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Abstract

Tacrolimus (FK506) is an immunosuppressive drug that binds to the immunophilin FKBPB12. The FK506-FKBP12 complex
associates with calcineurin and inhibits its phosphatase activity, resulting in inhibition of nuclear translocation of nuclear
factor of activated T-cells (NFAT). There is increasing data supporting a critical role of NFAT in mediating angiogenic
responses stimulated by both vascular endothelial growth factor (VEGF) and a novel angiogenesis factor, secreted frizzled-
related protein 2 (SFRP2). Since both VEGF and SFRP2 are expressed in breast carcinomas, we hypothesized that tacrolimus
would inhibit breast carcinoma growth. Using IHC (IHC) with antibodies to FKBP12 on breast carcinomas we found that
FKBP12 localizes to breast tumor vasculature. Treatment of MMTV-neu transgenic mice with tacrolimus (3 mg/kg i.p. daily)
(n = 19) resulted in a 73% reduction in the growth rate for tacrolimus treated mice compared to control (n = 15), p = 0.003;
which was associated with an 82% reduction in tumor microvascular density (p,0.001) by IHC. Tacrolimus (1 mM) inhibited
SFRP2 induced endothelial tube formation by 71% (p = 0.005) and inhibited VEGF induced endothelial tube formation by
67% (p = 0.004). To show that NFATc3 is required for SFRP2 stimulated angiogenesis, NFATc3 was silenced with shRNA in
endothelial cells. Sham transfected cells responded to SFRP2 stimulation in a tube formation assay with an increase in the
number of branch points (p,0.003), however, cells transfected with shRNA to NFATc3 showed no increase in tube
formation in response to SFRP2. This demonstrates that NFATc3 is required for SFRP2 induced tube formation, and
tacrolimus inhibits angiogenesis in vitro and breast carcinoma growth in vivo. This provides a rationale for examining the
therapeutic potential of tacrolimus at inhibiting breast carcinoma growth in humans.
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Introduction

Tumor angiogenesis is regulated by multiple proangiogenic

factors, of which the most widely studied is vascular endothelial

growth factor (VEGF). One of the pathways through which VEGF

stimulates angiogenesis is through activation of calcineurin/

nuclear factor of activated T-cells (NFAT) signaling [1–3]. Recent

work has identified a novel angiogenesis factor, secreted frizzled-

related protein 2 (SFRP2), which is expressed in the vasculature of

a wide variety of tumors including human breast carcinoma [4,5].

SFRP2 stimulates angiogenesis in the mouse Matrigel plug assay,

induces endothelial cell migration and tube formation in vitro, and

protects against hypoxia-induced apoptosis in endothelial cells [5].

SFRP2 belongs to a large family of secreted frizzle-related

proteins (SFRPs) which are related to the Wnt signaling cascade.

Wnt proteins have been grouped into two classes – canonical and

noncanonical – on the basis of their activity in cell lines or in vivo

assays. The core of the canonical Wnt pathway is the stability of

beta catenin [6]. SFRPs have been regarded as inhibitors of the

canonical Wnt-beta catenin pathway [6], while recent studies have

shown that SFRP2 can increase nuclear beta catenin levels [7–10].

In contrast we previously found that treatment of endothelial cells

with SFRP2 (at angiogenic doses) resulted in no change in nuclear

beta catenin levels in endothelial cells [5], suggesting that SFRP2

does not stimulate angiogenesis through inhibition or activation of

the Wnt/beta catenin pathway.

Noncanonical Wnts activate other signaling pathways, such as

the Wnt/Ca2+ pathway [11]. The Wnt/Ca2+ pathway is a beta

catenin-independent pathway for which signaling is mediated

through transient increases in cytoplasmic free calcium which

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20412



activates the phosphatase calcineurin. Activated calcineurin

dephosphorylates NFAT, which then translocates to from the

cytoplasm to the nucleus [12]. NFAT is a multigene family

containing five members: NFAT (NFATc1-c5). Except for

NFAT5, which is activated in response to osmotic stress [13], all

NFAT family members are regulated by the calcium-activated

protein phosphatase calcineurin and exist as transcriptionally

inactive, cytosolic phosphoproteins [12]. There is increasing data

supporting a critical role of NFAT in mediating angiogenic

responses [1–3]. Importantly, NFAT activation was identified as a

critical component of VEGF-induced angiogenesis and linked to

the induction of cyclooxygenase-2 [14], which is also a critical

player in angiogenesis. Our data suggested that NFAT may also

mediate SFRP2 induced angiogenesis, as treatment of endothelial

cells with SFRP2 resulted in an increase in nuclear NFATc3 [5].

In this study we further elucidate the role of both beta catenin

and NFATc3 in SFRP2 mediated angiogenesis through RNA

silencing, which confirms that NFATc3 is required for SFRP2

induced angiogenesis, while beta catenin is not. Thus, targeting

NFAT with a calcineurin inhibitor may be a therapeutic strategy

to inhibit both VEGF and SFRP2 induced angiogenesis.

Tacrolimus (FK506) is an immunosuppressive drug that binds to

the immunophlin FKBPB12, and the FK506-FKBP12 complex

associates with calcineurin and inhibits its phosphatase activity,

resulting in inhibition of nuclear translocation of NFAT [1].

