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Atherosclerosis is a multifactorial disease involving a lot of genes and proteins recruited throughout its manifestation. The present
study aims to exploit bioinformatic tools in order to analyze microarray data of atherosclerotic aortic lesions of ApoE knockout
mice, a model widely used in atherosclerosis research. In particular, a dynamic analysis was performed among young and aged
animals, resulting in a list of 852 significantly altered genes. Pathway analysis indicated alterations in critical cellular processes
related to cell communication and signal transduction, immune response, lipid transport, and metabolism. Cluster analysis
partitioned the significantly differentiated genes in three major clusters of similar expression profile. Promoter analysis applied
to functional related groups of the same cluster revealed shared putative cis-elements potentially contributing to a common
regulatory mechanism. Finally, by reverse engineering the functional relevance of differentially expressed genes with specific
cellular pathways, putative genes acting as hubs, were identified, linking functionally disparate cellular processes in the context
of traditional molecular description.

1. Introduction

Atherosclerosis is the leading pathological contributor to
cardiovascular morbidity and mortality worldwide, char-
acterized by the progressive accumulation of lipid and
fibrous depositions in the vessel wall of medium-sized and
large arteries. Although it has traditionally been viewed
as simple deposition of lipids within the vessel wall, it
is now assumed that atherosclerosis is a multifactorial
disease that involves several genes and proteins, activated
during its genesis, progress, and phenotypic manifestation.
During atherogenesis, a complex endothelial activation and
dysfunction induced by elevated and modified low-density
lipoproteins and many other factors leads to a compensatory

inflammatory response [1]. Current evidence supports a cen-
tral role for inflammation, in all phases of the atherosclerotic
process. Substantial biological data implicate inflammatory
pathways in early atherogenesis, in the progression of lesions,
and finally in the thrombotic complications of this disease
[2].

Clinical investigations, population studies, and cell cul-
ture experiments have provided important clues to the
pathogenesis of atherosclerosis. However, the use of animal
models has had a crucial contribution in the research
of the atherosclerotic course. Atherosclerosis will not be
developed in laboratory mice under normal conditions.
However, targeted deletion of the gene for Apolipoprotein E
(ApoE knockout mice) leads to severe hypercholesterolemia



2 Advances in Bioinformatics

Analysis stepsInput/output Relevant bioinformatic tools
and/or databases

Microarray raw data

Gene ARMADA

StRAnGER

Gene ARMADA

Gene clusters 

Common TF binding sites

GOrevenge

3

4

5

6

7 BioGraph

List of differentiated
probesets/genes

1, 2

Differentiated
biological
processes,

cellular pathways

Prioritization of gene list/research
targets selection

Association with previous
knowledge

CSHLmpd, ElDorado,
genomatix tools

Step 1: pre-processing, normalization
Step 2: statistical analysis

Step 3: pathway analysis

Step 4: cluster analysis

Step 5: promoter analysis

Step 6: prioritization

Step 7: text-mining based validation
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databases used for the implementation of each step are also shown.

and spontaneous atherosclerosis [3]. For this reason, ApoE
deficient mice are widely used to study atherosclerosis [4].
ApoE is a ligand for receptors that clear chylomicrons
and very low-density lipoprotein remnants. Furthermore, a
number of population studies suggest that ApoE genotype
predicts the risk of developing atherosclerosis and related
diseases [5].

In this study, we propose a framework for efficient trans-
lational bioinformatic analysis showcased on a microarray
dataset concerning biological specimen from ApoE knockout
mice. Gene expression data of wild type and ApoE knockout
6-, 32-, and 78-week-old mice have been utilized. This
dataset was previously presented in a detailed work studying
atherosclerosis and inflammatory pathways during aging [6].
The proposed workflow comprises seven basic steps (Fig-
ure 1): raw data pre-processing and normalization, statistical
selection, pathway analysis, clustering, promoter analysis,
gene list prioritization, exploiting network centrality criteria
enabling identification of interesting research targets, and
finally intelligent text-mining based validation of the selected
molecular targets from the broader biomedical literature.
Aim here is to combine several bioinformatic tools, in
a unique, generic, computational workflow, appropriate
for batch processing, able to confer reliable functional
knowledge, regarding different aspects of the biological
mechanism investigated, in order to highlight critical,
underlying, molecular determinants governing it. Besides
an algorithmic proposition, the workflow presented here
is currently in the phase of implementation, regarding the
seamless integration of its constituent modules, exploiting

