
Frontiers in Oncology | www.frontiersin.org

Edited by:
Aamir Ahmad,

University of Alabama at Birmingham,
United States

Reviewed by:
Chethan Ashokkumar,

University of Pittsburgh, United States
Manish Tripathi,

The University of Texas Rio Grande
Valley, United States

*Correspondence:
Nagaraj Nagathihalli

nnagathihalli@med.miami.edu

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 21 April 2022
Accepted: 12 May 2022
Published: 21 June 2022

Citation:
Mehra S, Singh S and Nagathihalli N

(2022) Emerging Role of CREB
in Epithelial to Mesenchymal

Plasticity of Pancreatic Cancer.
Front. Oncol. 12:925687.

doi: 10.3389/fonc.2022.925687

REVIEW
published: 21 June 2022

doi: 10.3389/fonc.2022.925687
Emerging Role of CREB in Epithelial
to Mesenchymal Plasticity of
Pancreatic Cancer
Siddharth Mehra1, Samara Singh1 and Nagaraj Nagathihalli 1,2*

1 Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,
2 Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid malignancy with a high
rate of metastasis and therapeutic resistance as its major hallmarks. Although a defining
mutational event in pancreatic cancer initiation is the presence of oncogenic KRAS, more
advanced PDAC lesions accumulate additional genomic alterations, including loss of
tumor suppressor gene TP53. Co-occurrence of mutant KRAS and TP53 in PDAC
promotes hyperactivation of cancer cell signaling pathways driving epithelial to
mesenchymal plasticity (EMP). The cellular process of EMP influences the biological
behavior of cancer cells by increasing their migratory and invasive properties, thus
promoting metastasis. Our previous work has demonstrated that oncogenic KRAS-
mediated activation of cyclic AMP response element-binding protein 1 (CREB) is one of
the critical drivers of PDAC aggressiveness. The therapeutic approach of targeting this key
transcription factor attenuates tumor burden in genetically engineered mouse models
(GEMMs) of this disease. Herein, we discuss the significant role of CREB in perpetuating
disease aggressiveness and therapeutic resistance through the EMP process.
Furthermore, this review updates the therapeutic implications of targeting CREB,
highlighting the challenges and emerging approaches in PDAC.

Keywords: pancreatic cancer, CREB, RAS, epithelial to mesenchymal plasticity, MicroRNAs, metastasis,
therapeutic resistance
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid malignancy associated with significant
mortality and is projected to be the second leading cause of cancer-related deaths by 2030 (1, 2). Delayed
diagnosis, lack of effective treatments, and high metastatic propensity put this disease in the category of
cancers with an extremely poor 5-year survival. PDAC originates from normal pancreatic epithelium
transitioning to a neoplastic precursor state known as a pancreatic intraepithelial neoplasm (PanIN),
instigating the oncogenic transformation into a ductal adenocarcinoma (3). This gradual progression
towards invasive cancer is supported by a unique dependency on the mutatedKRAS oncogene, prevalent
in more than 90% of PDAC patients. Other than the presence of KRAS, inactivating mutation in TP53
also co-occur in more than 70% of PDAC patients. The underlying cooperativity between these two key
dominant oncogenic drivers promotes PDAC progression and contributes tometastatic dissemination of
this disease (4–7). Therefore, a major unmet need is to understand the cellular mechanisms responsible
for promoting disease aggressiveness and to further identify actionable therapeutic strategies to improve
the prognosis of this malignancy (8).
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The presence of dominant genomic alterations modulates several
oncogenic cellular signaling events in PDAC, which enables tumor
cells to exhibit a distinctive cellular plasticity, enabling them to
transform into an invasive and migratory mesenchymal phenotype,
in a process known as epithelial to mesenchymal transition (EMT)
and subsequent reversal from mesenchymal to epithelial transition
(MET). These two biological phenomena give rise to the concept of
epithelial-mesenchymal plasticity (EMP) (Figure 1). This cellular
transformation of EMP in cancer cells leads to the disruption of tissue
homeostasis and facilitates crosstalk between different stromal
components within the tumor microenvironment (TME),
contributing to intratumoral heterogeneity (9).

