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All organisms face tradeoffs with regard to how limited energy resources should be
invested. When is it most favorable to grow, to reproduce, how much lipid should be
allocated to storage in preparation for a period of limited resources (e.g., winter), instead
of being used for growth or maturation? These are a few of the high consequence fit-
ness “decisions” that represent the balance between energy acquisition and allocation.
Indeed, for animals to make favorable decisions about when to grow, eat, or reproduce,
they must integrate signals among the systems responsible for energy acquisition, stor-
age, and demand. We make the argument that leptin signaling is a likely candidate for an
integrating system. Great progress has been made understanding the leptin system in
mammals, however our understanding in fishes has been hampered by difficulty in cloning
fish orthologs of mammalian proteins and (we assert), underutilization of the comparative
approach.
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LEPTIN AS AN INTEGRATING SIGNAL IN MAMMALS
Although many peptides are involved in the interplay among
appetite, metabolic rate, and energy stores, leptin is arguably the
best understood candidate for a central regulating system. Leptin
was first cloned in ob/ob mice in 1994 (Zhang et al., 1994). These
mice do not express leptin as a result of a homozygous mutation
of the ob gene. They are chronically obese, hyperphagic, hypother-
mic, and do not sexually mature; injections of leptin rescues all of
these phenotypes. Leptin has demonstrated effects in regulating
appetite, fat metabolism, reproduction, body temperature, growth,
bone remodeling, immune function, stress, inflammatory respon-
siveness, hematopoiesis, and angiogenesis (Pelleymounter et al.,
1995; Barash et al., 1996; Bennett et al., 1996; Grunfeld et al., 1996;
Fruhbeck et al., 1997; Sierra-Honigmann et al., 1998; Steppan et al.,
2000; Dagogo-Jack et al., 2005; Lafrance et al., 2010; and reviewed
in Swoap, 2008; Friedman, 2009). Its pleiotropic effects and its
potential for treating obesity have resulted in >28,000 published
studies to date (ISI).

In mammals, leptin is synthesized by adipose tissue and secreted
into the blood. As adipose stores grow, leptin expression and serum
concentrations increase in proportion to total fat stores (Maffei
et al., 1995; Considine et al., 1996), although different types of adi-
pose tissue differ in their signaling amplitude (Cnop et al., 2002).
Leptin binds to leptin receptors in the hypothalamus, which sig-
nal through JAK–STAT pathways to alter transcription and affect
phenotype (Tartaglia, 1997). When adipose stores are depleted, cir-
culating leptin titer drops and the effect on phenotype is reversed
(e.g., high leptin attenuates appetite and low leptin stimulates
appetite; Zhang et al., 1994). Ahima and Flier (2000) proposed that
leptin evolved as a starvation signal; low lipid reserves lead to low
leptin titers, which communicates to the central nervous system
that energy is unavailable for processes that are not life sustain-
ing (e.g., low body fat human females can become infertile, which

can be successfully treated with recombinant leptin; LaMarca and
Volpe, 2004). The earlier an organism can sense the starvation
event, the more energy it can save by ramping down leptin-
stimulated functions, and the better its chances for surviving the
event. In concordance with its ability to affect such a diversity of
processes, leptin interacts with a diversity of hormones and sig-
naling peptides (Figure 1). It appears that chronic stimulation of
leptin secretion is mediated by molecules such as glucose, insulin,
sex steroids, and glucocorticoids (Larsson and Ahren, 1996; Elbers
et al., 1997; Newcomer et al., 1998; Moreno-Aliaga et al., 2001),
suggesting that these hormones may be involved in directly regu-
lating serum leptin concentrations (Figure 1; Laferrere et al., 2002;
Lee and Fried, 2009).

