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Abstract: In recent years, due to an expansion of antibiotic-resistant microorganisms, there has
been growing interest in biodegradable and antibacterial polymers that can be used in selected
biomedical applications. The present work describes the synthesis of antimicrobial polylactide-copper
alginate (PLA–ALG–Cu2+) composite fibers and their characterization. The composites were
prepared by immersing PLA fibers in aqueous solution of sodium alginate, followed by ionic
cross-linking of alginate chains within the polylactide fibers with Cu(II) ions to yield PLA–ALG–Cu2+

composite fibers. The composites, so prepared, were characterized by scanning electron
microscopy (SEM), UV/VIS transmittance and attenuated total reflection Fourier-transform infrared
spectroscopy ATR-FTIR, and by determination of their specific surface area (SSA), total/average pore
volumes (through application of the 5-point Brunauer–Emmett–Teller method (BET)), and ability
to block UV radiation (determination of the ultraviolet protection factor (UPF) of samples).
The composites were also subjected to in vitro antimicrobial activity evaluation tests against colonies
of Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria and antifungal susceptibility tests
against Aspergillus niger and Chaetomium globosum fungal mold species. All the results obtained in this
work showed that the obtained composites were promising materials to be used as an antimicrobial
wound dressing.

Keywords: alginic acid; poly(lactide); copper; polymers; nonwoven fabric; melt-blown; composite;
biodegradable; antibacterial activity

1. Introduction

Poly(lactic acid) (PLA) presents a polyester-type polymer [1,2], which due to its physicochemical
properties and technical parameters [3,4], biodegradability and bioavailability [3,5–11] is dedicated
to biomedical applications [12–20] These pro-medical attributes of PLA can be utilized in the form
of its antibacterial composites, prepared on the PLA surface-modified matrix with antimicrobial
additivities [3,8]. Copper and its salts play a special role in inorganic antimicrobials; there were nearly
5300 documents on antibacterial copper abstracted by Scopus [21]; it is vitally essential for many
biological processes [22,23] and is a cheap and antibacterially-efficient inorganic [23].

Since the effective antibacterial composite should exhibit prolonged antibacterial activity,
stable surface deposition/attachment of copper to polymer presents the major problem. Due to
low affinity of metallic cations to carboxylic ester bonds [23], PLA weakly binds copper ions, and its
antibacterial PLA-Cu composites require an interface covering layer with high affinity to copper.

Such requirements are fulfilled by alginates, marine-originated [24], biodegradable [25–29]
biopolymers applied as a basis for drug delivery, wound dressings, and tissue engineering [30–34].
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The strong affinity of alginates to metal cations allows for their application as antibacterial hybrids
(e.g., [35–44]), and also for the removal of heavy metal salts, e.g., copper, lead, and mercury (e.g., [45–50]).
The role of alginate in antibacterial finishing of textiles has been reviewed recently by Li et al. [51].

We propose an application of alginate film covering the PLA matrix (PLA–ALG), which after
addition of copper salts underwent cross-linking with formation of an outer-space coating,
with strongly-fixed copper ions (Figure 1). Such PLA–ALG–Cu2+ nonwoven composites slowly
release of copper ions providing long-termed antibacterial activity.
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Figure 1. The reactions involved in the preparation of fibrous composite: PLA→PLA–ALG–Na+

→PLA–ALG–Cu2+. The structure of alginate is presented as a linear copolymer –[GM]n– with
homopolymeric blocks of (1–4)-linked β-d-mannuronate (M) and its C-5 epimer α-l-guluronate
(G) residues.

Is worth noting that cellulose-based fibers [52–54] and also wool fabric functionalized with
copper alginate were reported to exhibit antibacterial properties [55]. However, in spite of the huge
number reports on alginate abstracted by Scopus (12,643 reports) [56], or those on alginate composites
(3450 reports) [57] or alginate hybrids (1237 reports) [58], the application of PLA–ALG hybrids has been
reported in only a few papers, e.g., as a tissue engineering material [59], as composite microcapsules
for a single-shot vaccine [60], and as bio-polymer carriers which can be implanted in subcutaneous
tissue for continuous monitoring of glucose [61].

As part of our investigations focused on biologically-active phosphonates [62–64] and fibrous
materials functionalization [65–70] we present the preparation and biological and physico-chemical
properties of polylactide/alginate/copper composite materials.