Cyclic AMP response element-binding protein 1 (CREB) is a
transcriptional coactivator that has been shown to be activated
downstream of Ras-dependent oncogenic signaling pathways (10,
11). Once activated through phosphorylation at Ser133, CREB binds
to its coactivator, the CREB-binding protein (CBP), enabling the
recruitment of additional transcriptional machinery elements
necessary to drive transcriptional programs of malignant
progression (12). The present review will focus on the various
mechanisms of CREB-dependent EMP, downstream of mutant
KRAS in PDAC and other cancer types. Additionally, the
therapeutic potential and challenges of targeting CREB in the
attenuation of cellular plasticity and overcoming drug resistance
will be examined. Overall, identifying novel molecular targets to
attenuate the cellular process of EMPmay improve clinical outcomes
in patients with PDAC.
EMP AND METASTASIS IN PDAC

Mortalities associated with PDAC do not occur due to the primary
tumor but are often found to be associated with the metastatic
dissemination of tumor cells, which begins early in most patients (2,
13). More than 90% of the patients diagnosed display local or
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distant metastatic disease. This rapid progression associated with
this malignancy warrants new studies on the key cellular processes
driving this metastatic behavior (8). Mechanistically, PDAC cells
exhibit the unique hallmark of EMT, displaying higher invasive
characteristics, cancer stem cell-like behavior, and greater resistance
to therapies (14). During this forward differentiation process, they
lose the expression of epithelial markers (including E cadherin,
occludin, claudin, and laminin) and gain mesenchymal phenotypic
plasticity with elevated expression of markers such as N-cadherin,
vimentin, and fibronectin (13, 15, 16). These changes are often
associated with the activation of EMT-driven transcriptional
programs led by transcription factors such as TWIST, SNAIL,
and ZEB, which coordinatively repress E-cadherin levels while
promoting expression of mesenchymal differentiation markers.
Once these invading cancer cells colonize the metastatic sites, they
undergo the reverse EMT process known as MET, which helps
them to adopt a high proliferation rate in the invaded TME (17–19).
Taken together, these two distinct but related cellular programs-
EMT, and the reversal mesenchymal-epithelial transitionMET, play
a significant role in PDAC tumorigenesis. EMP mediated cellular
plasticity allows PDAC tumor cells to detach andmigrate from their
site of origin (invasion) and gain access to lymphatic blood
vasculature and distant sites (extravasation), to form metastases
(20). Therefore, understanding the molecular regulation of these
steps can help to elucidate therapeutic options to restrict EMP-
mediated tumor metastases in PDAC.
RAS/TP53 AND EMP IN PDAC

In mutant KRAS/TP53-driven tumors, including PDAC, these
cellular plasticity programs and tumorigenesis are interconnected;
this was established using genetically engineered mouse models
(GEMMs) of PDAC, where tumor cells harboring these oncogenic
mutation displayed EMT like features at an early stage after tumor
FIGURE 1 | Hallmark features of malignant epithelial cells undergoing forward differentiation towards mesenchymal cell type (EMT) and the reversal mesenchymal to
epithelial transition (MET). These two biological processes give rise to the concept of epithelial to mesenchymal plasticity (EMP) involved in tumor progression and
metastasis. ECM; Extracellular matrix. Image created with BioRender.com (Agreement number TL23SM1HJO).
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initiation (13). Additionally, the presence of soluble ligands,
including growth factors mediating activation of receptor tyrosine
kinases (RTKs), also drives EMP programs in PDAC in a RAS-
dependent manner (21, 22). Shedding of EGFR ligands, including
amphiregulin from PDAC cells, results in an autocrine feedback
loop to further promote the KRAS hyperactivation (21–23). Once
activated, signaling networks downstream of KRAS, including
MEK/ERK and PI3K/AKT, can promote EMP. Targeted
inhibition of these downstream effector kinases has been shown
to reverse KRAS-mediated epithelial plasticity (24).
Transcriptomics-based gene set enrichment analysis (GSEA) of
highly metastatic cell lines derived from KPC (LSL-KrasG12D/+;
Trp53R273H/+;Pdx1Cre/+) GEMM of PDAC identified significant
enrichment of KRAS-dependent gene signatures compared to cell
clones with low metastatic potential (25). Several studies over recent
years have established the vast contribution of various molecular
regulators and downstream KRAS effectors to perpetuate PDAC
aggressiveness. Direct targeting of KRAS has largely been
unsuccessful; therefore, efforts have now shifted to targeting its
downstream effectors (26–28), providing opportunities for novel
therapeutic interventions in PDAC.
CREB ACTIVATION IN PDAC

