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Simple Summary: Potato is one of the most universally cultivated horticultural crops and is vulnera-
ble to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive
polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and
removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging
methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of
feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was
observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the
primary plant defence response mechanism against herbivores. Our experimental results confirmed
that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency
at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-
sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent
signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is
described by the induction of the defence response to reduce herbivory damage, instead of induction
of tolerance, through a compensatory photosynthetic response mechanism that is observed after
chewing insect feeding.

Abstract: Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops
throughout the world, is susceptible to a variety of herbivory insects. In the present study, we
evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf
photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined
photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of
reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding
was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse
through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of
absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding,
was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction
centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the
feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than
85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be
harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after
feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry
(ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents
1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response
to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and

Insects 2022, 13, 409. https://doi.org/10.3390/insects13050409 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects13050409
https://doi.org/10.3390/insects13050409
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-8755-0421
https://orcid.org/0000-0002-5440-5316
https://orcid.org/0000-0002-9200-0862
https://orcid.org/0000-0001-5770-9748
https://orcid.org/0000-0003-0480-9387
https://doi.org/10.3390/insects13050409
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects13050409?type=check_update&version=1


Insects 2022, 13, 409 2 of 15

initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS
burst can be considered the primary plant defence response mechanism to herbivores.

Keywords: chlorophyll fluorescence imaging; Halyomorpha halys; Solanum tuberosum; biotic stress;
photoprotection; herbivore insects; singlet oxygen; non-photochemical quenching; photosynthetic
efficiency

1. Introduction

Worldwide crop production damages caused by foliage-feeding insects every year are
estimated to be 5–30%, and the damage can be as high as 50% in the absence of insecticide
application [1]. Two main herbivorous plant-dwelling insects can be recognized: those
that chew and those that suck sap [2]. Chewing insects such as Colorado potato beetles
(Leptinotarsa decemlineata) [2], potato pinworm (Tuta absoluta) [3], or tomato beet armyworm
(Spodoptera exigua) [4], and grasshopper species induce severe plant tissue damage, while
the sap-sucking insects instead cause indirect tissue destruction [2].

The plant vascular system is built up by the phloem and xylem tissues. The phloem
is composed of sieve elements, companion cells, and phloem parenchyma cells [5]. The
sieve elements are a pressure system that contains the phloem sap in which carbohydrates,
proteins, and amino acids are diluted, thus, making it a favourite target of phloem-feeding
insects [6]. The sap-sucking insects locate phloem sieve elements, penetrate cell walls,
and extract sap via a specialized mouthpart, the stylet [2]. During stylet penetration,
two types of saliva are secreted: the sheath saliva that gels soon after it is secreted (also
called gelling saliva), and the watery saliva, which does not gel and is secreted into the
sieve element [7]. The phloem sap-feeders are capable of retaining the penetrated sieve
element and preventing or reversing the sieve element sealing response that stops the
flow of sap to the pierced sieve element [7]. To protect the content and integrity of the
sieve tubes against sap-sucking insects, plants retain miscellaneous chemical and physical
defence mechanisms to impede the flow of sap by accumulating callose and phloem
proteins [6,7], while herbivores, in response, have evolved adaptations to overcome these
mechanisms [4,8]. In many circumstances, plant defence mechanisms encompass toxic or
unpleasant compounds [7].

Plants emit volatile organic compounds (VOCs), and the profiles of emissions de-
pend on the plant species [9]. Thus, when plants emit a particular compound, it is clearly
detectable to particular insects that utilize the plant [9,10]. The aim of the released VOC
by plants in response to an insect attack includes directly preventing herbivores, indi-
rectly attracting natural enemies of attackers, and priming defences of intact organs on
the same plant [11–13]. Miscellaneous molecular mechanisms regulate the interactions
between plants and herbivore insects and the concomitant compensatory processes in the
plants [4,14,15]. Most chewing insects feed on leaves or shoots, while others feed exclu-
sively on roots or seeds [2]. Heavy infestations of sap-sucking insects cause long-lasting
shortages of photosynthates and lead to a severe reduction in plant growth [2,16]. In
order to understand the extensive range of plant responses to insects, an evaluation of
how feeding affects the plant’s physiology [17], especially photosynthesis, is needed [16].
Sap-sucking insects impose a more severe negative impact on plant physiology than the
chewing insects do, mostly due to the lower capabilities of plants to counterbalance sap-
feeder damage in terms of growth and photosynthesis [18].