2. Results and Discussion

2.1. Preparation of PLA–ALG–Cu2+ Composites

Sodium alginate with abundant carboxylate and hydroxyl groups [71], reacts with divalent cations
such as Cu(II) [72], and others [73–75], to form cross-linked hydrogels, existing in reticular structures
called “egg box” structures [76,77]. In transition metal-alginate systems, the sol-gel transition is
characterized by a complex formation in which only the carboxyl groups in both M and G residues
are coordinated to the metal ions [78]. In these structures, ALG-metal metal ions are bonded so
strongly that alginates are used as metal sorbents for removal from environmental wastes [77,79–82].
Therefore, ALG–Cu2+ complexes, and subsequently PLA–ALG–Cu2+ composites are stable with a
prolonged application period.

The preparation of PLA–ALG–Cu2+ composites wase performed by treating of PLA nonwovens
with aqueous solutions of sodium alginate, during which alginate underwent adhesion to the PLA
surface. In the second stage of the procedure, solution of copper chloride was added and consequently
copper ions substituted sodium ions, and in turn initiated a cross-linking reaction with subsequent sol
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transition. The reactions involved in the fibrous composite preparation are depicted schematically
in Figure 1.

2.2. Scanning Electron Microscopy

SEM micrographs of polylactide nonwoven (PLA), polylactide/sodium alginate (PLA–ALG–Na+),
and PLA–ALG–Cu2+-2 composites are presented in Figures 2–4, respectively.
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The presented SEM images illustrate the changes in the surface morphology of the investigated
samples occurring due to the modification of PLA nonwovens with the solution of alginic acid sodium
salt and CuCl2. The SEM image of unmodified PLA nonwoven presents a mesh of randomly-oriented
fibers, with interconnected pores and relatively-smooth surface (Figure 2). The diameters of the fibers
vary significantly from approximately 0.7 µm up to 14.0 µm. Surface modification of PLA nonwovens
with the alginate resulted in the occurrence of the coating on the surface of the randomly-oriented
fibers (Figure 3). As a result, fewer pores are visible. In addition, the coating covers thinner fibers and
only fibers with a diameter greater than ~3.5 µm can be distinguished. Furthermore, the agglomerates
of alginate may be noticed on the surface of the fibrous composite. Due to that, the surface of
PLA–ALG–Na+ fibers is more coarse in comparison to unmodified PLA fibers.

Figure 4 illustrates the surface of the PLA–ALG–Cu2+-2 composite (charged with ~7.6% of
Cu2+), with the agglomerates, presumably composed of ALG–Cu2+, visible over the entire surface
of the sample. Similarly as in the case of the PLA–ALG–Na+ sample, only the fibers with the
diameter higher than ~4. µm are distinguishable and the majority of pores are covered by the coating.
Moreover, the surface of the PLA–ALG–Cu2+ composite is less uniform and rougher due to the presence
of numerous agglomerates.

Figures 5–7 show the exemplary EDS spectra of PLA–ALG–Na+ (Figure 5), PLA–ALG–Cu2+-1
(Cu: 1.4%) (Figure 6) and PLA–ALG–Cu2+-2 (Cu: 7.6%) (Figure 7) composites (the EDS data are
presented as a graph with energy (keV) on the x–axis and peak intensity on the y–axis). Table 1 presents
the chemical composition of the investigated samples obtained from the quantitative analysis of EDS
results. The presented values of mean concentration of each element are calculated from six to eight
spot measurements, on two different samples.
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Table 1. Quantitative results of EDS analysis of PLA, PLA–ALG–Na+, PLA–ALG–Cu2+-1 and
PLA–ALG–Cu2+-2.

PLA

Atom C O

At. % 51.70 48.33

Std. dev. 0.11 0.11

PLA–ALG–Na+

Atom C O Na Ca

At. % 71.41 28.42 0.10 0.08

Std. dev. 9.74 9.89 0.14 0.17

PLA–ALG–Cu2+-1

Atom C O Cu Na S Cl Ca

At. % 55.26 40.95 0.92 0.78 0.02 1.93 0.15

Std. dev. 1.26 2.59 1.26 1.10 0.04 0.65 0.21

PLA–ALG–Cu2+-2

Atom C O Cu Na S Cl Ca

At. % 35.16 19.96 15.06 5.87 1.18 21.44 1.30

Std. dev. 8.66 2.67 1.53 0.89 0.59 5.23 0.75

As can be observed from Figure 5, the PLA–ALG–Na+ sample was composed primarily from
carbon, oxygen, and sodium. This is consistent with the chemical composition of PLA, which is built
of carbon, oxygen, and hydrogen. The occurrence of a sodium peak may be attributed to the presence
of alginate, which apart from carbon, oxygen, and hydrogen also contains sodium. In the case of the
PLA–ALG–Cu2+-1 and PLA–ALG–Cu2+-2 composites, additional peaks associated with copper and
chloride were detected. This confirms the presence of NaCl (ALG–Na+ + Cu2+ + 2Cl−→ ALG–Cu2+ +

2Na+ + 2Cl−) in those samples. Apart from that, the calcium peak was observed for all the samples.
Moreover, in the case of fibrous composites containing NaCl a peak related to sulfur was also noticed.
The relative intensity of the sulfur peak increased with the NaCl concentration in the surface modifier.

