
Vol. 29 ISMB/ECCB 2013, pages i361–i370
BIOINFORMATICS doi:10.1093/bioinformatics/btt215

Short read alignment with populations of genomes
Lin Huangy, Victoria Popicy and Serafim Batzoglou*
Department of Computer Science, Stanford University, Stanford, CA 94305, USA

ABSTRACT

Summary: The increasing availability of high-throughput sequencing

technologies has led to thousands of human genomes having been

sequenced in the past years. Efforts such as the 1000 Genomes

Project further add to the availability of human genome variation

data. However, to date, there is no method that can map reads of a

newly sequenced human genome to a large collection of genomes.

Instead, methods rely on aligning reads to a single reference genome.

This leads to inherent biases and lower accuracy. To tackle this prob-

lem, a new alignment tool BWBBLE is introduced in this article. We (i)

introduce a new compressed representation of a collection of gen-

omes, which explicitly tackles the genomic variation observed at every

position, and (ii) design a new alignment algorithm based on the

Burrows–Wheeler transform that maps short reads from a newly

sequenced genome to an arbitrary collection of two or more (up to

millions of) genomes with high accuracy and no inherent bias to one

specific genome.

Availability: http://viq854.github.com/bwbble.

Contact: serafim@cs.stanford.edu

1 INTRODUCTION

Advancements in next-generation low-cost, high-throughput
DNA sequencing technologies have made it possible to sequence
a large number of human and other species’ genomes (Cherf

et al., 2012; Stein, 2010). Several large-scale sequencing efforts
are under way, including the 1000 Genomes Project (The 1000

Genomes Project Consortium, 2010) and the International
Cancer Genome Project (International Cancer Genome

Consortium, 2013). More than 2000 individuals have already
been sequenced by the 1000 Genomes Project. Although the

next-generation sequencing technologies provide a vast amount
of data samples for advancing genomic research, the ever-

increasing volume of genomic data has become a tremendous
challenge on multiple fronts (Durbin, 2009; Fritz et al., 2011;

Kozanitis et al., 2010). One challenge is the alignment of the
short DNA sequences (short reads) produced by these technol-

ogies to reference genomes, to discover the variation of a newly
sequenced genome with respect to the previously sequenced

human genomes. Short read alignment is a common first step
during genomic data analysis and plays a critical role in medical

and population genetics.
Several efficient short-read alignment programs, such as

BWA, SOAP2 and Bowtie (Langmead et al., 2009b; Li and

Durbin, 2009; Li et al., 2009), have been developed in the past
years (Li and Homer, 2010). These methods use the Burrows–

Wheeler transform (BWT) (Burrows and Wheeler, 1994), which
facilitates linear-time alignment to a large reference string

(Ferragina and Manzini, 2000), such as a genome, and requires
only a limited amount of memory (Hon et al., 2007; Nong et al.,

2011). These aligners typically precalculate the BWT (and some
associated auxiliary structures) of a single reference genome and

then map the newly sequenced reads to it using a variant of the
BWT backwards search procedure. Any observed differences

from the chosen reference genome are treated as novel genomic
variants or sequencing errors (e.g. Li and Durbin, 2009). In light
of the increasing availability of thousands of sequenced human

genomes and databases of human genome variation, the require-
ment of these methods to use a single human reference genome

leads to inherent biases towards the arbitrarily chosen reference.
Biased alignment output can be a hindrance to the in-depth and

comprehensive understanding of the cancer genome (Lee et al.,
2010; Roach et al., 2010), evolutionary history (Kumar et al.,

2004), Mendelian diseases (Ng et al., 2010) and numerous
other domain applications.
Beyond human, to date, millions of genomic variants have

been observed in a wide variety of species and can serve as a
valuable resource for alignment. For example, many inbred

mouse strains have been sequenced to characterize their genomic
variation (Keane et al., 2011). Two such mouse strains can have
up to 20 million differences between them. As a result, when they

are crossed, their F1 offspring are heterozygous at all loci that
differ between the parents. Aligning reads from the F1 offspring

to either parent’s genome using current alignment techniques will
ignore this known heterozygosity and result in alignment bias

towards the chosen reference strain. This can make it difficult
to perform an experiment like RNA-seq, which relies on high
quality mappings.

The limitations of using conventional references and aligners
are even more pronounced when sequencing organisms with a

large amount of genomic variation among individuals. For ex-
ample, the sea squirt, Ciona savignyi, has a polymorphism rate of

�4.5% (Rumble et al., 2009). With such a high polymorphism
rate, the genome of any newly sequenced individual of this spe-
cies will be very different from a single conventional reference

sequence. Current short-read aligners operating on a single ref-
erence genome are simply not designed to handle this scenario

and will result in poor alignment accuracy.
Although humans have a lower polymorphism rate, the refer-

ence bias remains an important problem. Even though individual

alignment results may be only slightly biased when aligning with
conventional techniques, in a large study involving thousands of

individuals, this effect can add up to distort the study’s
conclusion.
A vast number of genomic variants in human populations

have already been discovered and are maintained in publicly ac-
cessible databases, such as dbSNP and SNPedia. The majority of

variations between a newly sequenced genome and the reference
are likely to already exist in these databases. Moreover, struc-

tural variants, such as transpositions, large insertions and
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deletions and inversions, are difficult to analyse and require split-
read alignment techniques (Pang et al., 2010; Snyder et al., 2010).
Once a structural variant is detected, it would be desirable to

avoid repeating the process of identifying the same variant in
other genomes. With this issue in mind, we are facing the chal-
lenging problem of how to efficiently incorporate the available

genomic variant information during alignment.
The naive solution to this problem is to use the existing fast

aligners to map new read samples to all available genomes indi-

vidually. The state-of-the-art aligners, albeit much faster than
their predecessors, still take 3–5 h to map 12.2 million reads to
a human genome on a single core processor (Li and Durbin,