Targeting individual KRAS-mediated factors may provide
therapeutic insights and understanding the cooperative
interactions between different transcriptional and signaling
networks remains an essential need to target the heterogenous
tumor cell population of KRAS-driven PDAC effectively. With
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long-standing efforts of our laboratory in deciphering the
molecular underpinnings of KRAS-mediated signaling pathways
in the pathogenesis of PDAC, our work has demonstrated that
oncogenic KRAS activates a master transcription regulator CREB
(11). We have uncovered its role as a critical driver of PDAC
aggressiveness, and its overexpression is associated with poor
prognosis in the patients. Activation of CREB is mediated
through MEK and AKT-dependent signaling pathways in KRAS
mutant PDAC (Figure 2) (11). Additional work from our lab by
Srinivasan et al. further illuminated GM-CSF-mediated CREB
activation as a critical driver of the development and progression
of smoking-associated PDAC tumorigenesis to promote disease
aggressiveness. Therapeutic targeting of CREB significantly
attenuated tumor burden in our PDAC disease model (29). Taken
together, it is vital to understand CREB’s function and its role in
EMP regulation in this disease.
CREB STRUCTURE AND FUNCTION

CREB1 was the first reported basic leucine zipper family
transcription factor whose activity was shown to be regulated
by auto-phosphorylation. This was found to be a shared feature
among its family members, including activating transcription
factor (ATF1) and cAMP response element modulator (CREM)
(30). CREB, once translated into protein, constitutes 341 amino
acids in length, forming a 37 kDa transcription factor (31). The
protein structure of CREB consists of an NH2-terminal
activation domain, COOH-terminal basic region/leucine zipper
domain (bZIP), DNA-binding, and dimerization domain (32).
FIGURE 2 | Schematic representation of multiple upstream signaling cascades involved in intracellular CREB activation. CREB, once phosphorylated at Ser 133,
translocates to the nucleus. Once translocated, CREB binds to CRE (cAMP response element) and provides transcriptional ability to activate multiple downstream
targets. Image created with BioRender.com (Agreement number ZW23SM1LR3).
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The primary structure (Figure 3) of the CREB has a centrally
located 60-amino-acid kinase-inducible domain (KID), which
comprises multiple phosphorylation sites. Hydrophobic
glutamine-rich domains (Q1 and Q2) are present on either
side of the KID. Q1 is a basal transcriptional activation
domain involved in the interaction of CREB with TATA-
binding protein to regulate gene expression. In contrast, the
other Q2 domain is responsible for interaction with RNA
polymerase II transcriptional initiation complex leading to
recognition and binding of CREB to its canonical CREB
responsible element (CRE) sequence, 5’- TGACGTCA-3’ (32,
33). Furthermore, the bZIP dimerization domain at the carboxy-
terminal is involved in its dimerization and is required for CREB
binding to DNA regulatory sequences (34).