Tacrolimus is FDA approved for the prevention of organ

transplant rejection and acts by inhibiting NFAT in lymphocytes

[15]. Since FKBP12 has been reported to be expressed in benign

and malignant vascular endothelium [16], we hypothesize that

FKBP12 is expressed in breast tumor endothelium, allowing

tacrolimus to inhibit breast tumor angiogenesis and tumor growth.

Materials and Methods

Treatment of MMTV-neu transgenic mice with tacrolimus
in vivo

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of North Carolina at Chapel Hill,

IACUC ID# 09-134.0. We had previously shown that treatment

with tacrolimus 3 mg/kg/day intraperitoneal (i.p.) was effective at

suppressing the growth of SVR angiosarcoma tumor in nude mice

as compared with control by 46% without signs of toxicity [5].

Using an FDA Oncology Calculator, we calculated this dose to be

equivalent to the human dose of 0.24 mg/kg/day [5], which is the

dose that is used to prevent human liver transplant rejection. To

evaluate whether tacrolimus would inhibit the growth rate of

breast tumors in vivo, we studied the efficacy of tacrolimus on the

growth of MMTV-neu tumors in transgenic mice. Female FVB/

N-Tg(MMTVneu) 202Mul/J mice were purchased from the

Jackson Laboratory (Bar Harbor, ME, Stock Number 002376).

The experimental female mice were bred in order to speed the

onset of tumorigenesis and were housed and inspected for tumor

development twice weekly. All animal work was conducted in

UNC DLAM animal facilities under an approved IACUC

protocol. Once tumors were detected by palpation or visual

inspection, tumor volume was documented using calipers and

tumor volume was calculated using the following formula: (shortest

diameter)26(longest diameter)60.52. When tumors reached 100–

300 mm3, mice were treated with either tacrolimus 3 mg/kg/day

i.p. in 20% Intralipid (Baxter, Deerfield, IL) or control (which

consisted of no treatment n = 9 or 20% Intralipid i.p. n = 6). All

tumors that were present from day 1 were measured. Mice used in

this study developed either one or two mammary tumors. Tumor

growth (assessed as percent change in tumor volume over initial

tumor volume) was calculated using the formula: [(final volu-

me2initial volume)/initial volume6100].

Antibodies
The following antibodies were purchased from Santa Cruz

Biotechnology, Inc., Santa Cruz, CA: FKBP12 (sc-28814),

NFTAc3 (sc- 8405), SFRP2 (sc-13940), and b-catenin (sc-59893).

The loading control, TATA binding protein TBP antibody

(ab818), was purchased from Abcam, Inc. (Cambridge, MA).

CD31 primary antibody was purchased from NeoMarkers

(Fremont, CA). Secondary antibodies were purchased from GE

Healthcare Bio-Sciences Corp. (Piscataway, NJ): ECL anti-mouse

IgG, HRP-linked whole antibody (NA931) and ECL anti-rabbit

IgG, HRP-linked whole antibody (NA934).

Immunohistochemistry
CD31 staining in mouse breast tumors. To show whether

the reduced growth rate of tacrolimus treated tumors correlates

with a decrease in tumor angiogenesis, we sectioned 4 control

tumors from mice treated with 20% intralipid and 4 tumors from

mice treated with tacrolimus. Breast tumors were sectioned at

5 mM onto Superfrost plus slides. Slides were dewaxed by

immersing in xylene three times for 5 minutes each. Slides were

hydrated in 100% ETOH, 95% ETOH, 70% ETOH, and 50%

ETOH for 3 minutes each. Slides were quenched in 3% H2O2

(DakoCytomation, LSAB2 HRP Kit, Carpinteria, CA) for

10 minutes, and then PBS for 3 minutes. Citra buffer

(BioGenex, San Ramon, CA) was warmed in a 60uC oven and

slides were immersed in citra buffer at 100uC in a rice steamer for

30 minutes. Slides were rinsed in PBS for 3 minutes and then

marked with a PAP pen. Goat serum (Pierce Biotechnology,

Rockford, IL) block (3 mg/ml) was applied for 10 minutes at room

temperature. Slides were rinsed twice in PBS for 3 minutes then

CD31 primary antibody (250 ml at 1:100 dilution) was applied and

slides were placed in a covered box in a 4uC cold room overnight.

Slides were then rinsed in PBS for 3 minutes, and 1–2 drops of

biotinylated secondary antibody (Ultravision Detection System,

LabVision Corp, Fremont, CA) was added to each slide for

20 minutes. Slides were rinsed twice in PBS for 3 minutes and 1–2

drops of streptavidin-HRP (Ultravision Detection System,

LabVision Corp, Fremont, CA) was applied for 20 minutes.

One-two drops of DAB complex (Ultravision Detection System,

LabVision Corp, Fremont, CA) was applied to each slide for

approximately 10 minutes. Slides were rinsed twice in distilled

water for 3 minutes each and counterstained with trypan blue

(Sigma, St Louis, MO) for 5 minutes. Slides were rinsed in PBS,

dehydrated through graded alcohol and xylene, and Cytoseal

XYL (Richard-Allan, Kalamazoo, MI) and cover slides were

applied. A negative control without primary antibody was

performed for all experiments. Slides were evaluated for the

presence of CD31 staining in tumor endothelium.Tumor

vascularity was quantified as described previously to identify the

number of microvessels/unit area (6200) [17–20]. The mean of

three fields judged to have the greatest numbers of microvessels

was used for comparison between control and tacrolimus treated

tumors.