2009), so spending 2000� more time (roughly a year) to map
those reads to all the genomes currently in the 1000 Genomes
Project is not a realistic solution, especially as this time will scale

linearly with the number of genomes in the collection.
Furthermore, even though the space required to store the
BWT-related data structures of each genome can be significantly

reduced using various compression techniques (Hon et al., 2007),
the total amount of space required for storing all the available
genome data is considerable. Finally, this solution does not take

into account the scenario where the newly sequenced genome has
a novel haplotype of several nearby SNPs (i.e. when the newly
sequenced genome contains a combination of SNPs that do not

occur together in any known genome individually).
An alternative solution is to align the newly sequenced reads to

a single reference genome and then query the genomic variation

databases to analyze the mismatches. This approach is used in
programs such as Crossbow (Langmead et al., 2009a), VarScan
(Koboldt et al., 2009), and others (Handsaker et al., 2011; Mokry

et al., 2010). However, if the reads are misaligned during the first
step (e.g. reads spanning a mutation), incorrect mismatch loca-
tions will be propagated to the second step, which can bias the

study results and lead to questionable conclusions, especially for
a large study involving thousands of genomes (DePristo et al.,
2011).

Taking advantage of the high redundancy among sequenced
genomes, several techniques have been proposed for compressing
genomic data and searching this compressed data directly (Lam

et al., 2010; Loh et al., 2012; Makinen et al., 2009; Schneeberger
et al., 2009; Siren et al., 2011). Loh et al. (2012) provides the first
efficient scheme for compressing genomic libraries and presents

compression-accelerated BLAST and BLAT algorithms that
search over the compressed data. In particular, their data com-
pression scheme consists of finding fragments (by default, 300bp

long) in the database that are highly similar, keeping only one
version of the sequence fragment, and replacing each additional
fragment with a link to this sequence and a list of differences.

The first approach for mapping short reads against a collec-
tion of genomes simultaneously is presented by Schneeberger
et al. (2009). Their algorithm, GenomeMapper, combines the

genomes into a joint hash-based graph data structure. More spe-
cifically, it builds an index of all available reference genomes that
maps sequence k-mers (5–13bp long) to their positions in the

genomes. Identical regions are stored only once, and poly-
morphic regions are stored separately for each genome (these
are represented as branches in the index). During alignment,

the hash-based index is first scanned to identify the exact
matches, then nearly identical maximal substrings are detected,

and finally, bounded dynamic programming is used to extend the

partial alignments. Although this technique proved to be success-

ful for aligning with the small Arabidopsis Col-0 genome, its high

memory requirement makes its applicability to a human genome

still questionable (Li and Homer, 2010).

Siren et al. (2011) proposed a novel index structure for a col-

lection of genomes built by converting the genome multiple

alignment into a prefix-sorted finite automaton that can recog-

nize the strings corresponding to all the paths through the mul-

tiple alignment. This work generalizes the BWT-based index

structure for labelled trees to labelled graphs and uses a modifi-

cation of the backwards search algorithm to perform read map-

ping. The technique was demonstrated on the multiple alignment

of four assemblies of the human chromosome 18 and is expected

to support genomes of up to 100 Mbp using a single workstation.

Owing to its high memory consumption during prefix-sorted au-

tomaton construction, an external memory implementation is

needed to index a collection of human genomes, which is not

yet available. Therefore, the applicability of this method to a

large collections of human genomes has not yet been demon-

strated in practice.

In this article, we present BWBBLE, an aligner that handles

genetic variants and thus avoids the inherent bias induced by

mapping to a specific genome, while providing reasonable com-

putation time and limited memory consumption for large collec-

tions of genomes. The main new contributions of our work are

the following: (i) we introduce the concept of a linear reference

multi-genome that incorporates the catalogue of all known gen-

omic variants with a reference genome (e.g. SNPs, insertions,

deletions and inversions), and (ii) we develop a BWT-based

read alignment algorithm, BWBBLE, that accurately maps

reads to this multi-genome. We evaluate the effectiveness and

efficiency of BWBBLE in Section 4 with a set of experiments

using simulated and real read data.

2 BACKGROUND: BURROWS–WHEELER
TRANSFORM

The BWT (Burrows and Wheeler, 1994) of a given string is a

reversible permutation of the string symbols that enables the

search for a pattern P in the original string to take OðjPjÞ time

(i.e. linear time with respect to the length of the pattern).

