgehog signaling 
pathway, homologous recombination pathway, notch signaling 
pathway, TGF-5 signaling pathway, mTOR signaling pathway, 
and p53 signaling pathway, which cover 360 genes in the gene 
expression data. All these pathways are related to breast cancer. 
Strong evidence shows that reduced apoptosis will cause breast 
tumor growth, and high levels of apoptosis in a breast tumor 
are likely to predict worse survival (Parton et al., 2001). DNA 
repair pathways that targeted genes involved in homologous 
recombination were discovered to be associated with hereditary 
breast cancer, while almost 40% of familial and sporadic breast 
cancers are homologous recombination deficient (den Brok et al., 
2017). High notch1 expression was found to be associated with not 
only high-grade tumors but also poor prognosis for breast cancer 
(Zardawi et al., 2009). Changes in regulators of p53 activity were 
demonstrated to be predictive of early relapse in breast cancer 
(Gasco et al., 2002). mTOR pathway is implicated in endocrine 
resistance in ER-positive tumors, and the targeted drugs may be 

TABLE 1 | Top 10 nodes with the highest degree in the predicted differential network between insulin-resistant (IR) and insulin-sensitive (IS) patients.

Rank 1 2 3 4 5 6 7 8 9 10

Name MYC TP53 RELA EGFR NFKB1 RAC1 VEGFA CREB3L1 ITGA1 PRKAA2
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used to treat brain metastases (Paplomata and O’Regan, 2014). 
Dysregulation of hedgehog and TGF-5 signaling pathway have 
been identified in the development and progression of breast 
cancer (Habib and O’Shaughnessy, 2016; Skoda et al., 2018).

We build four state-specific networks corresponding to four 
breast cancer subtypes. We still set w = 0.3 but choose λ1 ranging 
from 0.01 to 0.1 and λ2 ranging from 0.001 to 0.01. Table 2 shows 
the nodes with the highest degree in our inferred networks. Two 
types of genes are categorized by the fused penalty—cancer-
related genes and subtype-specific genes.

The genes appeared in all subtypes are significantly associated 
with breast cancer. For example, IGF-1 gene is identified as a 
key player in major signaling pathways involved in breast cancer 
growth (Christopoulos et al., 2015); TP53 gene mutations have 
been found in almost all subtypes (Bertheau et al., 2013); TNF 
gene is highly expressed in breast carcinomas, and its chronic 
expression supports tumor growth (Kamel et al., 2012); BAMBI 
and interferon gamma protein (encoded by IFNG gene) are found 
to inhibit the tumor growth of breast cancer (Shangguan et al., 
2012; Ning et al., 2010). In detecting breast cancer, experiments 
have revealed the diagnostic value of THBS1 protein (Suh et al., 
2012). The overexpression and amplification of RPS6KB2 gene as 
well as FAS gene are reported to be associated with breast cancer 
prognosis (Pérez-Tenorio et al., 2011; Bębenek et al., 2013); 
BMP2 is considered as a driving factor for promoting breast 

cancer stemness, and BMP4 is a potent suppressor of breast 
cancer metastasis (Huang et al., 2017; Ampuja et al., 2013).

In addition, the genes that emerged only in one subtype are 
regarded as potential subtype-specific genes, which may have 
diverse functions across subtypes. In this result, there are three 
subtype-specific hub genes identified by our method, i.e., CDKN2B 
in basal-like, and IL1R1 and TNFRSF10B in luminal B. CDKN2B 
protein is a cyclin-dependent kinase inhibitor that functions as a cell 
growth regulator, and its methylation is part of triple negative breast 
cancer (TNBC) profile (Branham et al., 2012). This result is also in 
accordance with a recent study (Bareche et al., 2018) that declared 
that the copy number aberrations of CDKN2B gene suffer a high 
gain in basal-like 1 subtype. The high expression of IL-1a has been 
found to be correlated with better prognosis in luminal B breast 
cancer (Dagenais et al., 2017). Since IL1R1 protein is the receptor 
for IL-1α, there may be a latent relationship between the IL1R1 gene 
expression level and luminal B breast cancer. TNFRSF10B (also 
named as DR5) is a cell surface receptor that can be activated by 
tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/
TRAIL) (Benson et al., 2018). TRAIL kills tumor cells while sparing 
normal cells and becomes a drug target. However, TRAIL may be 
selective to patients, since only a small subset of patients respond 
well to TRAIL in previous clinical trials (Dimberg et al., 2013). 
Considering that the lack of surface DR5 is sufficient to render 
tumors resistant to the targeted therapies (Twomey et al., 2015), the 
correlation between DR5 and luminal B discovered by this paper 
could provide a new insight of TRAIL therapies on their receivers.