Quantitative EDS analysis (Table 1) exhibited that the modification of PLA with alginate led to an
increase in carbon concentration (from 51.70 at. % to 71.41 at. %). Simultaneously, a decrease in the
oxygen content (from 48.33 at. % to 28.42 at. %) was observed. Additionally, for the PLA–ALG–Na+

composite a small concentration of sodium was detected (0.10 at. %). Furthermore, the obtained
results indicate that the content of Cu and Cl significantly increased when the concentration of
CuCl2 in the surface modifier changed from 5% to 10%. In the case of the PLA–ALG–Cu2+-1 sample,
the content of copper was 0.92 at. %, while the chloride concentration was 1.93 at. % (Figure 5). For the
PLA–ALG–Cu2+-2 composite the concentrations of copper and chloride rose to 15.06 at. % and 21.44 at.
%, respectively (Figure 6). At the same time, with the increase of CuCl2 concentration from 5% to
10%, the carbon content dropped to 55.25 at. % and 35.16 at. %, while sodium content increased to
0.78 at. % and 5.87 at. %, accordingly. In the case of oxygen concentration, at first an increase of up to
40.95 at. % was observed for the PLA–ALG–Cu2+-1 sample, followed by a decrease to 19.96 at. % for
the PLA–ALG–Cu2+-2 composite. As far as calcium and sulfur contents were concerned, both rose
with the increase in the CuCl2 concentration, however, the observed values did not exceed 1.5 at. %
and thus, may be regarded as a contamination. The observed high standard deviation values indicates
that the distribution of chemical components was not uniform and homogeneous.
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2.3. FAAS

The copper content in the PLA–ALG–Cu2+ composites was assessed by the flame atomic absorption
spectrometry (FAAS) method, after prior composite degradation, as shown in Figure 8. The results are
given in Table 2 [83].
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Table 2. Copper concentration in polylactide/alginate/copper composite materials samples.

Sample Name Cu Concentration (g/kg)

PLA 0.004

PLA–ALG–Na+ 0.003

PLA–ALG–Cu2+-1 13.56

PLA–ALG–Cu2+-2 73.91

The results have been measured in triplicate and presented as a mean value.

The results of FAAS analysis showed that copper content in the fibrous composites samples
depends on the concentation of water solution of copper(II) chloride in the second step of a dip-coating
modification. The higher coating concentration of the copper(II) chloride modifier (10%) gave the
higher content of the Cu2+ on PLA sample (73.91 g/kg).

2.4. ATR–FTIR Spectra

The recorded ATR–FTIR spectra for polylactide nonwoven, alginic acid sodium salt (ALG–Na+),
ALG–Cu2+ complex, and PLA–ALG–Cu2+-2 composite are presented in Figure 8. Characteristic FTIR
signals of the composite and its components (PLA, ALG–Na+, and ALG–Cu2) are summarized in
Table 3 [84–92].
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Table 3. The Characteristic FTIR band frequencies determined for polylactide nonwoven, alginic acid
sodium salt (ALG–Na+), ALG–Cu2+ complex, and PLA–ALG–Cu2+-2 composite [84–92].

PLA ALG–Na+ ALG–Cu2+ PLA–ALG–Cu2+

(ν/cm−1) Int./a
Assign.

[84] (ν/cm−1) Int./a
Lit. bands
(ν/cm−1)
[85–91]