FKBP12 staining in human breast tumors. Research

involving archival human samples was approved by the IRB at

the University of North Carolina at Chapel Hill on an IRB

approved protocol # 05-2442. A waiver for obtaining consent was

obtained because the research involved only existing human
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biological specimens. To evaluate whether the binding protein of

tacrolimus, FKBP12, is present in the vasculature of human breast

tumors, we stained paraffin-embedded human breast tumors and

mouse MMTV-neu breast carcinomas (on an IACUC approved

protocol) with a polyclonal antibody to FKBP12. IHC was

performed as described above, accept the primary antibody was

FKBP12 antibody (100 ml–200 ml at 1:200 dilution). A negative

control without primary antibody was performed for all

experiments. Slides were evaluated for the presence of FKBP12

staining in tumor endothelium.

Cell culture
2H11 mouse endothelial cells (American Type Culture

Collection ATCCH, Manassas, VA) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) with 4.5 g/L glucose (Sigma-

Aldrich, St. Louis, MO) with 10% fetal bovine serum (FBS)

(Sigma-Aldrich, St. Louis, MO). MMTV-neu breast tumor cells

[21] (a gift from Dr. John Serody, UNC-Chapel Hill) were

cultured in GIBCOH RPMI 1640 media (Invitrogen, Carlsbad,

CA) 20%FBS, 2 mM L-glutamine, 12 mM, HEPES, 0.1 mM

NEAA, 1 mM Sodium pyruvate, 1% Pen Strep, 50 uM 2-ME,

0.2 U/ml Regular insulin.

siRNA to beta catenin in endothelial cells
To prove that SFRP2 does not stimulate tube formation via the

beta catenin pathway, we silenced beta catenin in endothelial cells

and evaluated their ability to respond to SFRP2 treatment in a

tube formation assay. 2H11 mouse endothelial cells were

transfected with siRNA to beta catenin and control nonsilencing

siRNA. The siRNA for beta catenin, which is a pool of 4 target-

specific 21 nt siRNAs (beta catenin siRNA (m): sc-29210, Santa

Cruz Biotechnology, Santa Cruz, CA), and nonsilencing siRNA

(sc-36869, Santa Cruz Biotechnology) were used in 100 pmol/ml

(100 nM) concentration. The 2H11 cells were maintained in

DMEM with 10% FBS and were transfected with siRNA to beta

catenin or the control siRNA using LipofectamineTM RNAiMAX

transfection reagent (Invitrogen, Carlsbad, CA) according to the

manufacturer’s protocol. The transfection efficiency was deter-

mined using siGLO Green Transfection indicator (Dharmacon,

Inc. cat# D0016300105) according to the manufacturer’s

instruction.

To verify the knockdown of beta catenin, cells were harvested

72 hrs post transfection for protein analysis by Western blot.

Nuclear extracts using NE-PER nuclear and cytoplasmic extrac-

tion reagent were prepared as described in the manufacturer’s

manual (Pierce Biotechnology, Rockford, IL). Nuclear fractions

were confirmed on Western blot using the loading control, TATA

binding protein TBP antibodies, which is a nuclear marker.

Protein concentration was measured using Bio-Rad Protein Assay

at OD595 (Bio-Rad Laboratories). Equal amounts of protein

(20 mg) were loaded onto SDS-PAGE gels. Proteins were

transferred to Polyvinylidene Difluoride membrane (PVDF), and

Western blotting was carried out using a primary antibody to beta

catenin, with horseradish peroxidase (HRP)-conjugated IgG as the

secondary antibody. The ECL Advance substrate was used for

visualization (GE Healthcare Bio-Sciences).

shRNA to NFATc3 in endothelial cells
To evaluate the functional results of silencing of NFATc3 in

SFRP2 stimulated endothelial cell tube formation, we used

shRNAmir to NFATc3 (Open Biosystems/Thermo Scientific).

The sh-RNA plasmids were supplied in E.coli cells from Open

Biosystems. They were grown overnight at 37uC with shaking in

100 ug/ml ampicillin/LB broth. The culture was spun down and

plasmids were extracted to be used in transfecting the 2H11 cells.

Three different shRNAmir constructs to NFATc3 from Open

Biosystems were tested: a) RMM4431-99213393 Mouse GIPZ

lentiviral shRNAmir individual clone V2LMM_110117, b)

RMM4431-98727337 Mouse GIPZ lentiviral shRNAmir individ-

ual clone V2LMM_110113 (resulting in the best down regulation

of NFATc3), c) RMM4431-98750613 Mouse GIPZ lentiviral

shRNAmir individual clone V2LMM_110112, RHS4430-

98525659 Human GIPZ lentiviral shRNAmir individual clone

V2LHS_161372. Control shRNAmir constructs were GADPH-

pGIPZ and non silencing- pGIPZ construct purchased from Open

Biosystems.