Together with several other biotic stresses, insect herbivory is known to alter pho-
tosynthesis activity (mostly negatively [3]), although compensatory responses are not
exceptional [4]. Photosynthesis is allocated into two distinct parts, the electron transfer
process and the carbon dioxide fixation. The absorbed light energy by the light-harvesting
chlorophyll-protein complexes (LHCII) of photosystem II (PSII) is transferred into the reac-
tion centre (RC), where water oxidation is taking place. Electrons from the water oxidation



Insects 2022, 13, 409 3 of 15

are transmitted from plastoquinone, via cytochrome b6f complex (Cyt b6f ), to plastocyanin
(PC), reaching through photosystem I (PSI), to ferredoxin (Fd), to reduce NADP+ and form
NADPH [19]. Meanwhile, the proton gradient that is established across the thylakoid
membranes is employed for ATP synthesis. NADPH and ATP are then used by the plant
to maintain growth and development. Under almost all kinds of stresses, the light energy
absorbed by PSII and PSI overdoes the amount that can be used for photochemistry, re-
sulting in an increased formation of reactive oxygen species (ROS), such as singlet oxygen
(1O2), superoxide anion radical (O2

•−), and hydrogen peroxide (H2O2) [20–26]. In order
to avoid photoinhibition, mainly of PSII [27–33], PSI photoinhibition is, to a minor level,
likely to occur [33,34]. Plants have developed various mechanisms to control the absorbed
light energy [35,36]. Non-photochemical quenching (NPQ) is one of the fundamental
mechanisms that prevent photoinhibition in plants [35–38].

Plant cells are continuously producing ROS at basal levels, which are unable to cause
harm, as they are being scavenged by different antioxidant mechanisms [23,39–43]. ROS–
antioxidant interactions provide fundamental information for the redox state that impacts
gene expression associated with abiotic and biotic stress responses regulating the induc-
tion of photosynthetic acclimation or cell death to maximize defences [39,44–47]. Despite
their damaging activity, ROSs are defined as second messengers in a diversity of devel-
opmental and cellular processes [40,41], including biotic stress defences [3,4,42]. The role
of chloroplast antioxidants, which often have overlying or interconnecting functions, is
not to completely remove O2

•−, H2O2, and 1O2. However, to accomplish a proper equilib-
rium between creation and removal so that to pair with the process of photosynthesis and
warranty an effective spread of signals to the nucleus [39,44–47].

Biotic stresses primarily diminish the photosynthetic efficiency of plants having neg-
ative effects on photosystem II photochemistry and electron transport mechanisms [1,3].
A better understanding of plant primary photochemistry under biotic stress can help in
managing the stress. Chlorophyll fluorescence imaging offers a quick, high-resolution, non-
destructive technique to observe the spatial variation in PSII activity following herbivore
harm [3,4,48–51].

Potato, Solanum tuberosum L., is one of the most commonly cultivated horticultural
crops throughout the world, being the world’s fourth-highest important food crop, after
maize, wheat, and rice, and is susceptible to a variety of herbivory insects [3]. One of these
is the brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), an
invasive polyphagous agricultural insect with the potential to become a serious economic
threat, infesting more than 100 species besides potato, including many crops, where it
causes severe economic losses [17]. Halyomorpha halys is a sap-sucking insect that penetrates
the phloem sieve elements and removes the sap via a specialized mouthpart, the stylet
(Figure S1). Heavy infestations of sapsucking insects cause long-lasting shortages of
photosynthates and lead to a severe decrease in plant growth [18].