COMPARATIVE STUDIES IN MAMMALS
In focusing on the role of leptin in obesity, considerably less
research effort is directed at determining leptin’s role in natural,
non-model, and non-pathological systems, and how its function
is either conserved or not among diverse taxa over evolution-
ary time. The few exceptions are exemplary for the insight they
give into the evolution of energy sensing systems, and into lep-
tin signaling itself. Mammals that hibernate or go through daily
torpor typically experience temporary leptin resistance (Kronfeld-
Schor et al., 2000; Clarke et al., 2001; Rousseau et al., 2003). This
is interpreted as adaptive, for if the appetite-suppressing func-
tions of leptin were operating during pre-hibernation fattening,
the mammal would not be able to accumulate sufficient fat stores
to sustain them through hibernation. In the same theme of adap-
tation to low-resource environments, Yang et al. (2008) argued
that pikas (small, Tibetan plateau lagomorphs) had undergone
adaptive evolution in the pika leptin gene. Pika leptin is more
divergent than closely related leptins, and pikas express high titers
of leptin, which the authors argue is essential to adaptation to
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FIGURE 1 | (A) The effects of various peptides/hormones on leptin expression/secretion in mammals. (B) The effect of leptin on the expression/secretion of
various peptide/hormones. The + and − indicate stimulatory and inhibitory effects respectively. Findings are reviewed in Rayner and Trayhurn (2001) and Reidy
and Weber (2000).

both hypoxia and low temperature. The authors asserted that
these animals manipulated leptin resistance in adapting to their
environment. Leptin resistance is something of great interest to
a pharmaceutical industry interested in reducing leptin resistance
in obese humans. Thus a comparative approach to studying leptin
function can lead to insight not readily available when studying
model species exclusively.

WHAT ASPECTS OF LEPTIN FUNCTION ARE CONSERVED
BETWEEN FISH AND MAMMALS?
Although cloning leptin in multiple mammalian species pro-
gressed rapidly, identifying an orthologous leptin gene among
ectotherms did not occur until 11 years after leptin was first iden-
tified in mice. Our group first suggested that fish express leptin
by documenting a leptin-immunoreactive protein (Johnson et al.,
2000), and Kurokawa first cloned leptin from Fugu via gene syn-
teny. After Kurokawa’s seminal discovery, it was obvious why leptin
was so difficult to find. Fugu leptin’s primary structure is only 13%
identical to human leptin (Kurokawa et al., 2005; Figures 2 and 3).
However, threading algorithms that use the carbon backbone of
the human-leptin crystal structure (Zhang et al., 1997) predict that
the tertiary structures of fish leptins are very similar to mammalian
leptins (Kurokawa et al., 2005; Huising et al., 2006; Gorissen et al.,
2009; Figure 4). One difference in fish leptin biology is its lack of
expression in adipose tissue. Fish leptin mRNA is expressed pri-
marily in liver (Takifugu, Kurokawa et al., 2005; Oryzias, Kurokawa
and Murashita, 2009; Oncorhynchus, Murashita et al., 2008; Danio,
Gorissen et al., 2009; Cyprinus, Huising et al., 2006), with only
a single report of weak, transient leptin expression in fish adi-
pose tissue (Pfundt et al., 2009). For most fish species, liver is the
highest leptin-expressing tissue, although gonad may be highest in
zebrafish (Gorissen et al., 2009).

Since the first fish leptin gene was described, fish leptin have
been cloned from several species (Figure 2), and the molecular