In order to establish stable cell lines expressing the shRNA to

NFATc3 we first generated a puromycin kill curve for the 2H11

endothelial cells. The minimum concentration of puromycin

required to kill non-transfected 2H11 cells was 4 ug/ml. The

2H11 cells were then seeded in 6 well plates 24 hours prior to

transfection using LipofectamineTM LTX Transfection reagent

(Invitrogen) according to the manufacturer’s protocol. Forty-eight

hours post transduction the DMEM 10% FBS media was replaced

with full growth selective media (containing 4 ug/ml Puromycin)

(Mediatech, Inc., Manassas, VA) into the appropriate wells. The

selective media was changed every two-three days. After selection

the cells were kept in full growth media containing 2 ug/ml

puromycin. Western blot analysis on nuclear extracts using NE-

PER nuclear and cytoplasmic extraction reagent (Pierce Biotech-

nology) was done to evaluate the degree of NFATc3 silencing.

This indicated the best results for knock down of NFATc3 was

obtained with the RMM4431-98727337 Mouse GIPZ lentiviral

shRNAmir construct.

Figure 1. Tacrolimus inhibited the growth rate of MMTV-neu
transgenic mouse tumors. MMTV-neu transgenic mice were
treated with tacrolimus 3 mg/kg/day i.p., no treatment control,
20% intralipid i.p. control beginning when tumors became palpable,
and was continued for 21 days. Tumor volumes were measured on
day 7, 14 and 21, and the growth rate (percent change in tumor
volume per day) was compared between control (no treatment),
control (20% intralipid) and tacrolimus treated groups. There was no
statistically significant difference between control (untreated) and
control (20% intralipid) groups, and therefore the controls were
combined for analyses. At 21 days there was a 73% reduction in the
growth rate for tacrolimus treated mice compared to no treatment
(n = 19 tacrolimus treated, n = 15 control, *p = 0.003). Tacrolimus
treated mice were significantly different from control (no treatment,
p = 0.01, and control 20% intralipid, p = 0.01). There was no weight
loss or lethargy in the tacrolimus-treated mice or the 20% intralipid
treated mice.
doi:10.1371/journal.pone.0020412.g001
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Western blot analyses for NFATc3 in tacrolimus treated
endothelial cells

2H11 mouse endothelial cells were grown to 80–90%

confluence in DMEM with 10% FBS. The 2H11 cells were

serum starved in DMEM with 2% FBS overnight. The following

day the media was changed to DMEM with 5% FBS and

supplements. Control cells received 1.5% DMSO; SFRP2-treated

cells received mouse recombinant SFRP2 7 nM with DMSO

1.5%; and tacrolimus treated cells received tacrolimus (10 uM), in

1.5% DMSO with and without mouse recombinant SFRP2

(7 nM). Cells were incubated for one hour with the SFRP2/

tacrolimus treatment. Nuclear and cytoplasmic proteins were

extracted by using NE-PER nuclear and cytoplasmic extraction

reagent. For experiments extracting whole-cell lysates, the M-PER

Mammalian Protein Extract reagent (Pierce Biotechnology) was

used as described in the manufacturer’s manual. Western blot was

performed as described above.

Endothelial tube formation assay in vitro
A Matrigel tube formation assay was used to evaluate whether

silencing beta catenin or NFATC3 in endothelial cells augments de

novo or SFRP2 induced angiogenesis. ECMatrix (Chemicon,

Temecula, CA) was thawed, diluted, and solidified in a 96 well

plate according to the manufacturer’s instructions. 2H11 endo-

thelial cells, sham transfected 2H11 cells, siRNA beta catenin

transfected or shRNA NFATc3 transfected cells were kept in

appropriate media. 48 hrs post-transfection the media was

changed to DMEM with 2% FBS. 72 hrs post-transfection the

cells were seeded onto the matrix at 5,000 cells/well in 150 ml of

DMEM with 5% FBS and supplements and incubated with and

without mouse recombinant SFRP2 (R&D Systems, Inc.,

Minneapolis, MN) (7 nM) at 37uC, 5% CO2 for 6 hours. Wells

were photographed and tube formation was quantified by

counting the number of branch points.

To evaluate whether tacrolimus inhibits endothelial tube

formation in vitro, we evaluated the effect of tacrolimus on

SFRP2 and VEGF induced tube formation. ECMatrix was

thawed, diluted, and solidified in a 96 well plate. 2H11

endothelial cells were serum starved in DMEM with 2% FBS

overnight, and then seeded onto the matrix at 5,000 cells/well in

150 ml of DMEM with 5% FBS and supplements. Control cells

received 1.5% DMSO; SFRP2-treated cells received mouse

recombinant SFRP2 7 nM with DMSO 1.5%; and tacrolimus

treated cells received mouse recombinant SFRP2 7 nM with

tacrolimus (LC Laboratories, Manassas, VA) (10 uM, 1 uM, and

Figure 2. Tacrolimus reduces tumor vascularity. MMTVneu tumors from 4 control 20% intralipid mice and 4 tacrolimus treated mice were
resected and embedded in paraffin. Immunohistochemistry with antibody to factor VIII was performed as described in ‘‘Material and Methods’’.
Microvessel density was determined by counting the number of microvessels in 3 high-power fields at 2006. A, D) The mean number of microvessels
per high power field in control tumors was 104613. B, D) The mean number of microvessels per high power field in tacrolimus treated tumors was
2061 (p,0.001). This shows that tacrolimus reduces angiogenesis in vivo. C) Negative control human breast tumor without primary antibody shows
no staining.
doi:10.1371/journal.pone.0020412.g002
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0.1 uM in 1.5% DMSO). The plates were returned to 37uC, 5%

CO2 for 6 hours. Wells were photographed and tube formation

was quantified by counting the number of branch points. The

experiment was repeated using human recombinant VEGF

(60 ng/ml) (Cat# 293-VE/CF, R&D Systems, Minneapolis,

MN) in place of SFRP2.