the web service technology [6], accessible through a user-
friendly web application, and enabling automated extraction
of consolidated biological knowledge, in the form of concrete
functional scenario, from high-volume data omic datasets.
Nowadays, several tools are available for the implemen-
tation of each analysis step. For instance, Bioconductor
[7] represents one of the richest repositories of statistical
algorithms and has become, by all means, a standard for
microarray data analysis but its command line interface
limits its usability to many, wet-lab oriented, biological
experts. To overcome this limitation, user friendly software
packages for normalization, statistical analysis, and visualiza-
tion of microarray expression data have been developed, like
Gene ARMADA [8] and FlexArray [9]. Regarding pathway
analysis, multiple software tools are exploiting ontological
vocabularies to target the issue of detecting over-represented
terms in microarray datasets, aiming to indicate possibly
altered molecular processes [10–14]. Regarding promoter
analysis, it remains one of the most intricate issues regarding
the efficient mining of gene lists derived from transcriptomic
experiments. Different promoter sequence databases [15, 16]
and bioinformatic tools [17, 18] have been developed but
still elucidation of gene transcription regulating networks
remains a great challenge. The derivation of functional
information regarding gene function, exploiting semantic
similarity criteria, represents a promising, yet fuzzy and
increasingly bewildering in its interpretation, approach.
Several criteria and measures have been proposed [19],
however it is GOrevenge [20], which instead of focusing in
the neighboring genes, it highlights linker genes, associated
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with discrete cellular functions (distant in terms of semantic
similarity). Finally BioGraph [21] is a data integration and
data mining platform for the exploration and discovery
of biomedical information. The platform offers prioriti-
zations of putative disease genes, supported by functional
hypotheses. BioGraph can retrospectively confirm recently
discovered disease genes and identify potential susceptibility
genes, without requiring prior domain knowledge, outper-
forming from other text-mining applications in the field of
biomedicine. In the present analysis we show that integration
of different analysis snapshots, as obtained through bioinfor-
matic analyses, results in reliable, prioritized and informative
lists of differentiated genes, and/or molecular pathways.

2. Materials and Methods

2.1. Microarray Data. The mouse dataset used is the
GSE 10000, available at Gene Expression Omnibus (GEO)
database. Microarrays were prepared following MIAME
guidelines, as described in [22]. Briefly, RNA from aortic tis-
sue of ApoE knockout and wild type animals was hybridized
on Affymetrix 430 2.0 Arrays. Three different ages were
studied: 6, 32, and 78 weeks.

2.2. Microarray Data Analysis and Statistical Analysis.
Microarray data analysis was performed in Gene ARMADA
[8]. Briefly, background correction was performed employ-
ing its gcRMA method followed by Quantile Normalization.
Data were log2 transformed to comply with the normality
assumption. Differentially expressed genes in at least one
among all the experimental conditions were identified
using Gene ARMADA, by performing 1-way ANOVA on
log2 transformed fold changes. The resulting gene list was
obtained by setting the P value threshold to 0.01, the False
Discovery Rate (FDR) threshold to 0.05 and by removing
genes that presented a fold change below |1|, in log2 scale,
in all conditions.

2.3. Prioritized Pathway/Functional Analysis. Statistical
enrichment analysis was performed using StRAnGER
[8], in order to highlight biological processes including
statistically significant numbers of the ANOVA derived
genes. In order to expand our knowledge regarding the
functional implication of genes in various cellular processes,
prioritizing them according to their centrality, we used
the online tool GOrevenge [20] with the following settings:
Aspect: BP (Biological Process), Distance: Resnik, Algorithm:
BubbleGene, and Relaxation: 0.15.