Assign.
/[Ref.][88] (ν/cm−1) Int./a (ν/cm−1) Int./a

3350 ± 350 νs O–H 3750 0.013/c

3345 0.09/c

3200 0.14/b νs O–H 3200 0.01

3164 0.05

2997 0.01 νas CH3

2947 0.01 νs CH3

2926 ± 1 νs C–H 2890 0.01

2897 0.01 2886 0.02 2886 0.01

2389 0.02

2341 0.01

2322 0.01 2300 0.02 2337 0.01

2265 0.01

2270 0.01

2216 0.01 2205 0.005

2134 0.01 2152 0.01

2111 0.01

2021 0.01 2025 0.01

1957 0.01 1946 0.01

1833 0.02

1760 0.07 ν C=O 1755 0.01

1650 [86] νas COO– 1690 0.02

1614 [85,86] νas COO–

1588 0.03 1581 0.09 1588 0.02

1452 0.02 δas CH3

1417 [85,86] δ C–H;
νs COO– 1411 0.02

1400 0.02

1388-1368 0.02 δsCH3

1368-1360 0.02 δ1
CH+δsCH3

1270 0.02 δCH+νCOC

1301 (ms) δ C–H

1295 0.02

1130 0.07 rasCH3 1124 (s) [86]
ν C–O, ν C–C,
δ C–C–C,

νas C–O–C/d
1178 0.02

1100-1090 0.11 νs COC 1096 (s) [86] ν C–O, ν C–C,
δ C–C–O; 1073 0.03

1045 0.08 ν C–CH3 1034 (vs) [86]
νas C–O–C/d,
ν C–O/d

ν C–C

1017 0.04 1013 0.03 1020 0.03

875–860 0.03 νC–COO 866 0.02

826 (ms) [86]

δ C–O–C/d,δ
C–C–C,
δ C–C–O/d

δ C–C–H,
δω O–H

810 0.03 810 0.02

760–740 0.03 δC=O 776 (w)
rb,

δ C–C–H,
δ C–C–O

715–695 0.03 γC=O 703(ms) rb

555 0.04 δω O–H 555 0.03
a Band assignment: ν, stretching vibration; δ, deformation; sh, shoulder; s, symmetric; as, asymmetric; r, rocking;
γ, out-of-plane bending mode; ω, wagging; rb, ring breathing. b Band intensity: The bands with absorbance values
≥0.005 are listed, and subsequently approximated to a second decimal place. In the literature data: s, strong; vs, very
strong; ms, medium strong; w, weak. c Derived from water hydrogen–bonded O–H stretching vibrations [92].
d Glycosidic linkage.
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The infrared vibrations spectrum of PLA–ALG–Cu2+ composite contains the major bands derived
from the composite components, namely PLA (1760 cm−1 (νC=O), 1073 cm−1 (νs C–O–C), and 866 cm−1

(ν C–CO2
−)), ALG–Na+ /ALG–Cu2+ (3200 cm−1 (νs O–H), 2890 cm−1 (νs C–H), 2337 cm−1, 2152 cm−1,

1158 cm−1, 1417 cm−1 (δ C–H, ν C–CO2
−), 1073 cm−1, 1020 cm−1, 801 cm−1, and 555 cm−1 (δω O–H)).

Some bands characteristic for PLA or ALG–Na+ disappeared, due to an overlapping effect or a
band broadening caused by influence of cupric ion, for instance in PLA spectrum (2997 cm−1 (νas CH3),
2947 cm−1 (νs CH3), 1452 cm−1 (δas CH3), 1388–1368 cm−1 (δCH+, δs CH3), 1270 cm−1 (δCH+,νC–O–C),
1045 cm−1 (ν C–CH3), 875–860 cm−1 (ν C–CO2

–), 760–740 cm−1 (δ C=O), and 715–695 cm−1 (γ C=O)).

2.5. Specific Surface Area, Total Pore Volume, and Average Pore Diameter Measurement

The specific surface area, total pore volume, and average pore diameter of the PLA–ALG–Cu2+

composites samples are presented in Table 4.

Table 4. Specific surface area, total pore volume, and average pore diameter of the examined samples.

Sample Name Specific Surface Area
SBET (m2/g)

Total Pore Volume
V (cm3/g)

Average Pore Diameter
D (nm)

PLA 0.2405 ± 0.0220 9.084·10−4 13.85

PLA–ALG–Na+ 0.5548 ± 0.0452 1.581·10−3 10.54

PLA–ALG–Cu2+-1 0.8429 ± 0.0109 3.450·10−3 16.59

PLA–ALG–Cu2+-2 1.4280 ± 0.0220 4.661·10−3 13.26

The specific surface area of the unmodified PLA nonwoven was equal to 0.2405 m2/g.
The modification of the PLA nonwoven with the solution of alginic acid sodium salt resulted in
~130% increase in the value of specific surface area (up to 0.5548 m2/g). At the same time, the addition
of 5% and 10% of CuCl2 caused even further growth of the specific surface area up to 0.8429 and
1.4280 m2/g, respectively. When compared to the PLA–ALG–Na+ sample, the specific surface area
of PLA–ALG–Cu2+-1 sample rose by ~150%, while in the case of the PLA–ALG–Cu2+-2 sample an
~260% increase in the specific surface area value was observed. Thus, it can be concluded that the
modification of PLA nonwovens with alginate and CuCl2 leads to a significant growth of the specific
surface area. The higher CuCl2 content, the greater specific surface area.