In the present study, we evaluated the outcome of short feeding periods of H. halys on
potato leaf photosynthetic efficiency and examined if photosystem II (PSII) photochemistry
of the whole leaf is influenced differentially by the feeding zone. We also assessed if any
defence response mechanism is activated and whether ROSs are implicated in the response
mechanism and are induced immediately after feeding to act as second messengers and
activate the potato’s resistance or tolerance mechanism.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Solanum tuberosum L. cv Spunta (potato) plants were grown-up in pots containing
peat moss (Terrahum) and perlite (Geoflor) (1:1 v/v), in an insect-proof greenhouse, under
22 ± 2 ◦C day temperature, 18 ± 2 ◦C night temperature, 68 ± 3% relative humidity, and
natural light.
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2.2. Insect Colony

Halyomorpha halys adults were obtained from a laboratory colony maintained at the
Entomology Lab of the Institute of Plant Breeding and Genetic Resources (Thermi, Greece).
This colony was established in the fall of 2019, originating from mixed-sex adults that
were collected from households and fields in central Macedonia (Greece). Both adults
and nymphs were placed in mesh cages (30 × 30 × 30 cm) with vinyl windows and zip
closures (Raising Butterflies, Salt Lake City, UT, USA) and maintained at 26 ◦C, 60% relative
humidity, and under a 16:8 h day/night photoperiod. Insects were supplied with water in
a glass shell vial with a cotton wick and fed with green beans and tomatoes. Water was
replenished as needed, and food was replaced thrice weekly. Adults used in this study
were starved for 5 h prior to the experiments.

2.3. Experimental Design

In each potato plant, the terminal leaflet of the 4th leaf was used for the measure-
ments [3]. The leaflet was enclosed in the measurement chamber of the fluorometer, and
the chlorophyll fluorescence parameters were measured [3]. After the initial measurement,
a single H. halys adult was placed on the leaflet within the measurement chamber, and a cap
placed over it for enclosure [4,51]. After 20 or 90 min of feeding, the insect was removed,
and the leaflet was measured immediately. In each treatment, 5 biological replicates (leaflets
of different plants) were measured. In each leaflet, areas of interest (AOI) were selected
before feeding, and new AOIs were added after feeding, with a total of 19–21 AOIs. ROS
localization was evaluated before insect feeding, and immediately after the 3-, 5-, 10-, 20-,
30-, 60-, and 90-min feeding period.

2.4. Chlorophyll Fluorescence Imaging Analysis

In vivo chlorophyll fluorescence measurements were performed using an Imaging
PAM M-Series system (Heinz Walz GmbH, Effeltrich, Germany), as described in detail
before [4]. Dark-adapted (20 min) potato plants were measured before feeding (control), as
well as 20 min and 90 min after feeding by H. halys. The minimum chlorophyll a fluorescence
in the dark (Fo) was measured with 0.5 µmol photons m−2 s−1 measuring light, and the
maximum chlorophyll a fluorescence in the dark (Fm) was obtained with a saturating pulse
(SP) of 6000 µmol photons m−2 s−1 (470 nm, 800 ms) followed by application of blue LED
(470 nm) actinic light (AL) of 640 µmol photons m−2 s−1 in order to match the growth
light of potato plants. The chlorophyll fluorescence parameters that were calculated by
the Imaging Win V2.41a software (Heinz Walz GmbH, Effeltrich, Germany) involved the
effective quantum yield of PSII photochemistry (ΦPSII), the quantum yield of regulated
non-photochemical energy loss (ΦNPQ), and the quantum yield of non-regulated energy
(ΦNO), according to Krammer et al. [52], as described in detail before [3,4]. In addition, we
measured the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′) [53];
the redox state of quinone A (QA), representing the fraction of open PSII reaction centres
(qp) = (Fm′ − Fs)/(Fm′ − Fo′) [53]; the non-photochemical quenching (NPQ), reflecting the
dissipation of excitation energy as heat, calculated as (Fm − Fm′)/Fm′ [54]; the electron
transport rate calculated as ΦPSII × PAR × c × abs, where PAR is the photosynthetically
active radiation, c is 0.5, and abs is the total light absorption of the leaf taken as 0.84 [55];
the excitation pressure (1−qp) [56]; and the excess excitation energy (EXC), calculated as
(Fv/Fm − ΦPSII)/Fv/Fm [57].