2.4. Cluster and Promoter Analysis. The list derived from
ANOVA was subjected to hierarchical clustering (linkage
method: Average, distance: Cosine) in Gene ARMADA.
Promoter sequences from −700 to +300, relative to tran-
scription start site, were downloaded for mouse and human
from Cold Spring Harbor Laboratory Mammalian Promoter
Database (CSHLmpd) [16]. In the cases that alternative
promoters were given for the same gene, we selected the
one defined as the “best” at [16]. For promoters that we

could not detect in this database, we additionally searched
the ElDorado database [15]. In the case of genes with
multiple promoters supported by different transcripts, we
selected the one corresponding to the Reference Sequence
of NCBI. To analyze each promoter set for common TF
binding sites, we used the MatInspector software [18]. The
parameters used were as follows: Library version: Matrix
Library 8.0, Matrix group: Vertebrates, Transcription Factor
sites common to: 85% of input sequences, Core similarity:
0.75, Matrix similarity: Optimized, and P value cut-off was
set at 0.01. Among the identified TF sites only those that were
present in both species were considered.

3. Results

3.1. Statistically Significant Differentiated Genes. To obtain
the aortic gene expression profile of ApoE deficient mice in
6-, 32-, and 78-week-old mice we analyzed the GSE 10000
dataset, containing expression data of aortic tissue from
wild type and ApoE knockout mice. Specifically, in order to
identify significant alterations among all three tested ages, 1-
way ANOVA was applied to expression fold changes between
expression in ApoE knockout and wild type animals (P
value <0.01 and FDR <0.05) coupled with further filtering
on fold change (> |1| in at least one condition in log2
scale). A list of 1033 significantly differentiated probesets was
obtained (Supplementary Table 1; see supplementary mate-
rial available online at doi:10.1155/2012/453513), depicted
per time point using a volcano plot representation (Figure 2).
These 1033 probesets correspond to 852 annotated genes.
It is characteristic that in 6 weeks old mice the number of
significantly altered genes is very limited, in 32 weeks old
mice the majority of differentiated genes are upregulated,
while in 78 weeks old mice we have the greater number of
differentiated genes.

3.2. Pathway Analysis. For the scope of gaining further
insight concerning the biological functionalities of gene
expression alterations in a more systematic way, the list of 852
significantly differentiated genes yielded from ANOVA was
subjected to statistical enrichment analysis using StRAnGER,
exploiting GO terms and Kegg pathways for the task of the
functional annotation of the interrogated genes. GO-based
analysis, focused on the categories of “Biological Process”
with a hypergeometric P value <0.001, suggested several
processes as possibly differentiated, which are presented in
Table 1. A lot of central molecular mechanisms emerge as
altered, as indicated by the GO categories listed in Table 1,
like differentiation, proliferation (inferred by cell cycle and
cell division GO terms), apoptosis, cell adhesion, signal
transduction, and immune response. Kegg pathway-based
analysis also indicates alterations in cytokine signaling, cell
adhesion, and signal transduction (Supplementary Table
2). It is important to note that in conformity to the well
established relationship of atherosclerosis and inflammation,
the majority (29 out of 32) of the genes under the category
“immune response” are upregulated suggesting a stimulation
of the immunological mechanisms (Table 2).
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Figure 2: Volcano plots of the gene list as yielded by ANOVA. Each panel represents filtered and normalized data from each experimental
condition (3, 6, and 78 weeks old mice). The horizontal axes depict the fold change ratio between ApoE deficient and wild type mice, for
each age in log2 scale, while the vertical axes represent statistical significance by depicting the −log10 (FDR).

Table 1: GO-analysis. The list of 852 significantly altered genes was
submitted to GO analysis elucidating over-represented GO terms.
GOT P value represents the hypergeometric test P value score for
each GO term. Enrichment represents the ratio of the number of
times a GO term occurs in the 852 gene list to the number of times
this GO term exists in the list of the Affymetrix 430 2.0 array.