Activation of CREB involves reversible phosphorylation at
numerous serine residues positioned at 129 (S129), 133 (S133),
and 142 (S142). This phosphorylation event is triggered via
multiple cellular effector kinases in response to growth factors
or extracellular stress stimuli (35, 36). Some of the critical
upstream activators involved in CREB phosphorylation, and its
activation include protein kinase A (PKA), protein kinase B
(PKB/AKT), the mitogen-activated kinase (MAPK), 90 kDa
ribosomal S6 kinase (RSK), AKT, protein kinase C (PKC),
calcium/calmodulin-dependent protein kinase II (CaMKII) (10,
35–37). The significance of phosphorylation at the position Ser
133 is extensively studied within the context of CREB activation
and mediating its downstream effects on target genes. In
response to intracellular signals, including cAMP, induces
recruitment of CBP, a transcriptional co-activator, and its
paralogue p300 (37), together this complex is active and
promotes nuclear gene expression via targeting various
promoter regions containing the highly conserved cAMP-
responsive element (CRE) TGACGTCA (38–40). Some CREB
target genes contain CRE and half-CRE elements (TGACG/
CGTCA), and binding is dependent on the TATA box in their
promoters. Out of the 4000 identified promoter regions with a
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predicted solid CREB binding affinity, only around 339 genes
contain complete CRE and TATA boxes, and less than 100 genes
have been validated as direct CREB targets in a cAMP-responsive
manner (41). This suggests the role of CREB as a transcriptional
regulator independent of the presence of CRE.

With the advancements of high throughput technologies in
the field of cancer signaling and therapeutics, compelling
scientific evidence demonstrates that CREB and CREB-
regulated gene targets play an essential role in promoting
tumor initiation, progression, and aggressiveness, implicating
CREB as a critical transcription factor with proto-oncogene
characteristics across multiple cancer types (42–47). In
addition the role of CREB in the regulating protein-coding
genes involved in tumorigenesis, several genomic-wide studies
have also identified CREB-dependent regulation of non-coding
genes (microRNAs), specifically within the context of EMP
mediated tumor growth and aggressiveness.
CREB-MICRORNA(MIRNAs) and EMP

The cellular process of EMP during carcinogenesis is regulated
by activating multiple transcription factors, including TWIST,
SNAIL, and ZEB1, which are involved in modulating the
expression of several cell adhesion and tight junction proteins
(48). Studies highlighting the direct involvement of CREB in
regulating the expression of genes involved in epithelial cell
plasticity are limited. However, it still plays a pivotal role in
regulating an EMP program by interacting with multiple
microRNAs (miRNAs). miRNAs are small non-coding RNAs
constituted of 18-22 nucleotides and are involved in regulating
gene expression by binding to the 3’UTR of their target mRNA
transcript (49–51). Mounting scientific evidence recently
suggests that CREB transcriptionally regulates the expression
of multiple miRNAs; additionally, CREB expression itself can
also be modulated by miRNAs, thus forming a feedback loop.
FIGURE 3 | The primary structure of CREB consists of an N terminal containing an activation domain and a smaller C terminal with a basic region/leucine zipper
(bZIP) DNA-binding and dimerization domain. CREB also contains kinase inducible domain (KID) and hydrophobic glutamate-rich domains (Q1 and Q2). A critical
event involving CREB activation is the phosphorylation at Ser 133 in KID by multiple upstream cellular effector kinases. CREB, once activated, acts as a master
transcriptional regulator of multiple downstream cellular targets. Image created with BioRender.com (Agreement number NZ23SM1ZAY).
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The CREB-miRNA axis has been found to play a crucial role in
influencing the tumorigenic potential of cancer cells as well as in
EMP-mediated metastasis. Within the context of PDAC, Zhang
et al. demonstrated that intracellular activation of zinc-dependent
transcription factor (ZIP-4) promotes CREB activation, which
upregulates transcription of miRNA-373 to influence PDAC
tumor growth both in vitro and in vivo (52). Additionally, in
bladder cancer, CREB regulation by miRNA-433 alters the EMT
potential of tumor cells by targeting the c-Met/AKT/GSK-3b/
SNAIL signaling pathway (53). The strong association of the
CREB transcription factor promoting miRNAs in the
development and progression of gastric cancer metastasis was
reported by Liu et al., where overexpression of CREB was
associated with the loss of the tumor-suppressive mir-520b/
GATA6 signaling axis, thereby promoting migration and
metastasis of gastric cancer cells (54). Additionally, in a recent
study describing the regulation of gene expression by profiling
miRNAs expression and transcription factors CREB emerged as a
master regulator in multiple cancer types (55). Given the critical role
of the CREB-miRNA network in influencing tumor progression by
inducing transcriptional and post-transcriptional changes through
multiple cellular mechanisms. It becomes imperative to
comprehensively understand and utilize regulatory network
information involving CREB-miRNA to design novel therapeutic
strategies across several human malignancies.
THERAPEUTIC TARGETING OF CREB
WITH POSSIBLE IMPLICATIONS IN EMP