CONCLUSION

In this paper, we propose a novel weighted fused pathway 
graphical lasso (WFPGL) that can effectively incorporate 
additional knowledge including pathway information and gene 
interaction networks to jointly estimate multiple gene regulatory 
networks. These two kinds of prior information have different 
effects on our algorithm. We incorporate gene interaction priors 
by assigning a weight matrix to the estimated individual networks 
and differential networks. When there is no prior gene interaction 
information, all elements in the weight matrix are set to 1, and 
our model degenerates to a fused pathway graphical lasso model. 
For prior pathway information, we utilize the information by 
imposing constraints that a pair of genes can be connected to 
each other only if they co-occur in at least one pathway. The 
constraints have the potential of improving structure learning of 
gene regulatory networks. First, it can accelerate the optimization 
of the algorithm, leading to acceptable results when dealing 
with high-dimensional data. Second, making use of such prior 
information in learning the structures of networks can yield 
results that are more meaningful and interpretable. Moreover, as 
our algorithm is a flexible framework, the “pathway” here does not 
need to be an exact biological pathway. The “pathway” here stands 
for a partition of genes such that genes that belong to different 
“pathways” are less likely to have regulatory relationships. On 
the one hand, if we can collect additional information, such as 
the transcript factors (TFs) of genes in a given pathway, we 
could combine these TFs and their regulated genes into a new 

TABLE 2 | Top 30 nodes with the highest degree in four breast cancer 
subtypes.

Rank Basal like HER2 
enriched

Luminal A Luminal B

1 IGF1 BMP4 PRKACB BMP4
2 TP53 IGF1 IGF1 IGF1
3 TNF ID4 BMP4 IFNG
4 BCL2 IFNG BMP2 FAS
5 FAS BCL2 TNF RPS6KB2
6 BMP2 BMP2 RPS6KB2 TP53
7 THBS1 TP53 THBS1 PRKACB
8 PIK3CG BIRC3 FAS BAMBI
9 BMP4 RPS6KB1 TP53 THBS1
10 IFNG FAS TGFB2 BMP2
11 AKT3 BMPR1B BIRC3 TNF
12 BAMBI MYC BAMBI PRKAR2B
13 ID4 PIK3CG BMPR1B TNFRSF10B
14 CDKN2B RPS6KB2 RPS6KB1 BMPR1B
15 TGFB2 TNF AKT3 BMP7
16 INHBB BMP7 BCL2 ACVR1C
17 RPS6KB2 THBS1 ACVR1C IL1R1
18 BIRC3 TGFB2 APAF1 BCL2
19 PITX2 INHBB AKT1 PIK3R1
20 BMP7 DCN ID4 ID4
21 BMP5 AKT1 LEFTY1 APAF1
22 LEFTY1 PRKACB FST BIRC3
23 INHBA BAMBI PIK3R1 PITX2
24 MYC ACVR1C IFNG MYC
25 CCNB3 LEFTY1 INHBB PIK3CD
26 PRKACB CDKN2A PRKAR2B PMAIP1
27 LEFTY2 SMAD9 PIK3CG DCN
28 BMP6 GADD45A PIK3R5 AKT1
29 PIK3CD INHBA INHBA INHBB
30 DCN SERPINB5 PIK3R3 FASLG
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“pathway” such that the regulatory relationships are more likely 
to take place between genes within the same “pathways.” On the 
other hand, if the pathway information is not comprehensive or 
remains unknown to us, we could treat all genes as a pathway, and 
our model degenerates to a weighted fused graphical lasso model.
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