Representative results such as colour-coded images of ΦPSII, ΦNPQ, ΦNO, and qp
are also shown to reveal the whole leaf response to insect feeding and the spatial PSII
heterogeneity before and after feeding.

2.5. Reactive Oxygen Species Imaging

We performed ROS detection in potato leaves before feeding and after 3-, 5-,10-, 20-,
30-, 60-, and 90-min of feeding, as described earlier [23]. In short, leaflets were excised
and transferred to a 25 µM 2′,7′-dichlorofluorescein diacetate (DCF-DA, Sigma Aldrich,
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Chemie GmbH, Schnelldorf, Germany) aquatic solution followed by a 30 min incubation
at about 25 ◦C in the dark for uptake in a rocking platform for equal fluorochrome dis-
tribution. When DCF-DA probe permeates membranes, it is oxidized by ROS, and the
green fluorescence develops [23]. ROS production and distribution were visualized with a
Zeiss AxioImager Z2 epi-fluorescence microscope equipped with an AxioCam MRc5 digital
camera [3]. The relative DCF fluorescence was measured with excitation and emission
wavelength set at 488 nm and 525 nm, respectively [3,23].

2.6. Statistics

Mean values were calculated for the 5 biological replicates of the two independent
treatments (before and after feeding). The assumption of normality of data distribution was
checked using the Shapiro–Wilk test, and the homogeneity of variance using Levene’s test,
which showed unequal variances. Statistically significant differences among the means
were determined using Welch’s ANOVA test. Means (±SD) were considered statistically
different with p < 0.05 after a Game–Howell post-hoc test by using IBM SPSS Statistics for
Windows version 28.

3. Results
3.1. The Light Energy Distribution at Photosystem II of Potato Leaf before and after Feeding

After twenty min of feeding, the amount of energy that was used for photochemistry
(ΦPSII) decreased significantly, while the 90 min feeding by H. halys decreased it further
(Figure 1).
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Figure 1. Changes in the allocation of absorbed light energy at photosystem II (ΦPSII, ΦNPQ and
ΦNO) of potato leaves at the whole leaf level, before (control), and after 20 and 90 min feeding by the
sap-sucking insect Halyomorpha halys. Error bars ± SD (n = 5). In each parameter, the columns with
different lowercase letters are statistically different (p < 0.05).

The allocation of absorbed light energy at PSII can be estimated by measuring the
effective quantum yield of PSII photochemistry (ΦPSII), the quantum yield of regulated
non-photochemical energy loss in PSII (ΦNPQ), and the quantum yield of non-regulated
energy loss in PSII (ΦNO), the sum of all three to be equal to 1 [52]. The increased yield
of regulated non-photochemical energy loss (ΦNPQ) at the whole leaf level after 20 min
feeding was capable of overcompensating the decreased ΦPSII resulting in a decreased
quantum yield of non-regulated energy (ΦNO) compared to before feeding (Figure 1), while
after 90 min feeding, the increased ΦNPQ was sufficient enough to keep ΦNO at the same
level as before feeding.
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3.2. Changes in the Photoprotective Heat Dissipation, Electron Transport Rate, and the Redox State
of the Plastoquinone Pool before and after Feeding

Non-photochemical quenching (NPQ), which reflects the dissipation of excitation
energy as heat, increased after 20 min feeding compared to before feeding, but did not
increase further at longer durations of feeding (90 min) (Figure 2a). The electron transport
rate (ETR) decreased with increasing feeding time compared to before feeding (Figure 2b).
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The redox state of quinone A (QA) at the whole leaf level, representing the fraction of
open PSII reaction centres (qp), decreased after 20 min feeding compared to before feeding,
but remained the same at longer durations of feeding (90 min) (Figure 3a).
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The efficiency of excitation energy capture by open PSII centres (Fv′/Fm′) at the whole
leaf level after 20 min feeding remained the same as before feeding but decreased after
90 min feeding (Figure 3b).
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3.3. Changes in the Efficiency of Open Photosystem II Reaction Centers, the Excitation Pressure,
and the Excess Excitation Energy in Photosystem II before and after Feeding