Endothelial cell and breast tumor cell migration assay
The migration properties of tacrolimus on MMTV-neu breast

tumor cells and 2H11 endothelial cells were determined using a

scratch wound assay. MMTV-neu cells were seeded at a

concentration of 80,000 cells/well in 96 well-plates in a complete

media (RPMI-1640, 20%FBS, 2 mM L-glutamine, 12 mM

HEPES, 0.1 mM NEAA, 1 mM Sodium pyruvate, 1% Pen Strep,

50 uM 2-ME, 0.2 U/ml Regular insulin). After 24 hours, cells

were starved in RPMI with 1% FBS. 2H11 endothelial cells were

seeded at a concentration of 10,000 cells/well in a 96 well plate in

DMEM with 10%FBS and mouse recombinant SFRP2 (700 pM).

After 24 hours, 2H11 endothelial cells were starved in DMEM

with 2% FBS. For both cell lines, 20 hours into starvation a

scratch wound was made using a 1 mL pipette tip and the media

was changed to DMEM with 5% FBS. Cells were treated with

1.5% DMSO (control), or tacrolimus at a concentration of 10 uM,

1 uM, and 0.1 uM in 1.5% DMSO. The distance of the wound

was measured with an ocular micrometer at 0, 12, 18 and 24 hr

into treatment.

Statistical analyses
Statistical differences between treated and control were

calculated using a two-tailed student’s T-test, with a p#0.05

being significant. Results are expressed as means 6 standard error

of the mean (SEM).

Results

Tacrolimus inhibits breast tumor growth in vivo
To evaluate whether tacrolimus inhibits breast carcinoma

growth, we compared MMTV-neu transgenic mice treated with

tacrolimus in 20% intralipid (n = 19) at 3 mg/kg/day i.p. for 21

days to control mice that received no treatment (n = 9) or control

with 20% intralipid i.p. (n = 6). There was no statistically

significant difference in the growth rate between control with no

treatment (227651) and control with 20% intralipid (2796101,

p = 0.6), demonstrating that the control vehicle did not affect

tumor growth. Therefore the control groups were combined for

analyses. The mean growth rate (% change in tumor volume) after

21 days was 68625 in tacrolimus treated mice, compared to the

combined controls (n = 15) 248648, which is a reduction of 73%

(p = 0.003, Fig. 1). When tacrolimus is compared to the no

treatment controls the p = 0.01, and to the 20% intralipid controls

the p = 0.01. There were no signs of toxicity (i.e., diarrhea,

infection, lethargy, or weight loss) after treatment. This demon-

strates that tacrolimus inhibits the growth rate of breast carcinoma

in vivo.

Microvessel density is decreased in tacrolimus treated
tumors

To show whether decreased tumor growth in tacrolimus treated

mice correlates with a decrease in tumor angiogenesis, we

performed IHC on paraffin embedded tumors from control

(20% intralipid, n = 4) mice and tacrolimus treated mice (n = 4).

The number of microvessels per high power field for control

tumors was 104613, compared to tacrolimus tumors 2061,

p,0.001 (Fig. 2), indicating that tacrolimus decreased tumor

angiogenesis in vivo.

FKBP12, the binding partner of tacrolimus, is expressed
in human and mouse breast tumor endothelium by
immunohistochemistry

We evaluated the vascular staining of FKBP12 in paraffin

embedded human and mouse breast tumors using IHC with

antibodies to FKBP12, and found that FKBP12 localized to

human invasive ductal carcinomas in 8 of 11 tumors; and mouse

MMTV-neu breast tumor endothelium in 8 of 8 tumors (Figure

S1). Since the binding partner for tacrolimus is expressed in

Figure 3. Beta catenin was not required for SFRP2 induced
endothelial tube formation: 2H11 endothelial cells were
transfected with siRNA to beta catenin or sham transfected.
A) Western blot results of siRNA to beta catenin showed silencing of
beta catenin by 80%. The loading control was TATA binding protein TBP
antibodies (a nuclear marker). B) 2H11 endothelial cell tube formation
assay. Cells were plated in Matrigel as described in ‘‘Material and
Methods’’. After 6 hours the number of branch points were counted.
There was no significant decrease in de novo or SFRP2 (7 nm) induced
tube formation following the silencing of beta catenin. Full-length
blots/gels are presented in Figure S2A.
doi:10.1371/journal.pone.0020412.g003
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human breast tumor vasculature, there is the potential that

tacrolimus could bind to FKBP12 and inhibit angiogenesis in

human breast tumors.