GO annotation GOT P value Enrichment

Ion transport 0.00000000003 33/498

Signal transduction 0.00000000004 44/803

Cell differentiation 0.00000000005 36/480

Immune response 0.00000000005 32/250

Metabolic process 0.00000000007 38/542

Cell adhesion 0.00000000011 36/387

Protein amino acid
phosphorylation

0.00000000059 32/497

Multicellular organismal
development

0.00000000128 41/770

Proteolysis 0.00000000690 25/358

Apoptosis 0.00000010814 24/383

Lipid metabolic process 0.00000328813 15/212

Protein transport 0.00003352383 22/465

G-protein coupled receptor
signaling

0.00028681297 19/436

Oxidation reduction 0.00034119987 21/510

Cell cycle 0.00043684087 18/417

Cell division 0.00050194998 12/231

3.3. Cluster Analysis. In order to identify groups of genes
presenting similar expression and possibly comprising reg-
ulated “waves” of transcription, the list of 1033 significantly
differentiated probesets was subjected to hierarchical cluster-
ing (Figure 3). Three major clusters can be distinguished: the
first one (323 probesets) contains transcripts downregulated
in 78 week old mice, while their expression remains close to
the control (wild type) level at 6 and 32 weeks. The second
cluster (526 probesets) groups genes which are upregulated
at 32 weeks and their expression at ApoE knockout mice
remains at high levels, as compared to wild type, also at 78
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Figure 3: Hierarchical clustering of the 1033 statistically significant
differentiated probesets. Fold changes between the gene expressions
in ApoE knockout as compared to age-matched wild type mice are
grouped in three major clusters.

weeks. The third cluster (110 probesets) groups genes whose
expression is late upregulated at 78 week old ApoE knockout,
as compared to age-matched wild type mice.

Based on these three major clusters, we performed GO-
analysis to the genes of each cluster separately. Genes under
cluster 1 are functionally connected to processes involved
in cell differentiation, adhesion, and signal transduction.
Cluster 2 contains the greatest number of genes, which
are related mainly to mechanisms involved in immune and
inflammatory response as well as lipid metabolism. These
processes emerge as significantly altered specifically in the
case of cluster 2. Cluster 2 genes are also connected to key
cellular processes like signal transduction, apoptosis, cell
cycle, and differentiation. Cluster 3 genes are mainly related
to mechanisms concerning gene transcription.

3.4. Promoter Analysis. Next, we focused our analysis on
small groups of genes presenting similar expression profile,
as indicated by cluster analysis, and also being functional
relevant, as suggested by GO analysis. In order to investigate
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Table 2: Expression of genes under the GO term immune response. Values in the three last columns depict fold changes between ApoE
knockout and age-matched wild type mice in log2 scale. The majority of genes at 32 and 78 weeks are upregulated.

Symbol Description 6 weeks 32 weeks 78 weeks

Ccl6 Chemokine (C-C motif) ligand 6 −0.17 2.25 2.23

Cd74 CD74 antigen (invariant polypeptide of major histocompatibility complex, class II
antigen-associated)