The excitation pressure at PSII (1−qp) at the whole leaf level increased after 20 min
feeding compared to before feeding, but did not increase further at the longer duration of
feeding (90 min) (Figure 4a).
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Figure 4. Changes in (a) the 1−qp (data of Figure 3a) and (b) the EXC of potato leaves, at the whole
leaf level, before (control) and after 20 and 90 min feeding by Halyomorpha halys. Error bars ± SD (n = 5).
In each parameter, the columns with different lowercase letters are statistically different (p < 0.05).

The excess excitation energy (EXC), calculated as (Fv/Fm − ΦPSII)/Fv/Fm [52], in-
creased with increasing feeding time compared to before feeding (Figure 4b).

3.4. The Spatial Pattern of Photosystem II Activity of Potato before and after Feeding

After 90 min feeding, an increased spatial PSII heterogeneity was observed in potato
leaves (Figure 5). ΦPSII decreased significantly at the feeding zones that were located almost
exclusively at the main vein and especially at the sieve elements and the neighbouring area
(Figure 5) with the feeding spot.

The area that was detrimentally affected by the insect feeding (marked by an aster-
isk in Figure 5) had a ΦPSII value of 0.064. Yet, ΦPSII decreased at the whole leaf level
(Figures 1, 5 and S2). At the same time, ΦNPQ increased significantly at the whole leaf level
(Figures 1, 5 and S2), but decreased significantly at the feeding zones compared to before
feeding (Figures 5 and S3).

After 90 min feeding, the decreased ΦPSII and ΦNPQ at the feeding zones resulted in a
significant increase of ΦNO at these zones, especially at the main vein (Figures 5 and S4). In
the neighbouring area to the feeding zone, ΦNPQ increased more than in the rest of the leaf
area to compensate for the higher decrease of ΦPSII in the same zone (Figures 5, S2 and S3).
Still, at the whole leaf level, due to the significant increase of ΦNPQ, there was no significant
change in ΦNO (Figure 1). The number of open PSII reaction centres decreased significantly
at the whole leaf level after feeding (Figures 1 and 5), with the decrease being more intense
in the feeding zones (Figure 5). However, a little far from the feeding area, there was a
significant increase compared to before feeding in the number of open reaction centres of
PSII (qp) (Figures 5 and S5).

Twenty minutes after feeding, a decreased ΦPSII was also noticed (Figure 1), but with
much less spatial heterogeneity compared to the 90 min feeding (Figures S2 and S6). The
same was also true for the chlorophyll fluorescence parameters ΦNPQ and ΦNO compared
to the 90 min feeding (Figures S3, S4 and S6).
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Figure 5. Typical colour-coded images of ΦPSII, ΦNPQ, ΦNO, and qp, of a potato leaflet before insect
feeding (upper row) and immediately after 90 min feeding (second row) by Halyomorpha halys. The
areas of interest (AOIs) that were measured are shown in circles with values in red labels. The whole
leaflet values (average ± SD) are given with the white numbers. In the image of ΦPSII after 90 min
feeding; asterisk indicates ΦPSII value 0.064. The colour code at the bottom ranges from pixel values
0.0 to 1.0.

3.5. Reactive Oxygen Species Localisation before and after Feeding

ROS imaging, before feeding and 3-, 5-,10-, 20-, 30-, 60-, and 90-min after feeding,
performed by staining the potato leaves with 25 µM 2′,7′-dichlorofluorescein diacetate
in the dark, revealed an intense increase of ROS generation that was visible as green
fluorescence as soon as 3 min after feeding (Figure 6). Reactive oxygen species before
feeding were vaguely detected in leaf trichomes. Meanwhile, with the 3 min feeding, an
increased generation was detected almost exclusively in the main leaf veins and the leaf
trichomes (Figure 6). The ROS real-time staining pattern revealed a decreased generation
with further elapsed time feeding, while after 90 min feeding time, ROS visualization was
undetectable (Figure 6).
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dichlorofluorescein diacetate (DCF-DA) before and after 3-, 5-,10-, 20-, 30-, 60-, and 90-min of feeding
by Halyomorpha halys. Increased ROS generation visible by light green colour.
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4. Discussion