Beta catenin is not required for SFRP2 induced
endothelial tube formation

To show whether beta catenin is involved in SFRP2-stimulated

angiogenesis, beta catenin was silenced in 2H11 endothelial cells

with siRNA and their ability to undergo tube formation was

compared to sham-transfected cells. Western blot analyses of

2H11 cells transfected with siRNA to beta catenin demonstrated

80% knockdown of beta catenin (Fig. 3A, Figure S2). Some studies

have shown that SFRP2 is an inhibitor of beta catenin [6]; if the

mechanism through which SFRP2 stimulated tube formation is

through inhibition of beta catenin signaling, then we would expect

that silencing beta catenin in endothelial cells would increase tube

formation. However, we found no difference in de novo tube

formation between sham transfected cells and siRNA beta catenin

transfected cells (Fig. 3B). Other studies have shown that SFRP2

can increase nuclear beta catenin levels [7–10]; if the mechanism

through which SFRP2 stimulated tube formation was through

activation of beta catenin signaling, then we would expect that

silencing beta catenin in endothelial cells would block SFRP2

induced tube formation. However, there was no difference in tube

formation between sham-transfected cells stimulated with SFRP2

Figure 5. Tacrolimus decreased SFRP2 induced nuclear NFATc3
in 2H11 endothelial cells. A) 2H11 cells were treated with control
(1.5% DMSO), mouse recombinant SFRP2 (7 nM)+1.5% DMSO; or SFRP2
7(nM)+tacrolimus 10 mM in 1.5% DMSO for 1 hour, and nuclear protein
lysates were collected and analyzed by Western blot analyses probing
for NFATc3 as described in ‘‘Material and Methods’’. The loading control
was TATA binding protein TBP antibodies (a nuclear marker). SFRP2
increased nuclear NFATc3 compared to control cells (p = 0.003). Full-
length blots/gels are presented in Figure S2C. B) The experiment was
repeated as above except that whole cell lysates rather than nuclear
lysates were extracted and analyzed by Western blot analyses probing
for NFATc3. The loading control was beta-tubulin. Tacrolimus did not
inhibit total NFATc3 protein. Taken together this shows that tacrolimus
inhibits SFRP2 induced NFATc3 nuclear translocation but not total
protein levels.
doi:10.1371/journal.pone.0020412.g005

Figure 4. NFATc3 was required for SFRP2 stimulated tube
formation. A) ShRNA to SFRP2 in 2H11 endothelial cells showed 69%
reduction in NFATc3 level by Western blot. The loading control was
TATA binding protein TBP antibodies (a nuclear marker). B) Sham
transfected 2H11 cells increased tube formation in response to SFRP2
(7 nM) (n = 3 for all groups, p,0.01), which was not seen in shRNA to
NFATc3 transfected cells. Full-length blots/gels are presented in
Supplemental Figure S2B. Pictures of sham transfected cells and shRNA
to NFATc3 transfected cells (both stimulated with SFRP2 (7 nM)) are in
Figure S3.
doi:10.1371/journal.pone.0020412.g004
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(7 nM) and siRNA beta catenin transfected cells stimulated with

SFRP2 (7 nM) [Fig. 3B]. This demonstrates that beta catenin is

not required for SFRP2 induced tube formation.

NFATc3 is required for SFRP2 induced endothelial tube
branching

We have reported that endothelial cells treated with SFRP2

have an increase in nuclear NFATc3, and inhibition of NFAT in

endothelial cells with the calcineurin inhibitor tacrolimus inhibits

SFRP2 stimulated tube formation [5]. To definitively show

whether NFATc3 is required for SFRP2 stimulated angiogenesis,

we established a stable 2H11 endothelial cell line with shRNA to

NFATc3, and Western blot analysis demonstrated that NFATc3

protein is decreased in shRNA-NFATc3 transfected cells by 69%

compared to sham-transfected controls (Fig. 4A, Supplemental

Fig. S2B). Cells were then seeded for a 6 hour tube formation

assay. Sham transfected cells responded to SFRP2 stimulation with

a statistically significant increase in the number of branch points

(p,0.01) (Fig. 4B, Figure S3A). However, 2H11 cells transfected

with shRNA to NFATc3 showed no increase in tube formation in

response to SFRP2 stimulation (Fig. 4B, Figure S3B). This shows

that NFATc3 is required for SFRP2 mediated endothelial tube

formation.

Tacrolimus inhibits SFRP2 activation of NFATc3 in
endothelial cells

To evaluate the role of tacrolimus on the non-canonical Wnt/

Ca++ pathway in SFRP2 induced angiogenesis, we compared

nuclear dephosphorylated NFAT protein levels in control, SFRP2-

treated endothelial cells, and SFRP2 and tacrolimus treated cells.

After one hour of treatment of 2H11 endothelial cells with mouse

recombinant SFRP2 (7 nM), nuclear NFATc3 was increased 2

fold (p = 0.003) (Fig. 5A). However, when tacrolimus (10 uM) was

added to SFRP2 (7 nM) treatment, there was no increase in

nuclear NFATc3 protein levels (Fig. 5A, Figure S2C). To evaluate

whether the reduction in nuclear NFAT induced by tacrolimus is

from nuclear translocation and not simply reduced expression of

NFAT, we evaluated the effect of tacrolimus treatment on

NFATc3 protein in whole cell lysates. There was no reduction

of NFATc3 with tacrolimus treatment (Figure 5B). This shows that

tacrolimus inhibits SFRP2 induced NFATc3 translocation in

endothelial cells without reducing total NFATc3 protein.