tools necessary to understand leptin function in fishes are now
at hand. Soon after, amphibian leptins were cloned and charac-
terized (Boswell et al., 2006; Crespi and Denver, 2006), and there
appears to be a genuine leptin sequence in the green anole genome
(Boorse and Libbon, 2010). A bird leptin was first reported in
1998 (Taouis et al., 1998) for chicken but several investigators
have been unable to replicate their results (Friedman-Einat et al.,
1999; Amills et al., 2003) and no leptin gene has been identi-
fied in sequenced bird genomes, although the leptin receptor for
chicken and other birds has been identified without debate (Horev
et al., 2000). One group went so far as to call for a ban on pub-
lishing studies claiming to have measured leptin in birds (Sharp
et al., 2008). Unlike land animals which apparently have only a
single copy of the leptin, duplicate leptin genes have been identi-
fied for Atlantic Char, Japanese medaka, common carp, zebrafish,
and goldfish (Rønnestad et al., 2010). Phylogeny reconstruction
(Figure 3) supports a hypothesis (Gorissen et al., 2009) of ancient
duplication of leptin (leptin-a and leptin-b) after the split from
land vertebrates followed by at least one additional later genome
duplication resulting in duplicate leptin-a sequences. Gorissen
et al. (2009) argue that mammalian leptins cluster with leptin-
b, based upon sequence alignment, gene structure, and genome
structure (synteny with mammalian leptins). However, we argue
that assigning the fish ortholog to mammalian leptins is not possi-
ble at this time. Figure 3 illustrates that although some sequences
within fish leptins form well-supported clades (e.g., goldfishes and
carps, salmonids), in general there is a polytomy among fish lep-
tins, with “a” and “b” isoforms intermixed within clades, and no
clearly identifiable fish ortholog to mammalian leptins. Another
recent review addresses the relationship among fish leptins and
also concludes that there is a polytomy among non-mammal lep-
tins (Vissers et al., 2010). Additional sampling of fish genomes
will be required to sort out competing phylogenetic hypotheses
regarding the evolution of leptin genes in fish. Further, other
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FIGURE 2 | Multiple sequence alignment of all fish leptin sequences

entered in public databases, excluding duplicate sequences. Accession
numbers are listed alongside taxa in the first row of sequence. Initial
alignment of amino acid sequences was performed in ClustalW with

additional manual alignment informed by prior work of Gorissen et al. (2009)
to identify four alpha-helices (A–D). Cysteine residues reported to form
leptin’s disulfide bridge are shaded and indicated by an asterisk. Other
residues with greater than 90% conservation are indicated by a plus sign.

characters (e.g., gene structure for all fish species, physiological
data on the behavior of leptin-a vs. b) mapped onto the tree may
resolve which fish leptin gave rise to mammalian leptins. If the iso-
forms differ in their physiological function (a focus of our current
investigations), identifying the fish ortholog will be an important
clue as to the origin of leptin function in mammals. Although
other vertebrates may be better candidates for studying this aspect
of leptin’s evolutionary history, no leptin sequences are published
for reptiles or birds, and few exist for amphibians. Once several
clones are available for taxa between fish and mammals it will
likely be possible to resolve if the mammalian isoform has a single
origin among lower vertebrates or multiple origins (followed by
secondary loss). Until then the fish sequences are the best data
available for this important question.

Although identifiably distinct in primary structure, it is pos-
sible that all fish leptin isoforms are similar in function, given
that tertiary structure is generally conserved (Figure 4). We assert
that understanding the evolution of leptin function will pay great
dividends in understanding mammalian leptins, and that fishes
are the logical organisms to study, and thus the potential exists
for conserved function among vertebrates. Because the diversity
of non-mammal leptins is (currently) greatest among fishes, this
review will focus on leptin’s role in fishes.

REPRODUCTION
One of leptin’s most established roles in mammals (and
most effective use as a treatment) appears to be promoting
reproduction. Early studies in female ob/ob mice, which are

normally infertile, showed that recombinant leptin can stim-
ulate ovulation, ultimately facilitating pregnancy and parturi-
tion (Chehab et al., 1996). Physiologically, leptin stimulates the
hypothalamic–pituitary–gonadal axis by promoting the release of
gonadotropin releasing hormone (GnRH) from the hypothala-
mus, and luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH) from the pituitary leading to a cascade of hormonal
responses that promote reproduction (Yu et al., 1997; Watanobe,
2002). Leptin also causes ovarian and uterine mass to increase
in female mice, and in males leptin injections increase seminal
vesicle and testis mass (Barash et al., 1996). Conversely, women
who are deficient in leptin either from genetic abnormalities, eat-
ing disorders, or hyper-athleticism show irregular or absence of
menstruation (Friedman, 2009). Leptin is also implicated to be
one of the permissive factors in the onset of puberty (Fernandez-
Fernandez et al., 2006); children with higher body fat enter puberty
sooner and have higher serum leptin concentrations (Aksglaede
et al., 2009).