Herbivory is one of the most important factors affecting plant fitness [58], and plant
primary photochemistry is the principal plant trait shaping plant–herbivore interaction. The
response mechanism of photosystem II photochemistry to insect herbivory and its ability
to induce a compensatory mechanism that increases PSII photochemistry in response to
herbivore feeding is fundamental in plant resistance to herbivores [4]. The light reactions of
photosynthesis involve a set of redox reactions that are the source of energy for producing
organic compounds [59]. According to the growth-differentiation hypothesis, plants have
to choose between allocating their resources to defence or growth [60]; greater allocation of
resources to defence comes at the expense of tolerance [61]. Induction of plant response
to herbivores is explained by two traits, resistance and tolerance. Induction of resistance
results in reduced herbivore damage, while induction of tolerance through the increase
in growth and photosynthesis compensates for herbivore damage, reducing the negative
fitness impact of injury [8,62].

The decrease in the quantum yield of PSII photochemistry (ΦPSII) that was observed
after 20 min feeding (Figure 1), according to Genty et al. [53], can be attributed either to
a decreased fraction of open PSII reaction centres (qp) (a measure of the redox state of
quinone A (QA)) or to a decrease in the efficiency of these centres (Fv′/Fm′) (the supply of
energy reaching the PSII reaction centres) [53,63]. In our case, considering that there was
no significant change in the efficiency of open PSII reaction centres after 20 min feeding
(Figure 3b), it is concluded that the decreased ΦPSII was due to a decreased fraction of
open PSII reaction centres (Figure 3a). However, after 90 min feeding, the decreased
ΦPSII was due to both a decreased efficiency of the open PSII reaction centres (Fv′/Fm′)
(Figure 3b) and a more reduced state of QA (Figure 3a) compared to before feeding. Non-
photochemical quenching (NPQ) mechanism can reduce the energy transfer to reaction
centres, thus reducing the efficiency of PSII centres [63]. The NPQ parameter represents
mainly heat dissipation from the light-harvesting complex II (LHCII) via the zeaxanthin
quencher [64,65]. This heat dissipation decreases the efficiency of photochemical reactions
of photosynthesis (down-regulation of PSII) [22,23,66,67].

The increased NPQ, 90 min after feeding, decreased ΦPSII due to reduced efficiency
of PSII centres (Fv′/Fm′) and decreased the electron-transport rate (ETR) in order to pre-
vent ROS formation [68]. The increased ROS generated as soon as 3 min after feeding
(Figure 6) was shown to diffuse through the leaf veins to act as a long-distance signalling
molecule [23,69–71]. ROS signalling pathways are induced by the redox state of QA, also
comprising a mechanism of plant acclimation by regulating photosynthetic gene expres-
sion [23,72–74]. The redox state of QA is of rare significance for antioxidant defence and
signalling [75]. For example, the reduced state of QA is suggested to mediate stomatal clo-
sure, probably by ROS generation, conferring acclimation to Cd exposure [76,77]. Reactive
oxygen species (ROS) are now recognized as signalling molecules, with an essential part in
numerous cellular processes having a tight control exerted by the antioxidant machinery
and triggering signalling mechanisms governing normal growth and development and in
response to external abiotic or biotic stresses [40,63,78–81].

