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A B S T R A C T   

The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells. It is critical in maintaining 
vascular health and when damaged contributes to many diseases. Its fragility makes studying the eGlx technically 
challenging. The current reference standard for eGlx visualisation, by electron microscopy using glutaraldehyde/ 
Alcian blue perfusion fixation, has not been previously reported in dogs. Established techniques were applied to 
achieve visualisation of the eGlx in the microvasculature of reproductive tissue in five healthy dogs undergoing 
elective neutering. Uterine and testicular artery samples underwent perfusion fixation, in the presence of Alcian 
blue, prior to transmission electron microscopy imaging. Image processing software was used to determine eGlx 
depth. EGlx was visualised in the arteries of two dogs, one testicular and one uterine, with median (range) eGlx 
depths of 68.2 nm (32.1–122.9 nm) and 47.6 nm (26.1–129.4 nm) respectively. Study of the eGlx is technically 
challenging, particularly its direct visualisation in clinical samples. Further research is needed to develop more 
clinically applicable techniques to measure eGlx health.   

The endothelial glycocalyx (eGlx) is a gel-like matrix composed of 
proteins and glycosaminoglycans (GAGs; Hegermann et al., 2016; Ush-
iyama et al., 2016) covering the luminal surface of vascular endothelial 
cells. The eGlx has critical functions including regulation of vascular 
permeability (Ushiyama et al., 2016) and resistance of spontaneous 
coagulation (Broekhuizen et al., 2009). It is critical in maintaining 
vascular health (Alphonsus and Rodseth, 2014), and eGlx dysfunction is 
implicated in a plethora of disease processes in different species (Ueno 
et al., 2004; Salmon et al., 2012; Kolářová et al., 2014; Lawrence-Mills 
et al., 2022, In Press). Moreover, the eGlx offers an important thera-
peutic target (Broekhuizen et al., 2009). 

The main components of the eGlx are proteoglycans and glycopro-
teins, comprising various core proteins and GAG side chains, free GAGs, 
such as hyaluronan, and soluble plasma proteins (Reitsma et al., 2007). 
The fragility of the eGlx makes visualisation and monitoring technically 
challenging (Reitsma et al., 2007; Chevalier et al., 2017). The reference 
standard technique for eGlx visualisation uses perfusion of cations such 
as Alcian blue (Hegermann et al., 2016) that bind negatively charged 
sulfated GAGs in the eGlx (Curran et al., 1965) to enable direct visual-
isation using transmission electron microscopy (TEM). Visualisation of 

the eGlx in dogs using this reference standard is lacking in published 
literature and yet is essential for advancing research in this field. The 
aim of this project was to visualise the eGlx in healthy dogs using Alcian 
blue perfusion. 

Testicular and uterine tissue was prospectively collected during 
elective neutering of client-owned dogs at Langford Vets, University of 
Bristol. Health status was confirmed via a detailed history and physical 
examination. Informed owner consent was obtained. The study was 
approved by the University of Bristol Animal Welfare and Ethical Re-
view Body (Approval number, VIN/16/047; Approval date, 24 
November 2016). The anaesthetic protocol used is outlined in the Sup-
plementary material. The eGlx visualisation technique was based on a 
methodology utilised in mice (Oltean et al., 2015) and rats (Desideri 
et al., 2018). The respective uterine or testicular artery was cannulated 
and flushed with compound sodium lactate at a standardised pressure of 
100 mmHg within 2 min of clamping for a minimum of 25 s. Tissues 
were then flushed with glucose-free mammalian Ringer-Locke’s solution 
(see Supplementary material) at a continuous pressure of 100 mmHg for 
a minimum of 25 s or until visual confirmation of the removal of plasma 
proteins and red blood cells (Fig. 1), before perfusion with Alcian blue 
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fixative (0.1 % Alcian blue and 1 % glutaraldehyde in mammalian 
Ringer-Locke’s solution) using a purpose-built perfusion kit (Fig. 2). 
Tissues were sectioned into 1 mm cubes and stored in fixative solution 
(0.1 % Alcian blue and 2.5 % glutaraldehyde in 0.1 M sodium cacody-
late) at 4 ◦C until TEM processing. Samples underwent standard pro-
cessing for TEM (see Supplementary material). Six TEM images per dog 
were analysed using image processing software (FIJI1), with a minimum 
of 10 eGlx measurements obtained per image at random locations along 
the endothelium (see Supplementary material). The median (range) 
eGlx depth was determined for each dog. 