Let S ¼ s0s1::: sn�1 be a string of length n defined over some

alphabet � (e.g. the A/C/G/T nucleotide alphabet if S is a

genome) and let $ be a symbol not in � that is lexicographically

smaller than all the characters of �. When constructing the BWT

of S, $ is first appended at the end of S, such that S ¼ s0s1:::sn,
where sn ¼ $ (now jSj ¼ nþ 1). Let SA be the suffix array of S

(we have jSAj ¼ jSj), such that SA½i� stores the position of the i-

th lexicographically smallest suffix of S (e.g. SA½0� ¼ n since $ is

the smallest suffix). A simple technique for constructing the

BWT and SA is demonstrated in Figure 1. It can be shown

that BWT½i� ¼ S½SA½i� � 1� when SA½i� 6¼ 0 (and $ otherwise).
If a pattern P does occur in S, then each of its occurrences

will appear at the start of some suffix of S, and these suffixes will

be grouped together into a single suffix array interval

SA½LðPÞ,UðPÞ�, where LðPÞ and UðPÞ represent the indices of

the lexicographically smallest and largest suffix starting with P,
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respectively. Given the SA interval ½LðPÞ,UðPÞ�, the positions of

P in S can be obtained from the corresponding SA values,

namely, P will occur in S at all SA½i�, for LðPÞ � i � UðPÞ.

Ferragina and Manzini (2000) showed that if P occurs in S, then:

Lð�PÞ ¼ Cð�Þ þOð�,LðPÞ � 1Þ þ 1 ð1Þ

Uð�PÞ ¼ Cð�Þ þOð�,UðPÞÞ ð2Þ

where Cð�Þ is the number of symbols in S (not counting $) that
are lexicographically smaller than �, and Oð�, iÞ is the number of

occurrences of � in BWT½0, i�. Therefore, to find the SA interval

of P, we can start with the SA interval of an empty string

(Lð�Þ ¼ 0,Uð�Þ ¼ n) and add a character of P at a time in reverse

order (i.e. starting with the last character of P). Assuming that
the C and O arrays have been pre-computed, this technique,

known as backwards search, enables us to find the interval of

all the occurrences of P in S in OðjPjÞ time.

3 MULTI-GENOME ALIGNMENT

3.1 Reference multi-genome

In this section, we describe how a single reference genome can be

augmented with genomic variant information gathered from an
arbitrary collection of genomes. We refer to the augmented ref-

erence as the reference multi-genome. We start by handling SNPs

and then refine the proposed reference representation with all

other possible variations (e.g. insertions, deletions, inversions).

3.1.1 SNPs To handle SNPs during alignment, we extend the

reference genome alphabet from the 4-letter A/C/T/G nucleotide

code to the 16-letter IUPAC nucleotide code (Cornish-Bowden,
1985). The IUPAC encoding makes it possible to capture which

nucleotides have been observed at a given position across all the

available sequenced genomes. For example, if both A and G

were discovered at some given position, then the IUPAC char-
acter R can be used to represent this variation. For convenience,

in our IUPAC alphabet, we have replaced the IUPAC character

U by the special character # that represents the absence of the

four nucleotides.
As a result, when aligning a read to the reference multi-

genome, a given read nucleotide can match more than one

character of the reference. For example, read base A can

match the IUPAC characters A, D, H, M, N, R, V and W.

Therefore, the substrings that a read can map to in the reference

might be grouped into multiple separate SA intervals. In particu-

lar, if the suffixes are sorted in IUPAC lexicographic order

(Fig. 2), then the substrings matching A can fall into up to five

separate SA intervals: suffixes starting with A, D, H, [M N R],

and [V W] can be separated by suffixes starting with [B C], G, K,

and [S T], respectively.
To minimize the number of separate SA intervals associated

with each of the four nucleotides, we propose to use the four-bit

Gray code (also known as the reflected binary code) (Gray, 1953)

to order the IUPAC characters (instead of ordering them lexico-

graphically). The four-bit Gray code orders four-bit binary

values such that two successive values differ by only one bit.

For this purpose, we encode each IUPAC character using four

bits, such that each bit corresponds to a given nucleotide and is

set to 1 if the IUPAC character matches this nucleotide and 0

otherwise. For example, given the nucleotide-to-bit assignment

bAbCbGbT, the Gray code value of 1001 corresponds to the

IUPAC character W that represents both A and T. Figure 3

shows the IUPAC character order resulting from using this nu-

cleotide-to-bit assignment. We can see that given this new order-

ing, the IUPAC characters matching A will all fall into a single

SA interval (as they are now ordered consecutively). The number

of SA intervals per nucleotide will be the following: A ! 1

interval, C ! 1 interval, G ! 2 intervals, T ! 4 intervals.

Because A and T occur more frequently in the human genome,

we expect the nucleotide-to-bit assignment bAbTbCbG to result in

better performance. The nucleotide-to-bit assignment can be

easily adapted to a specific genome during indexing to prioritize

the more frequent nucleotides (e.g. bGbCbAbT should be used for

prokaryotes with a high GC content). It can be theoretically

shown that the Gray code order is the optimal order for this

problem (see Appendix). Figure 4 shows an example of con-

structing the BWT and SA of a toy multi-genome using the

Gray code order.