The amount of absorbed light energy used in photochemistry (ΦPSII) after 20 min feed-
ing, at the whole leaf level, was lower by 8% compared to before feeding (Figure 1) and by
46% after 90 min feeding. The decrease in ΦPSII after 20 min feeding was overcompensated
by the increase in the photoprotective energy dissipation (ΦNPQ) that resulted in a lower
ΦNO (Figure 1). The non-regulated energy loss in PSII (ΦNO) encompasses the energy of
the triplet-state chlorophylls (3Chl*), which is generated through the intersystem crossing
of the singlet excited chlorophyll state (1Chl*) and is transferred to molecular oxygen (O2),
to generate singlet-excited oxygen (1O2) [79,82–87]. Reactive oxygen species, estimated
as 1O2, after 20 min feeding decreased (Figure 1), but total ROS generation, as observed
with 2′,7′-dichlorofluorescein diacetate (DCF-DA) staining, increased compared to before
feeding (Figure 6). As ROS formed either by energy transfer (1O2) and/or electron trans-
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port (O2
•−, H2O2) are created concurrently, it appears likely that their action of signalling

pathways can occasionally interfere or antagonize each other [23,40,45,74,79,83].
After 90 min feeding by the sap-sucking insect H. halys, ΦPSII at the whole leaf level

decreased by 46%. Meanwhile, at the feeding zones, which were located in the proximity of
the leaf’s midrib, ΦPSII at the spot-like area of the feeding zone was lower by 85%, as judged
by the ΦPSII value of 0.064 (Figure 5). However, despite a significant increase of ΦNPQ at the
whole leaf level (Figures 1 and 5), at the feeding zones, it decreased significantly compared
to before feeding (Figure 5). Consequently, the decreased ΦPSII and ΦNPQ at the feeding
zones resulted in a significant increase of ΦNO at these zones (Figure 5), indicating high 1O2
generation, mostly at the main vein and the neighbouring area (Figure 5). Singlet-excited
oxygen (1O2) is considered a harmful ROS produced by PSII that inhibits the repair of
PSII reaction centres and/or contributes directly to PSII damage [70,71,79], while increased
1O2 generation can trigger programmed cell death [3,88]. Singlet-excited oxygen (1O2) is a
powerful oxidant that reacts rapidly in the area where it is created, resulting in oxidation
that is regularly denoted as “damage” [20]. When the rate of damage exceeds the rate of
D1 protein repair, the consequence is an overall decrease in ETR [69]. In our case, after a
90 min feeding, the destructive role of ROS was due to 1O2 generation (increased ΦNO)
predominantly at the main vein area (Figure 5).

The highly increased ROS generation at the feeding zones located in the proximity
of the leaf’s midrib, as soon as 3 min after feeding (Figure 6), triggers defence responses
through leaf vein diffusion since ROS (and especially H2O2) act as long-distance signalling
molecules [23,70,71,73]. Hydrogen peroxide is the most stable ROS that can mediate plant
responses to stress [89]. A controlled ROS burst has been considered the primary plant
defence responses mechanism against herbivores [90]. A quick activation of plant defence
signals in the cells surrounding the stylet wound by an aphid in Arabidopsis thaliana was
followed by an induction spread along the veins to the whole leaf [91]. In the neighbouring
area to the feeding zone, 90 min after feeding, the photoprotective mechanism ΦNPQ
increased more than in the rest of the leaf area to compensate for the higher decrease of
ΦPSII in the same zone. At the whole leaf level, due to the significant increase of ΦNPQ after
90 min feeding, there was no significant change of ΦNO, which represents 1O2 generation,
which remains the same as before feeding.

Reactive oxygen species generation can inhibit the repair of PSII reaction centres or
contribute directly to PSII damage [42,63]. ROSs act primarily by inhibiting the repair of
photodamaged PSII and not by damaging PSII directly [92]. However, ROS production
in chloroplasts not only generates oxidative stress, but also presents essential biological
functions in plant growth, development, and redox signalling [40,93,94]. A proper equi-
librium between the creation and removal of ROS by chloroplast antioxidants is achieved
so as to match the process of photosynthesis, allowing an effective scattering of ROS sig-
nals [3,45,79,95]. Consequently, ROS not only compromises cells with tools to monitor
electron transport and, thus, avoid over-reduction or over-oxidation, but also creates redox
regulatory networks that enable plants to sense and react to biotic and abiotic stress condi-
tions [39,70,79,95,96]. A high level of ROS is considered to be useful for initiating defense
responses [45,80,95]. Photosystem II responses under biotic or abiotic stress are activated
by the NPQ mechanism that is a strategy to protect the chloroplasts from photo-oxidative
damage by heat dissipation [80,97,98], regulating ETR [71,95], and avoiding detrimental
ROS generation [66,80]. A basal level of ROS is required for optimum plant growth [40,45],
with a controlled, increased ROS level to be favourable in activating defence responses,
while a high level of ROS out of the limits to be destructive to plants [3,40,45,80].