0.29 1.56 1.43

C1qb Complement component 1, q subcomponent, beta polypeptide −0.23 2.28 2.43

H2-Ab1 Histocompatibility 2, class II antigen A, beta 1 −0.25 1.94 2.77

C1qa Complement component 1, q subcomponent, a polypeptide −0.08 1.98 2.18

Tlr2 Toll-like receptor 2 0.14 0.99 1.38

Ccl7 Chemokine (C-C motif) ligand 7 −0.98 1.59 4.42

C4b Complement component 4B (Childo blood group) 0.23 1.2 1.74

Cblb Casitas B-lineage lymphoma b 0.2 0.34 1.36

Fcgr2b Fc receptor, IgG, low affinity IIb −0.1 1.93 2.19

Cd300lb CD300 antigen like family member B −0.46 2.83 2.87

Susd2 Sushi domain containing 2 0.22 −0.08 −1.07

Ccl8 Chemokine (C-C motif) ligand 8 0.33 2.92 3.01

Cd14 CD14 antigen −0.14 1.52 2.44

Fcgr1 Fc receptor, IgG, high affinity I −0.05 1.82 2.03

Cadm1 Cell adhesion molecule 1 −0.57 1.5 2.01

C2 Complement component 2 (within H-2S) −0.81 1.02 −0.03

Clec7a C-type lectin domain family 7, member a 0.15 3.52 3.86

Procr Protein C receptor, endothelial −0.25 0.77 1.02

C1qc Complement component 1, q subcomponent, C chain −0.22 2.22 2.25

Ccl19 Chemokine (C-C motif) ligand 19 −0.71 1.07 1.64

Enpp3 Ectonucleotide pyrophosphatase/phosphodiesterase 3 0.24 −0.00 −1.28

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 0.18 1.71 1.87

Ccl9 Chemokine (C-C motif) ligand 9 −0.46 1.74 2.19

H2-Eb1 Histocompatibility 2, class II antigen E beta 0.19 1.62 2.17

H2-Aa Histocompatibility 2, class II antigen A, alpha 0.95 2.39 2.34

Cxcl12 Chemokine (C-X-C motif) ligand 12 −0.34 1.1 1.95

Enpp1 Ectonucleotide pyrophosphatase/phosphodiesterase 1 0.14 0.37 1.08

Rnf19b Ring finger protein 19B −0.29 0.73 2.58

Prg4 Proteoglycan 4 0.16 3.33 3.99

Irf8 Interferon regulatory factor 8 0.28 1.9 2.61

Cxcl1 Chemokine (C-X-C motif) ligand 1 −0.46 1.77 2.66

whether there are common regulatory transcriptional mech-
anisms in such groups of genes, we performed a representa-
tive promoter analysis in genes of cluster 2 belonging to the
GO category of “immune response” either “inflammatory
response.” We selected these categories because they appear
as significantly altered, scoring at the top of GO analysis
prioritization list. We combined the genes of these two
groups, resulting at a total number of 36 genes in both
categories, because they are functionally relevant, as they
represent genes involved in immunological mechanisms. In
order to find common putative transcription factor (TF)
binding sites in at least a subset of this group, proximal
promoter sequences from both mouse and human genomes
were extracted from available databases and analyzed as
described in Methods. Only common TF binding sites

among the two species were considered. Table 3 summarizes
statistically significant TF motif families common in at least
80% of promoter sequences, sorted in descending order in
terms of statistical significance. The P values, representing
the probability to obtain a greater or equal number of
sequences with a match in a random sample of the same size
as the input sequence set, are precalculated for each binding
site and depend on its definition.

We then examined whether among the significantly dif-
ferentiated genes we could identify TFs possibly recognizing
binding sites presented at Table 3 and thus being involved in
the regulation of the relevant genes. Interestingly, among the
upregulated genes there are Klf4 and Irf8 TFs, whose binding
sites are found at 100% and 86% of the tested promoters,
respectively. In particular, Klf4 shows an increased expression
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Table 3: Common TF motif families in the promoters of 36 genes belonging to cluster 2 and to the categories “immune response” and
“inflammatory response.” The percentage column depicts the percentage of genes whose promoters have at least one match with the
respective motif family. Percentages and P value calculations are based on mouse promoters.

Family Description P value %

V$CTCF CTCF and BORIS gene family 0.00000185 86

V$MZF1 Myeloid zinc finger 1 factors 0.00000878 89

V$EGRF EGR/nerve growth factor induced protein C and related factors 0.00011981 86