3.1.2 Extension to other genomic variations In addition to

SNPs, other types of genomic variations are common within

and across populations. Such variations include insertions, dele-

tions, inversions and translocations.
If we superimpose the genomes of a given collection, we can

collapse the matching nucleotides and encode SNPs with IUPAC

characters (as described in Section 3.1.1). The remaining varying-

length segments (caused by other types of genomic variations)

will visually form a set of bubbles composed of multiple branches,

where each branch represents a variant of the genome sequence

that was observed at that position in at least one of the genomes

in the collection. Figure 5 shows the result of superimposing

three sample genomes where the SNPs have been encoded with

M and K and the indels form a bubble with three branches.

We incorporate the indels into the reference multi-genome as

follows. One of the bubble branches is designated as the primary

branch and included into the reference at the position at which

the bubble occurs. All other bubble branches are appended at the

end of the reference genome. Each appended branch is padded at

both ends with the bases surrounding the bubble. The length of

the padding is a parameter that depends on the expected read

Fig. 1. BWT and SA construction for S¼mamaliga$. All the rotations of

S are first listed (1) and then sorted in lexicographic order (2). The BWT

string is assembled from the last character of each sorted rotation (i.e. the

right-most column of the sorted rotations matrix) and the suffix array SA

is given by the original position in S of the suffix at the start of each

sorted rotation (the substring preceding $ in each rotation)

i363

Short read alignment with populations of genomes



length, jRj, and is set to jRj � 1. The reference multi-genome

augmented with indel information for the example in Figure 5

is shown in Figure 6 for reads of length jRj ¼ 4 (padding of

length three). The special character # separates the reference se-

quence and the bubble branches to prevent reads from being

aligned across the sequence and bubble branch boundaries.
In the case of inversions, translocations and duplications, we

can optionally avoid having the bubble branch length increase

linearly with the size of the event, jEj, as follows. We create two

branches for the two ends of the structural event of length

2�ðjRj � 1Þ centred around the two event boundaries. Reads

that span across the original and the variant sequence boundaries

will now map to these two branches. We do not include the event

sequence interval ½jRj, jEj � jRj�, which is already present in

either the forward or the reverse complement strand of the ref-

erence genome (depending on the type of the structural event).

While saving space, the downside of this approach is the fact that

reads from the original and the duplicate sequences will be

mapped to the original sequence only, which complicates the

assessment of the quality of the read mappings (e.g. a read

should not be considered confidently mapped if it maps equally

well to multiple positions), and other techniques have to be used

to detect duplicated regions. These structural events were not

included in our experiments, as they are not present in the
Integrated Variant Set release (The 1000 Genomes Project

Consortium, 2010) we used to construct the reference multi-

genome.
Note that although augmenting the reference with indels and

other structural variants allows us to easily handle these events

during alignment, it does lead to an increase in the size of the

reference string due to padding and, therefore, a higher memory

overhead. However, by filtering out some rare branches, it is

possible to trade-off some accuracy for a lower memory

consumption.

3.2 Exact matching

In this section, we present the algorithm for exactly matching a

read to the reference multi-genome. This algorithm is an exten-

sion of the BWT-based backwards search algorithm presented in

Section 2.
Let � represent one of the four A/C/T/G read bases and let ��

be the subset of the IUPAC characters that can match with �.
We have: �A ¼ fM,H,N,V,R,D,W,Ag, �C ¼ fS, B,Y,C,

M,H,N,Vg, �G ¼ fK,G, S, B,N,V,R,Dg and �T ¼ fT,K,

B,Y,H,N,D,Wg. Also, let �� represent an element of the set ��.
Because each read base can match more than one IUPAC

character, a given read R can match multiple different substrings

in the reference multi-genome (e.g. R¼AT will match the sub-
strings AT, RW, AY and others) and, therefore, can align to

more than one SA interval. Let hLðRÞ,UðRÞi represent the set

of SA intervals that start with a substring that matches the read

R. If R occurs in the reference, then it can be easily shown that:

hLð�RÞ,Uð�RÞi ¼
[

8��2��

½Lð��RÞ,Uð��RÞ� ð3Þ

where as before,

Lð��RÞ ¼ Cð��Þ þOð��,LðRÞ � 1Þ þ 1 ð4Þ

Uð��RÞ ¼ Cð��Þ þOð��,UðRÞÞ ð5Þ

This result enables the iterative backward search for a read in
the reference multi-genome. That is, we can start (as before) with

the SA interval of an empty string, hLð�Þ,Uð�Þi ¼ ½0, n�, and then

iteratively fetch a base � from the end of the read re-calculating

the SA interval set hLð�RÞ,Uð�RÞi using Equations (3)–(5) (here

R refers to the partially assembled read). This procedure can be

repeated until R equals the entire read. Note that if

Lð��RÞ4Uð��RÞ, the SA interval is not valid and is discarded.
For clarity, we demonstrate the alignment of the read AT with

the reference multi-genome RWYAYA (the SA and BWT for

Fig. 4. BWT and SA construction of a toy reference multi-genome

S¼RWYAYA$ (i.e. (AjG)(AjT)(CjT)A(CjT)A). All the rotations of S

are first listed (1) and then sorted in Gray code order (2)

Fig. 3. Gray code order of the IUPAC code using the bAbCbGbT nucleo-

tide-to-bit assignment

Fig. 2. Lexicographic order of the IUPAC code

Fig. 6. Reference multi-genome with various variations. Branch padding

corresponds to reads of length jRj ¼ 4

Fig. 5. Bubble formed by superimposing three sample genomes
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this reference were computed in Fig. 4). We start with the SA

interval of the empty string, which is ½0, 6�. In the first iteration,

we consider the last read base T. We calculate Lð�TÞ and Uð�TÞ
for each of the eight characters in �T. Using Equations (4) and

(5), we get ½LðYÞ,UðYÞ� ¼ ½1, 2�, ½LðWÞ,UðWÞ� ¼ ½4, 4� and no

matches for the remaining characters. Therefore,

hLðTÞ,UðTÞi ¼ ½1, 2� [ ½4, 4�. In the next iteration, we add A

(the first base of the read) and calculate Lð�ATÞ and Uð�ATÞ
for all �A 2 �A. The final result hLðATÞ,UðATÞi ¼ ½3, 4� [ ½6, 6�

can be easily verified.