In fishes, leptin also appears to stimulate the reproductive axis.
Leptin receptor mRNA is expressed in the hypothalamic lateral
tuberal nucleus (the fish homolog of the arcuate nucleus in mam-
mals), and also expressed at high levels in zebrafish gonad (Liu
et al., 2010). Administration of mammalian leptin led to increases
in LH and somatolactin in sea bass (Peyon et al., 2001, 2003).
Additionally, in vitro studies using human leptin caused increased
release of FSH and LH from the pituitary of female trout (Weil
et al., 2003). Recently, a temporal study of Arctic charr (Salvelinus
alpinus) noted that higher leptin expression was apparent during
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FIGURE 3 | Evolutionary history of leptin inferred using the Maximum

Likelihood method based on the JTT matrix-based model (log likelihood

−5574.1124) conducted in MEGA4 (Tamura et al., 2007). The initial
unrooted tree for the heuristic search was constructed using maximum
parsimony. Representative vertebrate leptins including all available fish leptin

amino acid sequences (excluding duplicate sequences and the 5′ to Helix-A)
were used for analysis. Numbers at nodes represent support based on 500
bootstrap replications. Lack of bootstrap value indicates less then 50%
support at that node. GenBank accession numbers are in parentheses. Leptin
paralog names follow those of Gorissen et al. (2009).

the months when body lipids were declining in accordance with
the onset of sexual maturity (Frøiland et al., 2010). However, to
date there have been no studies in fishes using species-specific lep-
tin to test its effects on the reproductive axis. This is likely to be
addressed soon, given the availability of recombinant leptin for
many fish species.

FOOD INTAKE AND FASTING
Perhaps the most extensively studied aspect of leptin in mammals
is its ability to modulate food intake and consequently contribute
to body weight regulation. As with many leptin deficiency-related
pathologies, administration of recombinant leptin has corrective
effects and reduces food intake and body mass in ob/ob mice (Wei-
gle et al., 1995, reviewed in Ahima and Flier, 2000; Smith and
Ferguson, 2008; and Arora and Arora, 2008). This work established
that leptin’s anorexigenic (appetite inhibiting) effects originate in
the arcuate nucleus of the hypothalamus. Here leptin suppresses
the orexigenic (appetite-stimulating) peptides, agouti-related pep-
tide (AgRP), and neuropeptide Y (NPY), while stimulating the
anorexigenic peptides, α-melanocyte stimulating hormone (α-
MSH) and cocaine and amphetamine-related transcript (CART).
Stimulated neurons in this region may also project into the lateral
hypothalamus to decrease the expression of the potent orexigen,

melanin-concentrating hormone (MCH). Additionally, leptin’s
role in satiety is supplemented by the actions of the gut hormone
cholecystokinin (CCK), and complemented by ghrelin, which both
respond to the presence of nutrients and/or gut distension (Bado
et al., 1998). Fasting causes rapid decreases in serum leptin before
fat mass decreases and so reverses the processes detailed above to
conserve energy and stimulate appetite (Boden et al., 1996; Ahima,
2000; Swoap et al., 2006; Zhan et al., 2009).

A lipostatic model for food intake regulation has been pro-
posed for fishes, and like mammals, suggests that they can
sense the amount of lipid stores present and modulate feeding
behavior accordingly (Johansen et al., 2002). Indeed, attributes
such as growth and maturity are strongly related to lipid stores
(Fauconneau et al., 1995; Jonsson and Jonsson, 2005), however
less is known about the regulatory effects of lipids on food intake.
In fishes, leptin’s role as a satiety signal is not dogma as it is
in mammals, for studies show either limited or no correlation
between leptin concentration and food intake. In common carp,
6 weeks of feeding to satiation or fasting did not alter leptin mRNA
expression in hepatocytes (Huising et al., 2006). This was true even
though the fasted fish lost ∼30% of their initial body mass after
6 weeks. Similarly, overfed zebrafish had no significant change in
leptin mRNA expression, despite significant changes in body mass
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FIGURE 4 |Threading models of human and carp leptins showing

characteristic four-helix bundle and disulfide bond. Models were
predicted using LOMETS (Wu and Zhang, 2007) threading server and
energy minimized (with disulfide bonds) using YASARA (www.yasara.org)
with AMBER03 force field (Duan et al., 2003).