Testicular tissue was collected from four dogs and uterine tissue from 
one. Median age was 8 months (range, 7–24 months). Breeds included 
two Yorkshire terriers, one Cocker spaniel, and two Crossbreed dogs. 
The eGlx was successfully visualised in two dogs (Fig. 3), one male and 
one female, both Yorkshire terriers. Successful visualisation was ach-
ieved in the last two samples collected. The median (range) eGlx depth 
in testicular and uterine arteries was 68.2 nm (32.1–122.9 nm) and 

47.6 nm (26.1–129.4 nm), respectively. 
This study achieved eGlx visualisation, using the reference standard 

method of electron microscopy following Alcian blue perfusion, for the 
first time in dogs. The technical difficulties of direct eGlx visualisation 
are apparent with eGlx identified in only two of the five samples 
collected. Successful visualisation in the latter samples, suggested a 
degree of improvement with technique over time. This learning element 
should be considered in future research. Few studies in people and an-
imal models have cited a percentage of successful visualisation; how-
ever, the difficulty in optimising conditions for Alcian blue perfusion is 
recognised (Chevalier et al., 2017; Mukai et al., 2020). Limitations of 
this technique include difficulties in effective flushing of plasma proteins 
and cellular debris, which may contribute to inadequate fixation and 
staining. Fig. 3 demonstrates incomplete removal of red blood cells. 
Further, in this study there was an unavoidable time lag between sample 
collection and flushing, although this was minimised as much as prac-
tically possible, there remains potential for plasma proteins to have 
degraded the eGlx (Jacob et al., 2007; Ebong et al., 2011). 

The eGlx depths determined in the present study are similar to 
measurements obtained in mice (30–80 nm; Mukai et al., 2020) and rats 
(40–60 nm; Desideri et al., 2018) using Alcian blue perfusion. However, 

Fig. 1. These images depict the process of perfusing a uterine artery sample prior to processing for TEM. A) Uterine horn with uterine artery labelled. B) Following 
perfusion with glucose-free mammalian Ringer-Locke’s solution to remove plasma proteins and red blood cells. C) After perfusion with Alcian blue fixative solution. 
OV, ovary; UA, uterine artery; UH, uterine horn. 

Fig. 2. Front and side views of the equipment 
used to achieve Alcian blue perfusion and fix-
ation for endothelial glycocalyx visualisation. 
Two 50 ml Falcon tube reservoirs were used as 
Alcian blue storage chambers (one flush, one 
fixative). These were attached via taps to a Y 
connector and a catheter. Controlled perfusion 
pressure was applied via an air pressure reser-
voir, the positive pressure chamber comprising 
a 500 ml plastic bottle maintained at 
100 mmHg by a sphygmomanometer bulb. The 
reservoir taps allowed selection of either flush 
or fix reservoir via the Alcian blue perfusion 
pipes to the catheter.   

1 See: Image J Docs Downloads. https://imagej.net/Downloads (Accessed 25 
May, 2022). 
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there is reported variability in eGlx thickness (Hegermann et al., 2016) 
influenced by sample handling, fixation, and processing (Reitsma et al., 
2007; Kubaski et al., 2016). The heterogeneity of the eGlx is another 
challenging factor with unique differences reported across different 
vascular beds, organs, and species (Schulte and Spicer, 1983; Fernán-
dez-Sarmiento et al., 2020). Human studies have also identified 
sex-linked differences in eGlx depth (Brands et al., 2020). Further 
studies, including greater numbers of dogs, are needed to understand the 
influence of breed, sex, and neuter status on eGlx depth. For this 
multitude of reasons, it is difficult to directly compare eGlx measure-
ments between studies (Hegermann et al., 2016). 

The challenges of direct visualisation has led to the development of 
less invasive, indirect methods of eGlx evaluation (Nieuwdorp et al., 
2008; Constantinescu et al., 2011) such as measurement of circulating 
eGlx components measured in humans including syndecans, hyaluronan 
and chondroitin sulphate (Padberg et al., 2014). Their use has been 
reported in naturally occurring diseases in dogs (Lawrence-Mills et al., 
2022, In Press, Shaw et al., 2021). Other indirect methods of eGlx 
measurement include sidestream dark field imaging (Martens et al., 
2013), where eGlx depth is inferred. This technique has been success-
fully implemented in humans (Pouska et al., 2018), cats (Yozova et al., 
2021), dogs (Londoño et al., 2018) and horses (Mansour et al., 2021). 

This study is the first to visualise the eGlx in dogs using the reference 
standard technique of Alcian blue perfusion. The specific challenges 
associated with direct eGlx visualisation in clinical samples are high-
lighted. Future studies should explore indirect measurements of eGlx 
health with direct visualisation measurements. Further research is 
needed to investigate the potential relationship between eGlx health and 
disease in veterinary species. 
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Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.tvjl.2022.105844. 

Fig. 3. Transmission electron microscopy images of dog endothelial glycocalyx. A) Lower and B) Higher power images of dog uterine artery (NB: different sections 
are shown). C) Higher power image of dog testicular artery. EC, endothelial cell; eGlx, endothelial glycocalyx; RBC, red blood cell; VL, vessel lumen. 
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