Given the critical role of CREB as a proto-oncogene involved in
tumor initiation, progression, and metastasis, therapeutic
targeting of this key transcription factor has achieved success
in preclinical studies of PDAC (29). The recent findings by Kim
et al. describe that activation of CREB downstream to KRAS
signaling led to physical interaction with oncogenic mutant p53
(56). This interaction, in turn, activated multiple pro-tumor
transcriptional programs, including FOXA1, promoting PDAC
metastasis via the activation of the downstream WNT/b-catenin
signaling axis (56). Additionally, pharmacologic inhibition using
a CREB inhibitor (666–15) significantly attenuated PDAC
metastasis in vivo (56), highlighting the essential role of CREB
in the pathogenesis of this disease

Additional studies have established the involvement of the
Wnt/b-Catenin signaling pathway as a major culprit of
pancreatic tumorigenesis and therapeutic resistance. Wnt
ligands act through autocrine or paracrine manners to bind to
cognate receptors, thereby initiating a phosphorylation cascade.
This permits dissociation of b-catenin degradation complex,
allowing for translocation of b-catenin across the nuclear
membrane (57, 58). Once inside the nucleus, b-catenin further
regulates the expression of target genes, including the cAMP
response element-binding protein (CBP, CREB binding protein).
Similarly, Arensman et al. demonstrated that the small molecule
ICG-001 binds cAMP-responsive element-binding (CREB)-
Frontiers in Oncology | www.frontiersin.org 5
binding protein (CBP) to disrupt its interaction with b-catenin
and inhibit CBP function as a coactivator of Wnt/b-catenin–
mediated transcription. Treatment with this inhibitor
significantly improved overall survival in an in-vivo orthotopic
xenograft model of PDAC, further establishing that disruption of
CBP activity impacts PDAC tumor burden (59).

EMP in PDAC is mediated throughmultiple signaling pathways,
among which TGF-b signaling has been shown to be the most
prominent cellular pathway (60, 61). Previous studies have shown
the correlation of TGF-b overexpression with poor prognosis in
PDAC patients and directly associated with promoting tumor cell
proliferation and invasion (62). Although it is currently unclear how
CREB signaling regulates EMP in PDAC, previous studies have
suggested that CREB signaling influences TGF-b signaling in
pancreatic cancer cells and fibroblasts. Along with E1A binding
protein, EP300, CREB can influence the EMP by regulating the E-
cadherin expression (63). There are studies that established the
association of CREB activity as an essential driver of tumor
aggressiveness; however, there is a lack of molecular and cellular
evidence exploring the regulation and activation of CREB as well as
its role in influencing the EMP transcriptional program, warranting
future investigations of these mechanisms in PDAC. Therefore,
there are many remaining questions about the mechanisms through
which CREB functions, and elucidation of this critical
transcriptional regulator may have significant implications for the
success of targeting strategies.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The prognosis of patients with pancreatic cancer has not improved
notably despite considerable research efforts. The complex interplay
of signaling pathways driving EMP programs promoting
therapeutic resistance and local and distal recurrence presents a
significant obstacle to the current treatment regimen for this disease.
Therefore, identifying new candidate molecules, such as CREB,
responsible for these aberrant cellular processes, is critical for
targeted therapies against the tumor heterogeneity in PDAC.
Future investigations using in vivo manipulation of CREB
expression in PDAC to better recapitulate the spontaneity and
heterogeneity of human tumors may provide more robust scientific
evidence of its role in regulating EMP, metastasis, and therapeutic
resistance in PDAC. Importantly, understanding how transcription
factors regulate EMP is still an area of intense study with emerging
therapeutically relevant insights.
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