The increase in the specific surface area observed for the modified nonwovens may be associated
with the higher mesoporosity as indicated by the larger hysteresis loops for the adsorption–desorption
isotherms of modified samples. This is confirmed by the total pore volume, which significantly rose from
9.084·10−4 cm3/g for the PLA nonwoven up to 1.581·10−3 cm3/g (170%), 3.450·10−3 cm3/g (380%) and
4.661·10−3 cm3/g (510%) for the PLA–ALG–Na+, PLA–ALG–Cu2+-1, and PLA–ALG–Cu2+-2 samples,
respectively. It is worth highlighting, that despite the observed covering of pores visible in the SEM
images of the modified samples, the mesoporosity of those samples was greater.

At the same time, there was no correlation between the specific surface area or total pore
volume and the average pore diameter. The estimated average pore diameter of the investigated
samples varied in the range of 10.54–16.59 nm and did not explicitly depend on the modification and
CuCl2 concentration.

2.6. UV-VIS Analysis and Determination of the Protective Properties against UV Radiation

Figure 9 presents spectrophotometric transmittance spectrum in the wavelength λ = 200–800 nm
of PLA nonwoven and PLA–ALG–Na+ and PLA–ALG–Cu2+ (PLA–ALG–Cu2+-1 and
PLA–ALG–Cu2+-2) composites.
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PLA–ALG–Cu2+ (PLA–ALG–Cu2+-1 and PLA–ALG–Cu2+-2) composites, recorded in the range:
λ = 200–800 nm.

The transmittance (%T) spectra in the range λ = 200–800 nm of the PLA and its composites
(PLA–ALG–Na+ and PLA–ALG–Cu2+) revealed changes in their macrostructures in comparison
to PLA nonwoven, expressed by a decrease in transmittance in all ranges of measurement.
The unmodified (PLA) and modified samples (PLA–ALG–Na+, PLA–ALG–Cu2+ (PLA–ALG–Cu2+-1
and PLA–ALG–Cu2+-2) had similar spectral characteristics across the entire spectral range.
The reduction in spectral transmission (PLA–ALG–Na+, PLA–ALG–Cu2+ (PLA–ALG–Cu2+-1 and
PLA–ALG–Cu2+-2) was caused by an additional layer of alginate coating on the surface of the
samples. There was a noticeable influence of the Cu content in a modified sample (PLA–ALG–Cu2+

(PLA–ALG–Cu2+-1 and PLA–ALG–Cu2+-2)) on a transmission level, especially in the range of a
250–500 nm–decrease of transmission level in the sample PLA–ALG–Cu2+-2 vs. PLA–ALG–Cu2+-1.

Table 5 compare average transmittance (T%) and calculated UPF values of modified samples
PLA–ALG, PLA–ALG–Cu2+ (PLA–ALG–Cu2+-1 and PLA–ALG–Cu2+-2) with those of non–modified
samples (PLA and PLA–ALG–Na+).

Table 5. UPF values of modified nonwoven fabric samples.

PLA PLA–ALG–Na+ PLA–LG–Cu2+-1 PLA–ALG–Cu2+-2

UPF 7.23 12.35 13.97 43.28

average %T,
λ = 290–400 nm 16.46 10.63 9.03 4.43

The results have been measured in triplicate and presented as a mean value with ± deviation approximately 6%.

Very good barrier properties against UV radiation were obtained for PLA–ALG–Cu2+-2
(UPF = 43.28). This result indicates that the modification performed imparts proper barrier properties
against UV radiation according to EN 13758-1:2002 [93].

3. Antimicrobial Properties

3.1. Antibacterial Activity

The polylactide/alginate/copper (PLA–ALG–Cu2+) composites were subjected to antimicrobial
activity tests against Gram-negative Escherichia coli (ATCC11229) and Gram-positive
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Staphylococcus aureus (ATCC 6538) bacteria. Results of biological activity tests are listed in Table 6 and
illustrated in Figures 10 and 11.

Table 6. Results of tests on the antibacterial activity of polylactide/alginate/copper (PLA–ALG–Cu2+)
on the basis of standards EN–ISO 20645:2006 [94].