To achieve reasonable performance, the number of SA inter-

vals has to remain relatively small during alignment. An expo-

nential increase in the number of SA intervals with respect to the

length of the read is unacceptable. We have conducted a small

experiment to track the number of SA intervals created during

exact alignment with a human multi-genome. More specifically,

we have created a reference multi-genome by combining the

SNPs of 1092 individuals from the 1000 Genomes Project (The

1000 Genomes Project Consortium, 2010) with a popular refer-

ence genome (build GRCh37) and then aligned to it 10-K simu-

lated reads of length 100 uniformly sampled from the reference

multi-genome. Figure 7 illustrates the average and standard de-

viation of the number of SA intervals created in each iteration.

As we can see, this value reaches its peak within the first 10

iterations and then dramatically drops to a small number. In

other words, the majority of SA intervals are created in the

first 12–14 iterations of the backwards search. Precalculating

the SA intervals for all 12–14-base pair-long substrings can

boost the performance. This speedup technique is discussed

later in the article.

3.3 Inexact matching

To tolerate sequencing errors and other variations of the reads

from the reference multi-genome, we have extended the exact-

matching backwards search algorithm to allow mismatches and

gaps. Figure 8 shows the high-level pseudo-code of the inexact

matching algorithm used for aligning a given read R with the

reference multi-genome G with up to n differences (mismatches

or gaps). This algorithm is an extension of the inexact search

algorithm used by BWA (Li and Durbin, 2009) and is guaranteed

to find all the alignments with up to n differences. To handle

mismatches and deletions in the read, we consider all the IUPAC

characters of the reference multi-genome alphabet (except #) in-

stead of just the set of characters that a given read base matches

to exactly. After computing the new SA intervals for each of

these characters, we advance the read position for matches/mis-

matches but not for deletions. To handle insertions, we just skip

a given read position without recomputing the SA intervals. We

can easily check whether a read base matches a given character

by computing the binary AND(&) of the read base and the char-

acter Gray code values. The ambiguous base N is considered a

mismatch (not shown for simplicity). By skipping #, we are able

to avoid mapping across reference sub-sequence boundaries (e.g.

chromosome and bubble branch boundaries) since, when the

reference multi-genome is assembled into one string, all the sub-

sequences are separated by # (current aligners operate on four-

letter A/C/T/G alphabets and need to discard such alignments

during post-processing).

We have adapted several heuristics from the existing BWA

aligner (Li and Durbin, 2009) for reducing the search space

and improving the performance of the alignment algorithm. In

particular, given a read R, we compute a lower bound array,

Dð�Þ, where DðiÞ is the lower bound on the number of differences

of matching the substring R½0, i� with the reference. This

lower bound is computed in OðjRjÞ time as described in (Li

and Durbin, 2009). By replacing the first condition of the

InexactMatch procedure with n5DðiÞ, we can terminate

the search earlier, if DðiÞ40. To reduce the search space further,

this algorithm has also been modified to prune out alignments

that are considered sub-optimal even though they might contain

less than the maximum number of allowed differences. Similar to

Fig. 8. Inexact matching algorithm. Returns the set of SA intervals of

substrings of G matching R with up to n differences. All the auxiliary

BWT structures are assumed to have been already pre-computed for G

Fig. 7. The average and standard deviation of the number of SA intervals

generated per iteration during simulated read alignment on the reference

multi-genome (averaged over 10K reads)
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BWA, we use a minimum priority heap-like structure of partial

alignments based on alignment score (instead of using recursion)

that allows us to process the entries with the best score first.

Depending on how many best hits are found and what is the

best found difference, the search parameters are dynamically ad-

justed and the search can be terminated early. In particular, no

sub-optimal alignments are explored if the number of best hits

exceeds a given threshold. Furthermore, if the number of differ-

ences in the best hit, nbest, is less than n, then n is reset to nbest þ 1.

It is also possible to limit how many differences are allowed in

the seed sequence (the first k base pairs at the beginning of the

read, where k is the seed length and can be adjusted) and disallow

insertions and deletions at the ends of the read. Other search

parameters available to the users of BWA (e.g. mismatch, gap

open and gap extension penalties) have also been incorporated to

provide a similar user interface and improve the efficiency of the

BWBBLE implementation.

