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ABSTRACT

The Protein pKa Database (PPD) v1.0 provides a
compendium of protein residue-specific ionization
equilibria (pKa values), as collated from the primary
literature, in the formof aweb-accessible postgreSQL
relational database. Ionizable residues play key roles
in the molecular mechanisms that underlie many bio-
logical phenomena, including protein folding and
enzymecatalysis.ThePPDservesasageneralprotein
pKa archive and as a source of data that allows for
the development and improvement of pKa prediction
systems. The database is accessed through an HTML
interface, which offers two fast, efficient search
methods: an amino acid-based query and a Basic
Local Alignment Search Tool search. Entries also
give details of experimental techniques and links
to other key databases, such as National Center for
Biotechnology Information and the Protein Data
Bank, providing the user with considerable back-
ground information. The database can be found at
the following URL: http://www.jenner.ac.uk/PPD.

INTRODUCTION

A significant proportion of chemical reactions involving pro-
teins are mediated through electrostatic interactions of their
ionizable residues (1). Such residues greatly influence the
conformation of a protein and therefore its function (2,3),
as demonstrated by their folding mechanisms (4–6), enzyme
catalysis and protein–protein interactions (7). With respect
to enzyme catalysis, residues can act as proton donors
and acceptors within the catalytic site and help stabilize trans-
ition states, with a concomitant influence on the rate of
reaction (8,9).

The dissociation constant (Ka) is a measure of the acidity of
a compound, i.e. its ability to donate a proton. Ka values range
widely from 1010 for the strongest acids, such as sulphuric, to
10�50 for the weakest, such as methane. Therefore a negative

logarithmic scale is usually applied (pKa ¼ �log10 Ka),
whereby Ka values for sulphuric acid and methane would
become pKa values of �10 and 50, respectively. Generally,
more negative pKa values correspond to stronger acids. The
pKa values of individual amino acid residues in proteins are
determined by the ionization of their side-chain groups. For
the 20 natural amino acids, pKa values range from 4.0 for
the side-chain carboxyl of aspartate to 12.0 for the side-
chain guanididium group of arginine. Main-chain groups
are not ionizable, although two additional ionizable groups
exist at the N- and C-termini. Residues within proteins
have pKa values that are moderated by their micro-
environments, the nature of their near neighbours, the extent
of hydrogen bonding and so on and can take on a range of
values different from that of a model residue.

NMR spectroscopy is the most widely used method for
determining the pKa values of individual residues, with an
accuracy of �0.1 pH units. Although many NMR methods
are available, most entries in the Protein pKa Database (PPD)
are derived using 1H, 13C and 15N experiments. Inaccuracies in
NMR experiments stem from the range of pH values tested,
variations in ionic strength and the reversibility of the titration
(10). In light of this, new combination methods are being used
based on NMR spectroscopy coupled with site-directed muta-
genesis, which leads to more accurate pKa values (10,11).

The functional importance of ionizable residues has led to
numerous attempts to predict individual residue-specific pKa

values (12–16). pKa values are usually calculated from 3D
structures using the Poisson–Boltzmann equation. However,
variations occur between calculated and experimentally meas-
ured pKa values (13). Molecular dynamic simulations have
also been used for such predictions, although this only
gives rise to a marginal increase in accuracy (17).

As only a small handful of reviews have attempted to com-
pile residue-specific protein pKa values (10,18,19), it was
decided to develop a database that would serve as a standard
compendium against which to compare new experimental or
theoretical results. The PPD v1.0 contains >1400 amino acid
pKa values, sourced from experimental data. Cross-references
to several external databases—the Protein Data Bank (PDB)
(20), the Enzyme Nomenclature and Classification database
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(21) and the National Center for Biotechnology Information
(NCBI) Entrez-Protein—have also been incorporated into the
database.

DATABASE DEVELOPMENT

PPD v1.0 has been implemented using a postgreSQL relational
database, which provides an appropriate infrastructure for all
foreseeable future developments of the archive. The data were
initially compiled in a Microsoft ACCESS database after
exhaustive searching of the primary literature, which included
using keyword searches of the NCBI PubMed database (http://
www.ncbi.nlm.nih.gov/pubmed). The postgreSQL database
is structured into seven normalized tables, populated from a
flat-file export of the ACCESS database using PERL scripts
integrated with SQL. As data are continually accumulating,
archiving data is an on-going process: automatic, periodic
updates will be made to the postgreSQL database.