index (Oka et al., 2010). Injections of mammalian leptin in coho
salmon (Oncorhynchus kisutch) or green sunfish (Lepomis cyanel-
lus) did not affect food intake and/or body weight (Baker et al.,
2000; Londraville and Duvall, 2002). In goldfish (Carassius aura-
tus), intraperitoneal injections of human leptin for 10 days caused
a reduction in food intake and relative body weight at doses of
1 μg leptin/g body weight (de Pedro et al., 2006). No changes
were observed in the hypothalamic content of the orexigenic pep-
tide, NPY. Both the hyperphysiological dose and heterologous
leptins used in these studies make them difficult to interpret.
Human and fish leptins show very poor sequence conservation
(∼25%) and near pharmacological doses of leptin were needed
to elicit an anorexigenic response. Consequently, the results may
not accurately reflect how native leptin functions in this species.
Studies using species-specific leptin found that injections reduced
food intake and NPY expression significantly in rainbow trout
(Oncorhynchus mykiss) and grass carp (Ctenopharyngodon idel-
lus) although the effect was only transient, lasting less than 1 day
(Murashita et al., 2008; Li et al., 2010). As with mammals, appetite
in these animals also appears to be regulated by several of the
peptide hormones mentioned previously for mammals; for which
many have been identified in non-mammalian vertebrates (see
Gorissen et al., 2006; Vissers et al., 2010 for reviews).

FAT METABOLISM
One of the more direct roles of leptin in energy balance is the
stimulation of lipolytic pathways. In mammals, leptin promotes

lipolysis and inhibits insulin-stimulated lipogenesis (Cohen et al.,
2002, and reviewed in Reidy and Weber, 2000). This effect can also
be observed indirectly via an increase in plasma non-esterified
fatty acids (NEFA) after leptin injection (Ajuwon et al., 2003).
Moreover, in promoting lipid-based metabolism, leptin modu-
lates the transition from carbohydrate to lipid oxidation (Hwa
et al., 1997). For example, leptin inhibits the expression of acetyl
CoA carboxylase in adipocytes; an essential enzyme for the con-
version of carbohydrates to triacylglycerols (Bai et al., 1996).
There is also evidence for a negative feedback loop, where uptake
of fatty acids appears to attenuate leptin secretion. Fatty acid
uptake inhibits leptin release from adipocytes in vitro (Shin-
tani et al., 2000; Cammisotto et al., 2003), and mice with
impaired fatty acid uptake have higher serum leptin concentra-
tions (Hajri et al., 2007). Importantly, leptin’s lipolytic effects
can occur independently of endocrine signaling to the hypo-
thalamus. Fruhbeck et al. (1997) used cultured adipocytes and
showed that leptin increased lipolytic rate, with no neural or
adrenergic influence. This suggests that leptin may participate
in autocrine or paracrine signaling which is further supported
by the observation that both leptin and leptin receptor may be
expressed in adipocytes, brain, kidney, liver, muscle, pancreas, pla-
centa, and adrenals (Lollmann et al., 1997; Rayner and Trayhurn,
2001).