Our experimental results confirmed that chlorophyll fluorescence imaging method-
ology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and
is a promising tool for investigating plant response mechanisms to sap-sucking insect
herbivores. As it has been previously suggested, it can distinguish leaf photosynthetic
spatiotemporal heterogeneity that cannot be identified through conventional chlorophyll
fluorescence analysis, and it can be used to explore plant response mechanisms to biotic
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or abiotic stresses [50,80,99–103]. Plant-insect interactions are getting more defined and
comprehensive with the development of novel visualization methods that permit leaf
photosynthetic efficiency evaluation after herbivore attack [4,91].

5. Conclusions

We suggest that PSII responses after feeding by H. halys underlie ROS-dependent
signalling that occurs immediately (<3 min) after feeding. It is concluded that the potato
PSII response mechanism to sap-sucking insect herbivores is a defence response that
reduces damage to herbivory instead of the induction of tolerance through a compensatory
photosynthetic response mechanism that was observed in chewing insects [4,51].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13050409/s1. Figure S1: Dorsal view of the brown mar-
morated stink bug (Halyomorpha halys). Figure S2: Histogram of all data points of the effective
quantum yield of PSII photochemistry (ΦPSII) per time point. Figure S3: Histogram of all data points
of the quantum yield of regulated non-photochemical energy loss (ΦNPQ) per time point. Figure S4:
Histogram of all data points of the quantum yield of non-regulated energy (ΦNO) per time point.
Figure S5: Histogram of all data points of the fraction of open PSII reaction centres (qp) per time
point. Figure S6: Typical colour-coded images of ΦPSII, ΦNPQ, and ΦNO, before insect feeding and
immediately after 20 min feeding.
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103. Moustakas, M.; Hanć, A.; Dobrikova, A.; Sperdouli, I.; Adamakis, I.D.S.; Apostolova, E. Spatial heterogeneity of cadmium effects
on Salvia sclarea leaves revealed by chlorophyll fluorescence imaging analysis and laser ablation inductively coupled plasma mass
spectrometry. Materials 2019, 12, 2953. [CrossRef]

http://doi.org/10.1016/j.envexpbot.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/30283160
http://doi.org/10.1111/j.1365-3040.2009.02041.x
http://www.ncbi.nlm.nih.gov/pubmed/19712065
http://doi.org/10.1016/S1369-5266(00)00113-8
http://doi.org/10.1073/pnas.232447699
http://www.ncbi.nlm.nih.gov/pubmed/12417767
http://doi.org/10.1111/j.1438-8677.2011.00473.x
http://www.ncbi.nlm.nih.gov/pubmed/21972900
http://doi.org/10.1016/j.scienta.2012.02.002
http://doi.org/10.1016/j.envexpbot.2013.12.007
http://doi.org/10.1007/s11356-019-04126-0
http://doi.org/10.3390/ma12182953

	Introduction 
	Materials and Methods 
	Plant Material and Growth Conditions 
	Insect Colony 
	Experimental Design 
	Chlorophyll Fluorescence Imaging Analysis 
	Reactive Oxygen Species Imaging 
	Statistics 

	Results 
	The Light Energy Distribution at Photosystem II of Potato Leaf before and after Feeding 
	Changes in the Photoprotective Heat Dissipation, Electron Transport Rate, and the Redox State of the Plastoquinone Pool before and after Feeding 
	Changes in the Efficiency of Open Photosystem II Reaction Centers, the Excitation Pressure, and the Excess Excitation Energy in Photosystem II before and after Feeding 
	The Spatial Pattern of Photosystem II Activity of Potato before and after Feeding 
	Reactive Oxygen Species Localisation before and after Feeding 

	Discussion 
	Conclusions 
	References