Because the first 12–14 iterations account for a significant

share of the computation time (see Fig. 7), we provide an

option to precalculate the SA intervals resulting from exactly

matching all possible k-length strings (k ¼ 12 by default) with

the given reference multi-genome. The inexact alignment process

can then start at position jRj � k of the read by looking up the

result of mapping the last k read base pairs. Similar to the con-

struction of the BWT structures, this computation is a one-time

effort done prior to the alignment stage. We found the alignment

to be six times faster with this setting when given 10-K 125-bp

simulated reads and n ¼ 6. In terms of alignment results, this

setting is equivalent to setting the seed length to k and allowing

no differences in the seed, which does lead to a considerable

decrease in the confidence and accuracy of the results depending

on k.

3.4 Memory consumption

To reduce the memory requirement of the BWBBLE program,

we compress the BWT string (using four bits to represent each of

the 16 IUPAC characters) and only store a sampled subset of the

auxiliary O and SA arrays, calculating the intermediate values as

needed from the BWT string. More specifically, we only store the

values Oð�, iÞ and SAðiÞ where i is a multiple of the predefined

interval sizes OCC_INTERVAL (default 128) and SA_INTERVAL
(default 32), respectively. To obtain the Oðc, jÞ value for a j that

was not stored, we re-compute the number of times c occurs in

the compressed BWT string after the closest available position.

To calculate SAðjÞ that was not stored, we use the

following relation between the suffix array SA and the in-

verse compressed suffix array ��1 (Grossi and Vitter,

2000): SAðjÞ ¼ SAðð��1ÞðkÞðjÞÞ þ k, where ��1ðiÞ ¼

CðBWT½i�Þ þOðBWT½i�, iÞ and ð��1ÞðkÞ means applying ��1 k

times. Therefore, we can repeatedly apply ��1 until we obtain

a position for which the SA value has been stored.
A similar memory reduction technique is also used by other

aligners, such as BWA, SOAP2 and Bowtie. However, owing to

the larger alphabet size of the reference multi-genome (16

IUPAC characters as opposed to four nucleotides), the

memory requirement of the BWBBLE program is higher than

that of the existing aligners. Because these aligners only operate

on four nucleotides A/C/G/T, they only need two bits to store

each character of the BWT string and only need to record the
occurrence of four different characters at every position of the
Oð�, �Þ array. Therefore, given a genome of size n, they only need

2 n bits to store the BWT string and 4n log2 n bits to store the
entire O array (for simplicity, we do not consider the reverse
complement reference and the sampling of the O array here).

On the other hand, BWBBLE needs 4 n bits to store the BWT
string and 16n log2 n bits to store the entire O array. By increas-

ing the interval at which the O values are stored, it is possible to
reduce the BWBBLE memory consumption; however, this would
increase the time needed to recompute the intermediate O values

during the alignment stage. The amount of n log2 n bits needed to
store the SA array (used in the post-alignment stage) is the same
for all the aligners. It is also important to note that the length of

the multi-genome reference is expected to be larger than the
length of the single reference, as it includes bubbles as described

in Section 3.1.2. However, the cost of storing the reference multi-
genome index is much smaller than the cost of storing the index
for each genome in the population separately.

4 RESULTS

4.1 Implementation

The BWBBLE aligner was implemented in C. The program per-
forms the indexing of and short-read alignment with a reference

multi-genome; for convenience, it also provides a separate
(faster) mode for aligning to a single genome. Currently the pro-
gram only supports alignment of single-end reads (paired-end

alignment will be supported in the near future). The program
accepts the reference genome in the standard FASTA file
format and the reads in the FASTQ file format. The alignment

results are reported using the SAM file format.
We provide a script to generate the FASTA file for the refer-

ence multi-genome. The script accepts a single-genome build (e.g.

GRCh37) FASTA file and a set of VCF files with SNPs and
indels to be incorporated into the reference multi-genome; it

allows users to specify how many genomes to integrate, the min-
imum number of genomes a variation has to be present in to be
integrated, the expected read size and others.

The BWBBLE program supports parallel execution for the
alignment process. The code was parallelized using OpenMP
by splitting the reads among the parallel threads. Furthermore,

the program also uses the 128-bit registers of the Streaming
SIMD Extensions to parallelize the character count in the com-

pressed BWT string when retrieving occurrence values for pos-
itions at which they were not stored (see Section 3.4). BWBBLE
is freely available at http://viq854.github.com/bwbble.

4.2 Experiments

To evaluate the performance of BWBBLE, we have created the
reference multi-genome by combining the human genome build
GRCh37 with the variants of 1090 individuals obtained from the

October 2011 Integrated Variant Set release (The 1000 Genomes
Project Consortium, 2010). Only variants occurring in three or

more individuals were included. The resulting multi-genome ref-
erence incorporates 1 442 639 indels and 25289 973 SNPs. The
size of its FASTA file is 3.2 GB (as opposed to 2.8 GB for the

single GRCh37 file).
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We compared the performance of BWBBLE with the state-of-

the-art BWT-based single-genome aligner, BWA (Li and Durbin,

2009). We evaluated BWBBLE against the multi-genome refer-

ence, while BWA was run against the single-genome build

GRCh37. We ran BWA with its default parameters and used

the same mapping quality threshold (namely, 10) to evaluate

the confidence of the alignment results. Reads with a mapping

quality score higher than the given threshold were considered

confidently aligned. We compiled experimental results on simu-

lated and real reads. The accuracy of the results on simulated

read data sets was computed by finding the percentage of the

confidently aligned reads that were mapped to their correct pos-

ition in the reference (note: owing to the presence of bubble

branches, more than one multi-genome position can be con-

sidered correct).