Sample Name
Bacterial Average Inhibition Zone (mm)

Escherichia coli Staphylococcus aureus

PLA 0 0
PLA–ALG–Na+ 0 0

PLA–ALG–Cu2+
−1 3 2

PLA–ALG–Cu2+
−2 3 4

Concentration of inoculum (bacterial suspension). Amount of live bacteria: Escherichia coli: CFU/mL = 1.8 × 108 and
Staphylococcus aureus: CFU/mL = 1.6 × 108.
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Results of these studies prove antimicrobial protection against different bacterial microorganisms
of functionalized materials (PLA–ALG–Cu2+) for Escherichia coli and Staphylococcus aureus (Table 6),
expressed by strong, visible inhibition zones of bacterial growth on Petri dishes (Figures 10b and 11b).
A higher ability to inhibit the bacterial growth of Staphylococcus aureus was exhibited by the
PLA–ALG–Cu2+-2 samples. Inhibition zones of bacterial growth of 3–4 mm and no bacterial growth in
the samples tested confirmed this observation.
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3.2. Antifungal Activity

Results of antifungal activity tests in accordance with the PN EN 14119: 2005 point 10.5 (B2) against
a colony of Aspergillus niger and Chaetomium globosum (ATCC 6205) of PLA fabrics and PLA–ALG–Cu2+

composites are illustrated in Figures 12 and 13 and listed in Table 7 [95].
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Table 7. The antifungal activities and growth inhibition effects of PLA–ALG–Cu2+-1/2 composites.

Sample Name
Fungal Average Inhibition Zone (mm)

Aspergillus niger Chaetomium globosum Visual Evaluation
(Magnification 50×)

PLA 0 0 Visible growth
on sample surfacePLA–ALG–Na+ 0 0

PLA–ALG–Cu2+
−1 3 3 No visible growth

on sample surfacePLA–ALG–Cu2+
−2 3 3

Concentration of inoculum, number of fungal spores in 1 mL: Aspergillus niger: CFU/mL = 2.9 × 106, Chaetomium
globosum: CFU/mL = 2.3 × 106.

Non–modified samples of polylactide nonwoven (PLA) as well as alginate–modified polylactide
nonwoven (PLA–ALG–Na+) did not inhibit the growth of Aspergillus niger or of Chaetomium globosum
fungus, either around the samples or in the contact zone with the culture media. In addition,
strong fungal growth covering of the entire surface of the samples was visible (Figures 12a and 13a).

Antifungal activity was demonstrated by the PLA–ALG–Cu2+ composites samples and the results
revealed strong visible inhibition zones of fungal growth on Petri dishes (Figures 12b and 13b),
and therefore proved antifungal protection against Aspergillus niger and Chaetomium globosum.

4. Conclusions

Medicine, especially at present, is focused on the search for new and more effective methods of
combating microbials, especially multi-drug-resistant pathogens (viruses, bacteria, and fungi). In recent
years there has been growing interest in biodegradable, “eco–friendly” and multifunctional polymers
that can be used in selected biomedical applications. This paper presents a method for charging of
poly(lactide) nonwoven fabrics with copper salt, and in this way making equipment with antibacterial
activity. This was achieved by a two–step procedure of coating of PLA fibers with, prepared in situ,
copper alginate (PLA→ PLA–ALG–Cu2+).

The structural properties of these new products were characterized by scanning electron microscopy
(SEM), energy-dispersive spectroscopy (EDS), attenuated total reflectance Fourier-transform infrared
(ATFR-IR) and ultraviolet-visible spectrophotometry (UV-Vis), and specific surface area, total pore
volume and average pore diameter measurement. Copper content in the composites was determined
by FAAS.

The results revealed that PLA–ALG–Cu2+-2 with ca. 7.4% copper in the composite, presents
less uniform and rougher nonwoven in comparison with PLA, with diameter range of 4 to 6 µm,
and a majority of pores covered by the coating (PLA–ALG–Cu2+-2 vs. PLA), and spotted with the
agglomerates, presumably also ALG–Cu2+.

Specific surface area, total pore volume, and average pore diameter of the examined samples
presented ~6-fold increase, ~2-fold decrease and similar average pore diameters for PLA–ALG–Cu2+-2
vs. PLA, respectively.

The transmittance (%T) spectra in the range λ= 200–800 nm of the PLA nonwoven, PLA–ALG–Na+

and PLA–ALG–Cu2+ composites revealed a decrease in transmittance in all range of measurement and
very good barrier properties against UV radiation were obtained for PLA–ALG–Cu2+-2 (UPF = 43.28).

The ATR–FTIR spectra of PLA–ALG–Cu2+ composites contained the major bands derived from
the composite components, namely PLA (1760 cm−1 (ν C=O), 1073 cm−1 (νs C–O–C) and 866 cm−1

(ν C–CO2
–)), ALG–Na+/ALG–Cu2+ (3200 cm−1 (νs O–H), 2890 cm-1 (νs C–H), 2337cm−1, 2152cm−1,

1158cm−1, 1417cm−1 (δ C–H, ν C–CO2
–), 1073 cm−1, 1020 cm−1, 801 cm−1, and 555 cm−1 (δω O–H)).