Tacrolimus inhibits SFRP2 and VEGF -Induced Endothelial
Cell Tube Formation

We previously showed that tacrolimus can inhibit SFRP2-

mediated tube formation in vitro [5]. In this study we explored

whether tacrolimus would also inhibit VEGF induced tube

formation, as VEGF has been reported to activate the calci-

neurin/NFAT pathway [1–3]. 2H11 endothelial cells were

stimulated with either SFRP2 or VEGF +/2 tacrolimus to

determine if tacrolimus inhibited tube formation stimulated by

both mitogens. Tacrolimus (1 mM) inhibited SFRP2 induced

2H11 tube formation by 71% (p = 0.005, Fig. 6A), and tube

formation was inhibited in a concentration dependent manner.

Tacrolimus (1 mM) also inhibited VEGF induced 2H11 tube

formation by 67% (p = 0.004, Fig. 6B). Tacrolimus was not

cytotoxic to 2H11 cells, as less than 5% of tacrolimus-treated cells

took up trypan blue dye (data not shown). This shows that

tacrolimus inhibits both SFRP2 and VEGF induced tube

formation and therefore could potentially block angiogenesis

stimulated by both mitogens.

Tacrolimus inhibits breast tumor and endothelial cell
migration

The migration properties of tacrolimus on 2H11 endothelial

cells and MMTV-neu breast carcinoma cells were evaluated using

a scratch wound assay. Tacrolimus (1 uM) inhibited the migration

of MMTV-neu cell migration at 24 hours by 45% (p = 0.04,

Fig. 7A), and inhibited the migration of SFRP2 stimulated 2H11

cells at 20 hours by 20% (P = 0.008, Fig. 7B). This shows that

tacrolimus has a direct effect on breast tumor cells in addition to its

antiangiogenic effect.

Discussion

This study provides further evidence for a novel pathway of

SFRP2 signaling in endothelial cells through activation of NFAT,

a pathway shared with other angiogenesis stimulators such as

Figure 6. Tacrolimus inhibited SFRP2 and VEGF stimulated endothelial tube formation in vitro. 2H11 endothelial cells were plated in
Matrigel as described in ‘‘Material and Methods’’. A) SFRP2 induced endothelial tube formation after 6 hours, which was inhibited by tacrolimus in a
concentration dependent manner. B) VEGF induced endothelial tube formation after 6 hours, which was inhibited by tacrolimus in a concentration
dependent manner.
doi:10.1371/journal.pone.0020412.g006
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VEGF. Although SFRPs have been regarded as inhibitors of the

canonical Wnt-beta catenin pathway [6], four recent studies have

shown that SFRP2 can act as a Wnt agonist rather than an antagonist.

SFRP2 has been found to increase nuclear beta catenin levels in: 1)

cardiomyocytes exposed to hypoxia and treated with mouse

recombinant SFRP2 [7], 2) MCF7 cells with stable transfectants of

SFRP2 [8], 3) mammary canine tumors with increased expression

of SFRP2 [9], and hypoxic adipose tissue derived stem cells [10].

In contrast, we previously found that there was no change in

nuclear beta catenin in endothelial cells stimulated with SFRP2 at

doses that induced angiogenesis in vitro, although we did see an

increase in nuclear beta catenin at a four-fold higher dose. In this

study we have now confirmed with siRNA silencing that beta

catenin is not required for SFRP2 induced endothelial tube

formation. We also previously found that NFATc3 is activated in

endothelial cells after SFRP2 treatment, and now confirm with

shRNA silencing that NFATc3 is required for SFRP2 induced

tube formation. This suggests that targeting NFAT with

calcineurin inhibitors is a potential therapeutic approach to inhibit

angiogenesis induced by both VEGF and SFRP2.

Several lines of evidence suggest that calcineurin inhibitors like

tacrolimus might have efficacy against tumor growth. Tacrolimus

has previously been shown to inhibit the growth of an NFAT

overexpressing mouse leukemia xenograft in vivo [22] and the SVR

angiosarcoma xenograft in vivo [5].Tacrolimus has not been tested

for its ability to inhibit breast cancer in humans, however in a large

series of patients receiving tacrolimus following liver transplanta-

tion the de novo incidence of breast cancer was found to be 1.9

times lower than matched controls from the SEER database [23].

This correlation has only been observed in specific patient

populations but in light of our study demonstrating that the

binding partner for tacrolimus, FKBP12, is expressed in the

vasculature of human breast tumors, and that tacrolimus inhibits

the growth rate of MMTV-neu transgenic breast carcinomas in

mice, there is good rationale for prospectively investigating the

clinical utility of tacrolimus in breast cancer treatment.