Furthermore, we also compared BWBBLE with the GCSA

program (Siren et al., 2011) that performs indexing and short

read alignment with a collection of multiple sequences.

All the experiments were performed on a 2.67GHz Intel Xeon

X5550 processor.

4.2.1 BWT index construction To compute the suffix array SA,
BWBBLE uses the sais library (Mori, 2008), which provides an

implementation of the linear-time induced sorting SA construc-

tion algorithm (Nong et al., 2011), adapted to support a larger

input text size. The BWT string can be easily computed from SA

as described in Section 2. The total time taken by the BWBBLE

program to construct the BWT string and the auxiliary C, O and

SA arrays of the reference multi-genome was 4025 s (1.1 h). The

BWA aligner took 4335.1 s (1.2 h) to index the GRCh37 genome.

4.2.2 Simulated read mapping We have prepared two types of
simulated reads using the wgsim program (https://github.com/

lh3/wgsim). The first type of simulated reads, simR, was gener-

ated using the following standard wgsim parameters: sequencing

base error rate¼ 2%, SNP mutation rate¼ 0.09% and indel mu-

tation rate¼ 0.01%. To simulate the fact that in practice, we

expect a set of reads to largely contain real known variants

(rather than randomly generated SNPs), we have created two

additional simulated read sets that incorporate known variants

from two human genomes and have the wgsim mutation rate set

to 0. In particular, the second type of simulated reads was cre-

ated by combining the SNPs and indels from two human genome

builds, NA18626 (a Han Chinese from Beijing, China) and

HG00122 (a British from England and Scotland), with the

GRCh37 build and the following wgsim parameters: sequencing

base error rate¼ 2%, SNP mutation rate¼ 0% and indel muta-

tion rate¼ 0%. These reads are referred to as simNA and

simHG, respectively. The variations from these two human

genome builds were not part of the 1090 individuals’ variants

included into the reference multi-genome. Table 1 presents the

simulated read results.

4.2.3 Real read mapping We used the two real read sets
NA18626 and HG00122 sequenced by Illumina Genome

Analyzer II and mapped to build GRCh37. Table 2 presents

the real read evaluation results. Because the true mappings are

not available for these datasets, only the alignment confidence

results are shown.

4.2.4 Comparison with GCSA We compared BWBBLE with

the GCSA program (Siren et al., 2011) that performs short

read alignment with a collection of multiple sequences by build-

ing a prefix-sorted finite automaton from the multiple alignment

of the sequences in the collection. GCSA constructs a generalized

BWT-based index from the prefix-sorted automaton. This

method has the theoretical advantage of not requiring additional

branching due to SNPs during the backwards search, at the ex-

pense of the large amount of time and space required to build the

index (the construction algorithm has exponential time and space

complexity).
Owing to the high memory requirement of the prefix-sorted

automaton construction, an external memory implementation is

needed for the tool to run on a collection of human genomes,

which is currently not ready. For consistency with the GCSA

article, we conducted the experiments on the smaller sequence

of a single human chromosome 18 and used a set of 1M reads of

length 56 (corresponding to n ¼ 3 differences) simulated using

the wgsim program with the same parameters as simR.
The current GCSA implementation accepts as input the mul-

tiple alignment of the sequences in the collection; however, for a

large number of sequences, the time and space required for creat-

ing the multiple sequence alignment using available software can

be extremely large. To alleviate this problem, we have created a

multiple alignment of the 1092 individuals manually by integrat-

ing only known SNPs from each individual, respectively, into

chromosome 18 of GRCh37; the optimal multiple alignment is

trivial for this scenario. We have also created a reference multi-

genome with SNPs only from the 1092 individuals for BWBBLE.

Table 1. Evaluation on 100-K simulated reads of length 125bp with at

most n ¼ 6 differences

Program Conf (%) Err (%) Time (s)

bwa-simR 93.1 0.06 100

bwbble-simR 92.9 0.05 11295

bwa-simNA 92.7 0.09 110

bwbble-simNA 93.4 0.04 10896

bwa-simHG 92.6 0.11 107

bwbble-simHG 93.3 0.06 10892

Note: The percentage of confidently aligned reads (Conf), misaligned confident

reads (Err) and sequential execution time of each program are reported.

Table 2. Evaluation on 100-K real reads of length 108bp with at most

n ¼ 5 differences

Program Conf (%) Time (s)

bwa-NA-108 78.3 109

bwbble-NA-108 79.5 9560

bwa-HG-108 90.5 90

bwbble-HG-108 90.4 6672

Note: The percentage of confidently aligned reads (Conf) and sequential execution

time of each program are reported.
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The GCSA index construction took 1.87 h, whereas the
BWBBLE index construction took 48 s.
Similar to the experiments in the GCSA article, we compared

the running time and number of mapped reads for the two pro-
grams: GCSA accuracy and confidence cannot be evaluated be-
cause the position of mapped reads in the reference sequence is

not reported. The following results were obtained for the two
tools: GCSA: (find operation only) 8932.93 s/98 307 matches;
BWBBLE: 8439.21 s/94 364 matches. GCSA finds more hits, al-

though this does not imply that these matches are biologically
plausible. For example, the authors mention that they ‘have no
limits on gaps’, which could result in some implausible read

mappings. Without being able to evaluate the quality of the re-
ported matches, it is difficult to assess their significance. As ex-
pected, the number of exact matches was similar for both tools:

GCSA: 15 226 matches; BWBBLE: 15268 matches.