The PPD user interface is provided by a series of HTML
pages. There are two searchable forms available within the
PPD site. One offers either a broad or focussed PPD search.
The other searches PPD using Basic Local Alignment Search
Tool (BLAST). These forms target either a PERL/SQL script
or a CGI script which in turn queries the database. The bespoke
search engine facilitates fast, efficient and flexible data
retrieval (Searching the Database). PPD is freely available
on the world wide web (http://www.jenner.ac.uk/PPD).

DATABASE CONTENT

The data within PPD was sourced from the primary literature
to give >1400 entries, containing pKa values for >160 proteins
(Table 1). The database contains pKa values for amino acid
side-chains, as well as the N- and C-termini. Data are archived
for all amino acid residues, with the exception of methionine.
However most entries focus on glutamate, lysine, histidine
and aspartate, which together account for >75% of the data.
As these four are all key ionizable residues, the apparent bias is
not driven by our selection, but by the available experimental
data. Very little data are currently available for arginine: its
pKa value (�12) essentially precludes measurement by titra-
tion as proteins will denature at such a high basic pH.

Cross-references to key external databases are also
included. These provide links to the protein sequence, using
NCBI Entrez-Protein, and any relevant protein structure in the
PDB (20). If applicable, the enzyme classification is also

given, with links to the Enzyme Nomenclature and Classi-
fication Database, developed in line with the International
Union of Biochemistry and Molecular Biology (21), providing
details of the enzyme reactions. In addition, a link is given
to the original literature reference via the NCBI PubMed
journals database. These links provide key background know-
ledge associated with each archived protein. A full description
of the database fields is given in Table 2.

The ability to carry out accurate predictions of pKa values
depends on having access to a high quality source of data;
a principal aim of PPD is to provide such a source. Only
experimentally determined pKa values are cited in PPD;
predicted pKa values are not included. The quality of data
contained in PPD v1.0 is largely dependent upon the accuracy
of each experimental determination, thus it contains only val-
ues from certain selected techniques: NMR spectroscopy,
Raman Difference spectroscopy and UV spectroscopy.

Protein pKa values are dependent on both intrinsic and
extrinsic factors. Intrinsic factors include invariant properties
of the protein investigated, such as sequence and structure.
Extrinsic factors include the experimental conditions used,
such as the temperature, the range of pH tested, protein con-
centrations as well as the experimental method. Thus we
attempt to record all relevant experimental conditions when
available. As logistic considerations preclude us from under-
taking independent verification of the data, we are obliged to
trust the values reported in the literature. It should be noted
that the phenomenon of cooperative deprotonation can create
circumstances under which pKa values can not be used as
a parameter that describes the ionization behaviour of the
corresponding group (22–24).

SEARCHING THE DATABASE

Two methods to search PPD are available: an amino acid
query-based interface (Figure 1) and a BLAST (25) interface.
The implementation of a bespoke search system allows the
user to perform extensive or focussed searches from a single
user interface. The simplest search, using the amino acid
query interface, would specify one amino acid residue only.

Table 1. Database summary

Database entries 1401
Proteins

Total 163
PDB structures 146
Sequences 115
Enzymes 49

Experiments
Technique 13C* 1H* 15N* 2D* RS
Entries 235 780 46 112 56

Journals 189

RS ¼ Raman Difference Spectroscopy and * ¼ NMR spectroscopy.

Table 2. Content of the database entries

Entry field Description

Protein States the relevant protein and provides a link to
NCBI Entrez-Protein sequence

PDB States the proteins PDB identification and provides
a link to the structure

EC The Enzymes Commissions identification and provides
a link to the external database

Species Species in which the protein is found
Protein

description
Gives the basic function of the protein

Amino acid The amino acid to which the pKa refers
Residue The residue number to which the pKa refers
pKa pKa value for the corresponding residue
Method Experiment techniques used to obtain data, e.g. NMR
Temperature Temperature at which the experiment was carried out
pH Range or fixed pH at which the experiment were

carried out
Conditions Concentrations of substances used in the experiment
Unit intervals Intervals at which recordings were taken (pH units)
Reference Full literature reference with link to the PubMed database
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A complex search would accommodate up to four amino acids
and pKa ranges, along with experimental method, protein
name and species. The search engine allows the choice of
how results are presented. The default option returns amino
acids and their associated properties (Figure 1B); while the
second option returns proteins which contain the specified
amino acids (Figure 1C).