Leptin’s role in the fat metabolism of fishes remains to be
characterized. In humans and many other mammals, lipids are
stored primarily in adipose tissue and significant deposition in
liver is considered pathological (steatosis, McCullough, 2006).
In most fishes triacylglycerols (TAG) are stored in muscle and
liver in addition to adipose tissue dispersed viscerally, cephalically,
and subcutaneously (Henderson and Tocher, 1987; Fauconneau
et al., 1991). A few studies are consistent with leptin’s role in
promotion of lipolysis while decreasing lipogenesis. Ten days of
human-leptin injections decreased hepatic lipid content in gold-
fish (de Pedro et al., 2006) and mouse-leptin injections increased
fatty acid-binding protein and carnitine palmitoyl transferase in
green sunfish (Londraville and Duvall, 2002). In grass carp, lep-
tin acutely reduced liver expression of stearoyl CoA desaturase-1,
an enzyme critical for the biosynthesis of monounsaturated fatty
acids (Li et al., 2010). Interestingly, most of leptin’s effects on
fat metabolism-related gene expression in grass carp were acute,
including the increase in leptin expression that occurred on the
first day of injections. The only effect that persisted through
13 days of injections was reduced hepatic lipoprotein lipase expres-
sion (LPL), a capillary enzyme that hydrolyzes TAGs of circulating
lipoproteins (Li et al., 2010). Increased expression of LPL is also
seen in the white adipose tissue of fasted mammals (Botion, 2001).
Further, there is indirect evidence that leptin contributes to NEFA
release into circulation. Fasted animals commonly have higher
NEFAs (Dole, 1956; Bertile et al., 2003; Huising et al., 2006) and
a recent study found that fasted trout had higher plasma lep-
tin concentrations than fed individuals, although serum NEFAs
were not measured (Kling et al., 2009). Finally, the anorexigen
melanin stimulating hormone (MSH), which is stimulated by
leptin in mammals, has strong lipolytic effects in trout (Yada
et al., 2000). Although the relationship between leptin and MSH
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has not been investigated in fishes, it is a candidate hormone
through which leptin can influence fat metabolism. Together,
these data lead to the hypothesis that leptin contributes to the
starvation-induced transition from carbohydrate to fat-based
metabolism by stimulating mobilization of lipid stores.

STRESS
The link between leptin and stress hormones is not well under-
stood even in mammals, although the roles of both systems in
influencing energy metabolism suggest a relationship. The best
characterized stress hormones are the catecholamines (epineph-
rine and norepinephrine) of the sympathetic nervous system
(SNS) and the terminal glucocorticoids of the hypothalamic–
pituitary–adrenal (HPA) axis (e.g., cortisol and corticosterone).
Cortisol stimulates leptin expression and secretion in humans
(Dagogo-Jack et al., 1997; Newcomer et al., 1998; O’Conner et al.,
2007) and may have secretagogue effects that exceed insulin
(Askari et al., 2000). Additionally, inhibiting cortisol biosynthe-
sis reduces serum leptin concentrations in humans (Dagogo-Jack
et al., 2005), and leptin can inhibit cortisol secretion suggesting
a feedback between these systems (Bornstein et al., 1997; Pralong
et al., 1998). Leptin’s stimulation by cortisol has been suggested to
act as a counter-regulatory response to prevent overeating and
weight gain from the orexigenic actions of cortisol (Dagogo-
Jack et al., 1997). It is possible that cortisol signals leptin to
mobilize fatty acids as compensation for energetically demand-
ing stress. Epinephrine and norepinephrine, released via the SNS,
both have inhibitory effects on leptin expression and secretion
(Kosaki et al., 1996; Mantzoros et al., 1996; Carulli et al., 1999).
Leptin increases sympathetic outflow either directly by stimu-
lating the synthesis and release of catecholamines (Takekoshi
et al., 1999) or by stimulating regions in the brain that project
to sympathetic preganglionic neurons (Dunbar et al., 1997;
Elmquist et al., 1997), suggesting feedback between leptin and
the SNS.

All of the above named stress hormones are connected to leptin
through its effects on fat metabolism. Catecholamines, glucocorti-
coids, and leptin can all independently promote lipolysis, typically
by activating lipolytic enzymes such as hormone sensitive lipase
(HSL) and lipoprotein lipase (LPL; Kurpad et al., 1994; Samra
et al., 1996a,b; Fruhbeck et al., 1997). Although this phenomenon
has not been directly studied in fishes, there is indirect support for a
relationship between stress hormones and leptin. Fasting increases
cortisol in mammals (Chang et al., 2002; El-Migdadi et al., 2002).
In fish, fasting can increase cortisol (Kelley et al., 2001; Barcellos
et al., 2010), have no effect (Sumpter et al., 1991; Pottinger et al.,
2003) or even result in decreased plasma cortisol (Small,2005). Not
surprisingly, the duration of the fast influences cortisol’s response.
Peterson and Small (2004) found that cortisol peaked after 30 days
in channel catfish (Ictalurus punctatus) but was not different from
fed controls before or after that peak. As previously mentioned,
both leptin and cortisol stimulate lipolysis and may contribute
to the consistently observed increase in NEFAs during prolonged
fasting (Dole, 1956; Pottinger et al., 2003; Huising et al., 2006).
This relationship would have particular relevance for temperate-
zone fishes, where overwinter fasting typically involves a switch to