V$SRFF Serum response element binding factor 0.00012387 83

V$PLAG Pleomorphic adenoma gene 0.00015650 86

V$GREF Glucocorticoid responsive elements 0.00016410 92

V$KLFS Krueppel like transcription factors 0.00024104 100

V$GLIF GLI zinc finger family 0.00170920 81

V$STAT Signal transducer and activator of transcription 0.00177177 92

V$PAX5 PAX-2/5/8 binding sites 0.00246076 89

V$E2FF E2F-myc activator/cell cycle regulator 0.00400401 86

V$XBBF X-box binding factors 0.00470139 89

V$GATA GATA binding factors 0.00499105 94

V$PAX6 PAX-4/PAX-6 paired domain binding sites 0.00504198 89

V$ETSF Human and murine ETS1 factors 0.00646776 100

V$GCMF Chorion-specific TFs with a GCM DNA binding domain 0.00921126 83

V$HEAT Heat shock factors 0.01639280 92

V$RXRF RXR heterodimer binding sites 0.01834270 97

V$FKHD Fork head domain factors 0.02095320 94

V$IRFF Interferon regulatory factors 0.02221250 86

V$HAND Twist subfamily of class B bHLH transcription factors 0.03199970 94

V$ABDB Abdominal-B type homeodomain transcription factors 0.04170260 89

at ApoE knockout mice as compared to age-matched wild
type both at 36 and 78 weeks (0.62 and 1 fold increase, in
log2 scale, resp.) while in 6 weeks the expression of KLf4
is moderately decreased as compared to wild type (−0.46,
log2 scale). The expression of Irf8 at ApoE knockout mice is
significantly increased both at 36 and 78 weeks (1.9 and 2.61
fold increase, in log2 scale, resp.), while at 6 weeks it remains
at the wild type levels. Thus the upregulation of these factors
could partially account for the observed upregulation of the
immune-related group of genes.

3.5. Identification of Candidate Hub-Genes. In order to
expand our knowledge regarding which genes have critical
role, taking into consideration their centrality as described
in the GO tree, we used the online tool GOrevenge [20]. The
list of 852 differentiated genes was submitted to GOrevenge
and the analysis was performed based on GO annotations
for Mus musculus as described in materials and methods
section. The derived list of genes, containing candidate
linker genes, that is genes participating in many different
cellular processes, was partitioned to include only the genes
that have been also identified, as statistically significantly
differentiated. The derived list (Table 4) contains genes
that were identified as significant both by ANOVA and by
GOrevenge analysis. The list of genes is prioritized according
to the centrality of each gene, as it is reflected by the number

of GO biological processes related terms remaining after
GOrevenge pruning [20]. Significant molecules involved in
signaling and developmental mechanisms emerge as central
players. In order to evaluate the relation of these genes with
atherosclerosis, which is a principle phenotypic characteristic
of ApoE knockout mice, we used the BioGraph platform [21]
which utilizes data mining algorithms that exploit textual
terms to build a network of heterogeneous relations which
link genes with a specific concept (such as genes, proteins,
diseases as described in [21]). The resultant BioGraph
network describes associations in Homo sapiens. By setting
atherosclerosis as concept, the relation of each gene with
atherosclerosis was assessed and the top 20 genes obtained by
GOrevenge were prioritized as shown in Table 5 by BioGraph
algorithm. The genes are prioritized according to their score
which is a statistical enrichment measure of the relevance
of each gene with the inquired context (here specified as
atherosclerosis) to the total relations (references) of the gene
in the universe of terms. In this way, the user can derive which
of its genes are already associated and in what extent with
a given disease or generally biological term, and which of
them represent novel findings with respect to the investigated
pathological phenotype. Since the list of gene symbols used
as input to BioGraph represent Mus musculus genes, while
BioGraph refers to Homo sapiens genes, some of them could
have different symbol in each species. In the case that a
gene symbol was not recognized by BioGraph, we searched
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the NCBI HomoloGene database [23] in order to find the
homologous gene in Homo sapiens (e.g., FOXF1 of Table 5
corresponds to Foxf1a of Table 4).

4. Discussion

In this study, we presented a detailed, multi-stage, trans-
lational bioinformatic analysis of ApoE knockout mice,
exploiting different methods in order to identify critical
altered molecular mechanisms and important central play-
ers. Our approach was to apply a generic computational
framework, which exploits rigorous statistical or compu-
tational measures at every analytical step, for the efficient
systems level interpretation of the results of ApoE dataset.
The workflow proposed here integrates various software
products, in a unified translational pipeline, able to cope
with versatile, high-volume investigation tasks, and at the
same time provide a reliable systemic interpretation for
the biological mechanism studied. In this way, a powerful
translational backbone is set, which connects the wet-
lab part with the theoretical knowledge for the biological
problem interrogated, as rescued in molecular databases,
controlled ontological vocabularies or the literature. The
workflow presented in this study, currently in the phase
of implementation as regards to its software components
integration, represents an efficient and highly innovative
effort, either in terms of speed of analytical performance,
as well as real biological value of the results. This is so
because it provides results which are qualified from a
composite framework that combines ideally both individual
and group quality measures, together with an insightful
comprehension of the underlying topological networks,
actively involved in the mechanism studied. The correlation
of the results of the molecular analysis with literature-derived
associations manages to highlight and propose promising,
novel candidates that have not been studied in the context of
the given pathology. They could thus represent ideal targets
for further biological experimentation. Maximizing the total
information gain encompassing all analytical steps of the
proposed workflow represents a critical parameter regarding
the implementation of the web application. However as the
derivation of automated statistical thresholds for such high-
volume data processing in an unsupervised manner both
in terms of performance and computational speed is a very
challenging task, this still remains an open issue for extensive
research work and testing, representing an important point
for future work.