The application benefits of the polylactide/alginate/copper materials were confirmed by
antimicrobial tests against Chaetomium globosum, Aspergillus niger fungus species, and representative
Gram–negative (E. coli) and Gram–positive (S. aureus) bacteria.
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In summary, PLA–ALG–Cu2+ is composed of two easily–biodegradable composites (PLA and
ALG) and the entire procedure fulfills the requirements of eco–friendly standards, due to the exhibited
technical properties and significant antimicrobial action that can find an application in different fields of
medical or healthcare industry (e.g., air filtration, bioadhesives, and tissue engineering). The performed
study allows us to state that modification of poly(lactide) nonwoven fabric using alginic acid and
copper (II) chloride offers the possibility of additional functions and the creation of new added-value
materials. Further studies will focus on the determination of mechanical and cytotoxicity properties of
PLA-alginate composites.

5. Materials and Methods

5.1. Materials

• Poly(lactic acid) (PLA) type Ingeo™ Biopolymer 3251D, in the form of granulates was purchased
from NatureWorks LLC (Minnetonka, MN, USA), Tmp = 160–170 ◦C, MFR = 30–40 g/10min
(190 ◦C/2.16 kg) and was used for the forming of samples of nonwoven fabrics;

• Alginic acid sodium salt (CAS Number 9005-38-3, the molecular weight: 120,000–190,000 g/moL,
mannuronic acid to guluronic acid–M/G ratio: 1.56) from Millipore Sigma (St. Louis, MO, USA),
was used for surface modification of polymer nonwovens;

• Copper(II) chloride, CuCl2, 97% (CAS Number: 7447-39-4) from Millipore Sigma (St. Louis, MO,
USA) was used for surface modification of nonwoven composite;

• Bacterial strains: Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 6538) were
purchased from Microbiologics (St. Cloud, MN, USA).

• Fungal strains: Aspergillus niger van Tieghem (ATCC 6275) and Chaetomium globosum (ATCC 6205)
were purchased from Microbiologics (St. Cloud, MN, USA).

5.2. Methods

5.2.1. Nonwoven Fabrics

Nonwovens were fabricated by the melt-blown technique using a one-screw laboratory extruder
(Axon, Limmared, Sweden) with a head with 30 holes of 0.25 mm diameter each, compressed air heater
and collecting drum. The melt-blown process conditions applied for preparation of PLA nonwovens
are presented in Table 8.

Table 8. Melt-blown process conditions applied for preparation of polylactide (PLA) nonwovens.

Parameter

Polymer yields 5 g/min
Mass per unit area of nonwovens 160 g/m2

Air flow rate 7–8 m3/h
Temperature of the extruder: zone 1 195 ◦C
Temperature of the extruder: zone 2 245 ◦C
Temperature of the extruder: zone 3 260 ◦C

Head temperature 260 ◦C
Air heater temperature 260 ◦C

5.2.2. Dip–Coating Modification

Nonwoven samples (10 cm × 10 cm; 2.00 ± 0.05 g) were modified by the dip-coating, two-step
method, impregnated in the solution of sodium alginate (step 1) and immersed in the solution of
copper(II) chloride (step 2). An aqueous solution of sodium alginate (0.5%, 5 g/L) was homogeneously
dispersed and had appropriate viscosity (about 50–70 dPas). An additional two different water
solutions of copper(II) chloride was prepared—5 and 10%. The nonwoven fabric samples were
impregnated in the polysaccharide solution for 1 min, then the samples were immediately transferred
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to one of the two variants of the aqueous copper(II) chloride solution (5 or 10%) and immersed in
the solution for 1 min. Then the samples were squeezed and dried for 5 h at 50 ◦C (to a constant
weight of 2.5 ± 0.05 g). After this modification, the formed nonwoven composites, further referred to
as PLA–ALG–Cu2+-1 (5% CuCl2) or PLA–ALG–Cu2+-2 (10% CuCl2), respectively, or PLA–ALG–Na+

for a composite of PLA and coating paste without CuCl2, presented a visually–uniform, homogeneous
structure. The components of the modifier used and the corresponding modifier abbreviations are
given in Table 9.

Table 9. Assignments of samples and composition of the coating components of poly(lactide) nonwoven
samples surface modifier (%).