The alternative search interface is based on BLAST (25).
A local database of protein sequences found in PPD was
compiled from SwissProt (26) and an additional postgreSQL
table was created to hold this data. The local database is

searched using the NCBI BLASTP and BLASTX programs
(25), allowing input of either protein or nucleotide sequences.
The HTML front-end connects to a web server-based PL/CGI
script which interacts with the BLASTP or BLASTX pro-
grams. The output contains links to PPD entries, which are
created using SwissProt (26) accession codes.

FUTURE WORK

There is an obvious need to extend the number of entries
through continuous addition of data from new, and

Figure 1.Overviewof the amino acid query search. The amino acid nominations are entered in (A). (B) shows the default result presentation, fromwhich the pKa data
(D) for the specified residues can be accessed. (C) shows the alternative presentation, with the display of proteins containing the nominated amino acid(s).
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newly-identified, publications. The database also needs to be
maintained, ensuring links to external databases remain cur-
rent. Initially, as with all databases, random errors will occur
owing to human error during data acquisition or will be extant
within the original experimental data. The database will be
assessed for errors and inconsistencies, thus maintaining, as far
as possible, the overall veracity of our data. As mentioned, we
have tried to maintain a high degree of accuracy, through
rigorous data selection; however, user feedback will foment
improvements. Moreover, feedback focussing on the search
interfaces and the general infrastructure will allow us to
develop appropriately both the database and its interface in
an efficient and ergonomic manner.

DISCUSSION AND CONCLUSIONS

The PPD is a unique compilation of protein pKa values sourced
from experimental data only. PPD is novel: no database of its
kind currently exists. Compared with other post-genomic data-
bases, the size of PPD is limited, but this reflects its highly
focused nature: the burgeoning of such focussed databases is a
continuing trend in modern bioinformatics (27,28). The relat-
ively modest size of the database will increase as new data is
published.

Access to PPD data is given through an interface available
via the world wide web and includes both a BLAST search and
an amino acid query search system. The BLAST search, which

is linked to pKa entries and external databases, allows PPD to
be a cohesive and integrated source of protein information.
PPD facilitates data-driven in silico prediction methods
addressing the relationship between ionizable groups and pro-
tein function, be that protein–protein interaction, protein fold-
ing or enzyme catalysis.

A brief summary of pKa data for each amino acid is shown
in Table 3, which also includes both the mean and SD of the
corresponding measured pKa values. From the PPD data, we
have shown the distribution of pKa values for the six most
frequent residues: glutamic acid, lysine, tyrosine, aspartic
acid, histidine and cysteine (Figure 2). Certain residues
(aspartate, glutamate, lysine and histidine) have pKa values
which show relatively narrow distributions, while other resi-
dues (cysteine and tyrosine) show a wider dispersion of values;
however, this may only be a reflection of the amount of data
available for these residues. While it is clear that mean values
approximate closely model values, the corresponding SDs are
high, reflecting the wide distribution of ionization states in

Table 3. pKa data associated with each amino acid

Amino acids
Residue Asp Cys Glu His Lys Tyr N-terminus C-terminus
Number of
entries

282 25 297 404 207 65 26 38

Mean pKa 3.6 6.87 4.29 6.33 10.45 9.61 8.71 3.19
SD 1.43 2.61 1.05 1.35 1.19 2.16 1.49 0.76

Figure 2. Distribution pattern of pKa values. Each column represents a count of pKa values for the specified amino acid and pKa.
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actual proteins. Aspartate, for example, has a mean pKa of 3.6
versus a model value of 4.0, yet the SD is 1.4. As the data for
each residue increases, trends in residue-specific pKa data will
become more evident and more certain.

In recent years, there has been an impetus to accumulate
data on all scales from the atomic to the genomic; this has led
to a rapid increase in the number of databases. Databases are
increasingly forming the backbone of science in general and
post-genomic biology in particular. PPD v1.0 was developed
to provide an easily accessible compilation of protein pKa

values. Despite the small size of PPD, the data it contains
has utility throughout many different disciplines and, we
may hope, the database will grow, through time, into a com-
prehensive protein pKa resource.
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