Computational technologies are complementary to con-
ventional “wet lab” gene discovery technologies in that
they can support the prioritization and comprehension
of high-volume molecular data (i.e., omic datasets from
a microarray or novel sequencing technologies, associated
regions from genome wide association or linkage studies)
enabling the efficient selection of the top candidates, under
a range of criteria, for further study. In recent years,
there are popular tools and environments in the scientific
computing realm (data-mining, artificial intelligence, hyper-
computing), like the Taverna workflow manager [24] or

the RapidMiner solution, formerly known as YALE [25],
which enable efficient workflow integration and deployment,
exploiting versatile web service repositories, containing
hundreds of operators implementing various analytical tasks.
Especially Taverna workflow manager, through myExperi-
ment (http://www.myexperiment.org) [26] and Biocatalogue
(http://www.biocatalogue.org) [27], integrates an impressive
number of workflows and web services all accessible through
Taverna, for a very wide range of disparate bioinformatics
tasks. However, to the best of our knowledge, the workflow
showcased in this work addresses in a sequential, unsuper-
vised fashion disparate tasks enabling and empowering deci-
sively the translational procedure, in a completely innovative
yet efficient way.

Applying the proposed workflow to a dataset from
ApoE knockout and wild type mice, it was shown that the
gene expression profile in atherosclerotic plaques containing
arteries of ApoE knockout mice is profoundly different from
wild type. Specifically, 852 genes were found as differentially
expressed and the majority of them appear after the age of
32 weeks. The indicated altered processes, as revealed by
ontology-based enrichment analysis, include adhesion and
signal transduction, differentiation, apoptosis, and immune
response, reflecting the cellular and molecular complexity of
atherosclerosis and the cross-talk of endothelial and immune
cells in aortic lesions. Cluster analysis revealed three major
groups of genes with similar expression profiles, which were
further analyzed, in order to find functional (GO-based)
subgroups in each cluster. In agreement with the notion
that atherosclerosis is an inflammatory disease [2], immune
response and inflammation were the prominent categories
indicated as significantly altered in the case of cluster 2, which
contains genes upregulated both in 36- and 78-weeks-old
mice. Promoter analysis of the genes under these categories
revealed common binding elements that could contribute to
a common transcriptional regulation. In particular, all of the
tested genes (100%) contain cis-elements of the KLF and
RXR family. The KLF family groups binding sites recognized
by Krueppel like transcription factors (KLFs) [28] which are
involved in many physiological and pathological processes,
such as cell differentiation, proliferation, cell growth, and
apoptosis during normal development or under different
disease conditions. It is noteworthy that KLFs have been
implicated in acute and chronic inflammatory disease states,
such as atherosclerosis, diabetes, and airway inflammation
[29]. It is important to note that despite the identification of
KLF cis-acting elements, Klf4 TF was also found upregulated,
suggesting that this factor could be involved in the regulation
of the observed stimulation of the immune response related
mechanisms. Klf4 has been found to regulate monocyte
differentiation and to activate the macrophages to induce
inflammation [30]. Furthermore, Klf4 regulates the prolif-
eration and differentiation in vascular smooth muscle cells
after injury to the vessel [31]. However, Klf4 seems to
have an anti-inflammatory role in endothelial cells [28].
Regarding RXR family, it groups together motifs related to
the receptors of retinoids, which are recognized by various
heterodimers of retinoid X receptors (RXRs) and retinoic
acid receptors. Interestingly, RXR has been reported to
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Table 4: GOrevenge prioritization. The second column refers to the number of GO terms remaining after Gorevenge pruning, reflecting the
centrality of each gene, while the third column refers to the original number of biological process category GO terms of each gene. Values
in the three last columns depict fold changes between ApoE knockout and age-matched wild type mice in log2 scale. All presented genes are
also differentially expressed. Top 20 genes are shown.