Assignments for
Composites and Their

Components

Coating Components (%)

Sodium Alginate
Solution (ALG–Na+)

Copper(II) Chloride
Solutions (CuCl2)

0, 5% 5% 10%

PLA – – –
PLA–ALG–Na+ + – –

PLA–ALG–Cu2+-1 + + –
PLA–ALG–Cu2+-2 + – +

5.2.3. Scanning Electron Microscopy/Energy–Dispersive X–ray Spectroscopy (SEM/EDS)

The microscopic analysis of fibers was performed on a Tescan Vega 3 scanning electron microscope
(Brno, Czech Republic). Magnification was from 20,000×.

5.2.4. Flame Atomic Absorption Spectrometry (FAAS)

Determination of copper content in PLA–ALG–Cu2+ composites was assessed by prior sample
mineralization (Figure 14), using single-module Magnum II microwave mineralizer from Ertec (Wroclaw,
Poland), as described earlier [70].
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Figure 14. Mineralization of PLA–ALG–Cu2+.

Determination of copper (II) ions was performed by atomic absorption spectrometry with flame
excitation using Thermo Scientific Thermo Solar M6 (LabWrench, Midland, Canada) spectrometer
equipped with a 100-mm titanium burner, coded lamps with a single-element hollow cathode,
background correction: D2 deuterium lamp, as described earlier [65].
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The total copper content M (mg/kg; ppm) in the PLA–ALG–Cu2+ composite sample was calculated
according to the Equation (1) [83]:

M =
C · V

m
(1)

where:
C—metal concentration in the mineralized PLA–ALG–Cu2+ sample solution (mg/L);
m—mass of the mineralized sample of PLA–ALG–Cu2+ composites (g);
V—volume of the sample solution (mL).

5.2.5. Attenuated Total Reflection Fourier–Transform Infrared Spectroscopy (ATR–FTIR)

An analysis of the chemical surface structure of the of PLA–ALG–Cu2+ fibrous composite samples
was performed by ATR–FTIR spectroscopy using a Jasco 4200 spectrometer (Tokyo, Japan) with an
Pike Gladi ATR attachment (Cottonwood, AZ, USA) in the range of 400–4000 cm−1.

5.2.6. Specific Surface Area, Total Pore Volume, and Average Pore Diameter Measurement

The specific surface area of the investigated samples was measured using the Autosorb-1
(Quantachrome Instruments, Boynton Beach, FL, USA) apparatus. The analysis was performed using
the physisorption method with nitrogen used as a sorption agent. The measurements were carried
out at 77 K. For each experiment, about 1–2 g of a given sample was weighed and used. Prior to the
analysis, the samples were dried in 105 ◦C for 24 h and degassed overnight at room temperature.

In order to determine the specific surface area, the 5-point Brunauer–Emmett–Teller (BET) method
was applied. The specific surface area was calculated twice for each sample, using the 5-point adsorption
isotherm (P/P0 in the range of 0.10–0.30) and the 39-point adsorption-desorption isotherm. The total
pore volume and average pore diameter were determined from the 39-point adsorption-desorption
isotherm (P/P0 in the range of 0.05–1.00). For that purpose, a single point at P/P0 ≈ 1.00 was analyzed.

5.2.7. UV-VIS Analysis and Determination of the Protective Properties against UV Radiation

Changes of the physical properties as transmittance (%T) of samples occurring during modifications
were assessed using double beam Jasco V-550 UV-VIS spectrophotometer (Tokyo, Japan) with integrating
sphere attachment in the range of 200–800 nm, analogously as we described earlier [65]. The same
apparatus was used to determine the ultraviolet protection factor (UPF) of samples.

The UPF value of the samples was determined, according to EN 13758-1:2002 standard [93], as the
arithmetic mean of the UPF values (Equation (2)) for each of the samples (a confidence interval of 95%),
analogously, as described earlier [67].

UPF =

∫ 400
290 E(λ)ε(λ)d(λ)∫ 400

290 E(λ)ε(λ)T(λ)d(λ)
(2)

where:
E(λ)—the solar irradiance;
ε(λ)—the erythema action spectrum (measure of the harmfulness of UV radiation for human skin);
∆λ—the wavelength interval of the measurements;
T(λ)—the spectral transmittance at wavelength λ.

5.2.8. Antibacterial Activity

The PLA–ALG–Cu2+ fabrics’ anti-bacterial activity was tested according to standard: PN-EN ISO
20645:2006 [94], against a colony of Gram-positive bacteria, Staphylococcus aureus (ATCC 6538) and
Gram-negative bacteria, Escherichia coli (ATCC 25922), analogously as in polypropylene nonwovens [65].
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5.2.9. Antifungal Activity

The antifungal activity of resulting samples was tested according to PN-EN 14119:2005 [95].
This standard indicates tests of antifungal activity on a Chaetomium globosum (ATCC 6205), analogously,
as in PP nonwovens [65].
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