lipid-based ATP production, and cortisol may initiate this shift by
stimulating leptin.

In addition to fasting, fishes commonly experience oxygen
stress in their environment. Hypoxia can trigger a variety of
responses, both at the behavioral and metabolic levels. Interest-
ingly, leptin signaling responds to hypoxia exposure. In mammals,
long-term hypoxia increases serum leptin and leptin receptor
expression (Ducsay et al., 2006). In fishes, hypoxia triggers a
marked upregulation of leptin expression (Chu et al., 2010) and
leptin receptor expression (Wong et al., 2007). The physiolog-
ical consequences of this response are unknown, but we offer
the following speculation. Fibrinogen-α and hypoxia-inducible
factor-1 (HIF-1) are upregulated in response to hypoxia, and both
proteins directly or indirectly stimulate leptin and/or vascular
endothelial growth factor (VEGF) expression, ultimately stimu-
lating angiogenesis (Shiose et al., 2004; Marques et al., 2008). This
suggests that leptin stimulation via fibrinogen-α/HIF-1 results
in enhanced vascularization, which would be adaptive during
hypoxia exposure.

LIFE HISTORY
Fish have dramatically lower metabolic rates than comparably
sized endotherms and often continue to grow long after they reach
sexual maturity; this suggests that regulation of energy balance is
likely different than in mammals that are close to maximal size
soon after becoming reproductive. Many species of fishes also dif-
fer from mammals in that they are polyploid. Carp are tetraploid
and thus have a more diverse genome with which to respond to life
history“decisions”(Figueroa et al., 2005; Huising et al., 2006). With
increased gene copy number comes the potential for multiple iso-
forms of a protein, and diversity of function for that protein family.
This adds another level of regulation and complexity, and repre-
sents another possible point of digression from the mammalian
paradigm of energy balance.

Fishes face tradeoffs with respect to life history strategies just as
all organisms do. These tradeoffs are inevitable given that resources
such as food and mates are finite, and choosing to invest in one
resource often means foregoing another. In fish aquaculture, it
is well established that fishes which grow faster mature earlier;
once matured they grow slower than their immature congeners
(Felip et al., 2006, 2008). Immature Atlantic salmon possess much
higher lipid densities and consequently mature earlier than brown
trout (Jonsson and Jonsson, 2005). At maturity, however, salmon
have lower lipid densities and two-fold greater gonadal energy
content suggesting that the lipid energy was allocated to repro-
ductive potential. Induction of triploidy (which causes sterility)
results in fishes that grow faster, assumedly resulting from energy
saved from reproduction (reviewed in Maxime, 2008). However,
as noted by others (O’Flynn et al., 1997), triploidy often produces
highly variable results with respect to growth performance and
other measures of health due to the unpredictable phenotypes that
result. While the mechanisms that control the timing and extent of
processes such as growth and development are numerous (involv-
ing the stimulation and regulation of many physiological systems)
and largely uncharacterized in fishes, it is reasonable to suspect
that fishes and mammals might share the same basic signaling
pathways.
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TELEOST MODEL OF LEPTIN AND ALLOSTASIS
Leptin has been described as an anti-obesity hormone, lipostat,
satiety signal, starvation signal, and signal of energy sufficiency.
These descriptions are in many respects all accurate, but tend to be
situation dependent. We assert that leptin’s involvement in energy
balance warrants a descriptor that recognizes its contribution to
allostasis. The concept of allostasis is gaining appreciation in the
field of stress physiology. It is a more inclusive variation of “home-
ostasis” and is based on the reasoning that animals must alter
physiological processes in order to endure various challenges, so-
called “stability through change” (McEwen, 2000). This process
is highlighted by the adaptive changes that occur during stress
responses, namely the activation of systems like the SNS and HPA
in order to mobilize energy and survive whatever challenge ini-
tiated this metabolic cascade. We favor the viewpoint that leptin
is an allostatic hormone, closely tied to the stress response and
allostasis of vertebrates. Leptin acting centrally mediates different
sets of responses than leptin acting peripherally. Central leptin acts
through the hypothalamus where it stimulates energy consuming
processes while inhibiting further energy intake; peripheral lep-
tin can also interact with the hypothalamus but primarily binds
to peripheral tissue receptors where it stimulates the liberation
of lipid stores, in effect providing the energy for the systems it is
stimulating. Catabolism of fat stores may also function to fuel the
energy demands of stress.