Gene symbol Remaining GO terms Original GO terms 6 weeks 32 weeks 78 weeks
Wnt5a 63 112 0.04 −0.38 −1.9
Fgfr2 56 92 0.15 −0.39 −1.05
P2rx7 38 73 0.02 0.61 1.84
Igf1 34 56 −0.23 0.77 1.39
Thbs1 30 42 −0.02 1.59 1.99
Ptgs2 30 37 −0.27 1.76 1.7
Foxf1a 28 34 0.09 −0.63 −1.41
Psen2 25 37 −0.4 0.23 1.02
Ccnd1 24 37 −0.01 0.67 1.07
Slc11a1 24 40 −0.16 1.29 1.9
Lyn 24 33 −0.01 1.07 2.26
Cebpa 24 30 −0.3 0.21 1.77
Tlr2 21 47 0.14 0.99 1.38
Osr1 21 33 0.09 0.08 −1.41
Hexb 19 23 −0.04 0.67 1
Col1a1 19 29 0.02 0.57 1.01
Socs3 19 27 0.58 1.59 3.19
Adam17 18 29 −0.22 0.27 1.07
Cd44 18 20 0.15 1.46 1.63
Cln8 18 26 0.37 0.85 1.71

Table 5: Prioritization of the genes presented in Table 4 by Bio-
Graph exploiting unsupervised methodologies for the identification
of causative disease-associated genes.

Gene symbol Score

PTGS2 0.003895

CCND1 0.000566

CD44 0.000279

COL1A1 0.000194

ADAM17 0.000168

IGF1 0.000116

FGFR2 0.000116

THBS1 0.000097

LYN 0.000088

SOCS3 0.000087

CEBPA 0.000054

TLR2 0.000048

PSEN2 0.000045

P2RX7 0.000038

WNT5A 0.000035

lSLC11A1 0.000024

CLN8 0.000007

FOXF1 0.000006

HEXB 0.000005

OSR1 0.000002

regulate several genes related to metabolic homeostasis and
inflammation [32]. RXR form heterodimers with many

different nuclear receptors, PPARs, LXR, and FXR affecting
different aspects of cholesterol metabolism in macrophages,
something known to be important in the development of
atherosclerosis [32]. In addition, among the identified puta-
tive TF binding sites there are interferon regulatory factors-
related elements (IRFs) in the 86% of the promoters, as well
as glucocorticoid responsive elements (GREs) in the 92%
of the tested promoters. In agreement, Irf8, a transcription
factor involved in modulation of immune response and as
a central element in the IFN signaling cascade, was found
significantly overexpressed, suggesting that Irf8, together
with Klf4, could be involved in the upregulation of the
immune response related genes. Regarding GREs, it is well
known that glucocorticoid receptors play important roles
in both physiological and pathological conditions involving
immunity and inflammation and that they are involved in
the pathology of cardiovascular diseases [33]. Finally, Table 4
includes several genes implicated to various aspects of the
disease. It is noteworthy to mention Tlr2, a member of
the Toll-like receptors family, which plays a fundamental
role in activation of innate immunity [34]. Furthermore,
the identification of Psen2 (presenillin 2), a gene implicated
in Alzheimer’s disease, as candidate hub gene is interesting
because genes implicated in Alzheimer’s have been reported
to affect cholesterol or lipoprotein function and have also
been implicated in atherosclerosis [35].

Concluding, this bioinformatic analysis of ApoE knock-
out mice revealed critical altered cellular mechanisms gov-
erning atherosclerosis and indicated important molecular
players that could be important targets for treatment of this
complex disease.
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