There are several calcineurin inhibitors that are FDA approved

for the prevention of organ transplant rejection, although only

tacrolimus and cyclosporine inhibit NFAT. Sirolimus (rapomycin)

and everolimus (RAD001, a derivative of rapomycin) have the

same intracellular target as tacrolimus, FKBP12, but unlike

tacrolimus these drugs inhibit mTOR and have no effect on

NFAT [24]. Because the safety profile of tacrolimus is better than

cyclosporine, we chose to study tacrolimus for efficacy at inhibiting

breast tumor growth.

The anticancer potential of calcineurin inhibitors like tacrolimus

is likely not restricted to their ability to antagonize angiogenesis in

the vasculature. Calcineurin/NFAT signaling cascades are

important for proliferation and migration in a number of cell

types. In this study we demonstrated that tacrolimus inhibited not

only endothelial cell migration, but also breast tumor cell

migration. Based on the critical importance of these modalities

in cancer progression and maintenance it is not surprising that a

growing number of studies have identified significant dysregulation

of NFAT/calcineurin signaling in a variety of human tumors [25].

Increased NFAT/calcineurin activity has been observed in several

human carcinomas including pancreatic [26], colon [27], and

breast cell carcinoma [28]. In melanoma BRAF has been shown to

activate NFAT to direct transcription of cyclooxygenase, a process

which is also antagonized by tacrolimus [5]. Buchholz and

colleagues have shown that about 70% of pancreatic carcinomas

have elevated levels of nuclear NFATc1 compared to healthy

pancreatic tissues. Using human-derived pancreatic carcinoma cell

lines, they demonstrated that the nuclear localization of transcrip-

tionally active NFATc1 is a calcineurin-dependent process that

was inhibited by cyclosporine A. Treatment with cyclosporine A

also inhibited in vitro cell cycle progression and anchorage-

independent proliferation of the Panc1 cell line [26]. In vitro

tacrolimus has been shown to inhibit hepatocellular carcinoma

[29,30], and prostate cancer proliferation [31]. Studies such as

these further support the investigation of calcineurin inhibitors like

tacrolimus in anti-cancer regimens.

In summary, we demonstrated that tacrolimus is able to inhibit

in vitro tube formation stimulated by both SFRP2 and VEGF and

inhibit the migration of endothelial and breast cancer cells.

Tacrolimus may be particularly useful in the treatment of breast

cancer as it attenuated breast tumor xenograft growth in vivo, and

FKBP12 is expressed in the vasculature of human breast

carcinomas. Given the utility of other antiangiogenic factors in

breast cancer [32] and the previous observation of reduced breast

cancer incidence following tacrolimus administration [23], there is

ample rationale for examining the therapeutic potential of

tacrolimus as part of an anti-breast cancer chemotherapeutic

regimen.

Figure 7. Tacrolimus inhibited breast cancer and endothelial
cell migration in a scratch wound migration assay. A) MMTV-neu
breast cancer cells were plated in a scratch wound assay as described in
‘‘Material and Methods’’. A wound was formed with a 1 mm pipette tip,
and tacrolimus or control was added to the wells. Migration was
measured at various time points with an ocular micrometer. Tacrolimus
statistically significantly inhibited MMTV-neu breast tumor migration at
1 and 10 mM (p,0.05). B) 2H11 cells were plated in a tube formation
assay without SFRP2 (Control 1.5% DMSO), with SFRP2 7 nM and 1.5%
DMSO, or with SFRP2 (7 nM)+tacrolimus (0.1–10 mM in 1.5% DMSO).
SFRP2 induced endothelial cell migration compared to control, which
was statistically significantly inhibited by tacrolimus at 0.1, 1 and 10 mM.
doi:10.1371/journal.pone.0020412.g007
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Supporting Information

Figure S1 Immunohistochemistry with antibodies to FKBP12

on paraffin embedded human breast carcinomas showed locali-

zation of FKBP12 to endothelium. Arrows point to vessels.

Pictures taken at 2006magnification. A) Negative control showed

no background staining. B) Mouse MMTV-neu tumor showed

FKBP12 staining of vessels. C & D) Human breast tumors showed

FKBP12 staining of vessels.

(DOC)

Figure S2 Full length blot/gels with molecular markers. A)

Western blot results of siRNA to beta catenin shows beta catenin is

present in 2H11 endothelial cells and sham-transfected 2H11

endothelial cells, but reduced in siRNA to beta catenin transfected

2H11 endothelial cells. B) Western blot results of ShRNA to

SFRP2 in 2H11 endothelial cells showed increased NFATc3

protein in 2H11 endothelial cells stimulated with 7 nM SFRP2

compared to control 2H11 endothelial cells. This effect is

abolished when tacrolimus is added. C) Western blot results of

shRNA to NFATc3 showed NFATc3 protein is present in sham-

transfected 2H11 endothelial cells, but reduced in shRNA to

NFATc3 transfected 2H11 endothelial cells.

(DOC)

Figure S3 Pictures of endothelial cells in Matrigel tube

formation assay. A) Sham transfected 2H11 endothelial cells

stimulated with 7 nM mouse recombinant SFRP2 for 6 hours

branch and form tube in Matrigel. B) ShRNA to NFATc3

transfected 2H11 cells stimulated with 7 nM mouse recombinant

SFRP2 for 6 hours do not undergo tube formation in Matrigel.

(DOC)
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