As detailed above, cortisol stimulates but catecholamines
inhibit leptin release. In a crude sense, catecholamines can be
regarded as the quick response stress hormones, causing glu-
cose to pour into the bloodstream to supply the “flight-or-fight”
response. For such a response, it may be maladaptive to stimulate
lipolysis through leptin; it is simply too slow and recruits an inap-
propriate energy substrate for rapid energy generation. However,
sustained infusion of catecholamines does stimulate lipolysis in
adipose tissue (Galton and Bray, 1967), which may be related to
the gluconeogenic action of catecholamines in liver (Chu et al.,
2003) and/or recruitment of leptin for longer-term stressors.

Cortisol release is more gradual and sustained than cate-
cholamines (Chen et al., 2002; Barcellos et al., 2011). More endur-
ing stressors that stimulate cortisol release would stimulate leptin
release and lipolytic pathways. Fasting provides an example of
long-term stress where our view of leptin as an allostatic hor-
mone is more parsimonious than traditional functions assigned
to leptin. During fasting, fishes commonly have elevated cortisol
levels. Short-term fasting causes a rapid decrease in plasma lep-
tin in mammals (Zhan et al., 2009), this may be a consequence of
their costly metabolism (i.e., 24 h of fasting imparts more energetic
detriment to endotherms than ectotherms). Moreover, a drop in
circulating leptin does not preclude the maintenance or even ele-
vation of local (autocrine/paracrine) signaling. Long-term fasting,
such as in hibernating marmots (Marmota flaviventris), elevates
serum leptin levels for several months (Florant et al., 2004). Food-
restricted pregnant rats have elevated leptin levels compared to
ad libitum fed rats (Jelks et al., 2010). Leptin concentrations are
highest in lizards emerging from overwintering in Spring, and
lowest as they add to fat bodies in the Fall in preparation for hiber-
nation (Spanovich et al., 2006). Finally, overwintering arctic charr
express steadily increasing serum leptin despite decreasing liver

lipids and no food in their gut (Frøiland et al., 2010). Combined,
these studies suggest that leptin’s role is to regulate liberation or
storage of lipids, rather than as a barometer of total lipids stores
(Figure 5). In many situations, high lipid stores will coincide with
high lipid turnover, and so a general association of total lipid stores
with leptin titer can be demonstrated (Maffei et al., 1995). It is also

FIGURE 5 | Allostasis model of leptin function. LPL lipase (lipoprotein
lipase), FABP (fatty acid-binding protein), CPT (carnitine palmitoyl
transferase), SCAD (stearoyl CoA desaturase-1), NEFA (non-esterified fatty
acids), TAG lipase (triacylglycerol lipase).
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possible that the association between total fat stores and leptin in
pathological obesity (e.g., obese humans, ob/ob mice) is not repre-
sentative of the relationship in wild-type vertebrates. We assert that
a comparative approach to studying leptin is needed to understand

its function in all vertebrates (including humans). Now that several
fish leptin clones are available, we predict that the non-mammal
focused studies will influence models of leptin’s evolution, and its
function in mammals.
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