5 DISCUSSION

Because, in practice, the number of differences (mutations and
sequencing errors) between a 125-bp read and a single-genome

reference is usually smaller than the BWA default of n ¼ 6 dif-
ferences, the BWA aligner is able to map most of the reads in the
dataset, achieving high confidence and accuracy results.

However, on most datasets, the BWBBLE aligner does achieve
slightly better confidence and accuracy values. Because
BWBBLE does not treat as mismatches the deviations from

GRCh37 that are known SNPs, it can align reads that have
more than n differences from GRCh37 when some of these dif-

ferences are the SNPs included into the multi-genome reference.
Furthermore, because indels are incorporated by appending the
bubble branches (with no restrictions on their length), BWBBLE

can align reads that span known indels of any length (while
BWA with default parameters can only handle indels up to
length 6). Therefore, BWBBLE can be expected to perform

better on read sets that span a greater number of large indels
or regions with a high SNP count (e.g. reads from species that
have a higher SNP density than humans; Tenaillon et al., 2001).

Zooming in on the evaluation results of the 100-K simNA
dataset, we get the following performance counts: BWA (4332
unaligned, 92 735 confident, 92 645 correct); BWBBLE (3330 un-

aligned, 93 412 confident, 93 375 correct). Out of the 4332 reads
unaligned by BWA, 973 are confidently mapped by BWBBLE—
out of which 933 are correctly aligned (with 134 reads aligned to

appended bubble branches) and 40 are misaligned. Figure 9
shows an example of a read mapped to a long indel and a read

mapped to a region with a high concentration of SNPs (both of
these reads were unaligned by BWA and correctly aligned by
BWBBLE). Note that because appending indels as bubble

branches does not (by itself) require a change in the BWT back-
wards search algorithm, existing aligners (e.g. BWA) could use
this technique to handle longer indels without a substantial

modification to their code. Furthermore, out of the 406 reads
confidently aligned by BWA but not considered confident
matches by BWBBLE, 376 were correctly aligned. For 380 of

these 406 reads BWBBLE found more than one best match and
for the remaining reads it found too many sub-optimal matches.
Duplicated regions in the single-genome reference that have a

few additional mutations will be likely aligned to with a different

score by BWA and not treated as repeats. However, if the mu-

tations occurring in the repeats are only present in the subset of

the population, they will be captured as SNPs in the multi-

genome reference and can be aligned to with the same score by

BWBBLE.

The alignment algorithm is entirely memory bound, and its

running time is dominated by the random memory access pat-

terns of the sampled occurrence array Oð�, �Þ and the compressed

BWT string during the SA interval computation. Owing to the

4-fold increase in the size of the reference multi-genome alphabet,

the BWBBLE program performs many more SA interval com-

putations, which causes its running time to be significantly

slower. Namely, for each read base, the suffix array interval is

computed for 16 (rather than four) different characters while

differences (mismatches/gaps) are still allowed and for eight dif-

ferent characters when only exact matching is allowed (an opti-

mization used when the n differences have already been used up).

In particular, 188 826 valid SA intervals per read are found on

average when aligning to the reference multi-genome during the

inexact matching stage only (i.e. while differences are allowed), as

opposed to 8825 valid SA intervals for the single-genome refer-

ence alignment. For the 100-K read set, this is 18 billion more SA

intervals (note: this figure does not include the additional SA

interval computations that did not result in a valid interval and

the SA intervals computed during the exact matching stage only).
However, although the runtime cost of aligning with a refer-

ence multi-genome is very high, it is still significantly lower than

the cost of aligning to each genome in the population separately.

For example, it would take about 109 200 s to align 100-K reads

to 1092 genomes using BWA, and this time will grow linearly

with the size of the genome collection. On the other hand, while

the BWBBLE running time does depend on the number of SNPs

in the reference multi-genome, we expect that the SNP count

(and the program performance) will not increase linearly with

the number of genomes compiled into the multi-genome refer-

ence. This can be seen in Figure 10 that shows how the BWBBLE

runtime changes as the number of genomes incorporated into the

Fig. 9. (1) Read R from the simNA dataset unaligned to the single-

genome reference S-G by BWA (with default parameters BWA can

handle indels up to length 6) and correctly mapped to a bubble branch

representing an insertion of 16bp in the multi-genome reference M-G

using BWBBLE. (2) Read R from the simNA dataset unaligned to the

single-genome reference S-G by BWA and correctly aligned using

BWBBLE. The mismatches between the read and the references are

shown in red (for BWA this number exceeds the allowed six differences);

the SNPs in the M-G that match the read bases are shown in blue (these

SNPs are treated as matches). (Note: only the relevant portions of the

read and references are shown.)
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multi-genome reference grows. Therefore, as the number of

available genomes gets significantly larger, the speed-up of align-

ing with BWBBLE as opposed to each genome individually will

also be significantly greater.
Because BWBBLE runs on a multi-genome almost 100 times

slower than BWA on a single genome, it is interesting to compute

how many additional reads BWA can align in the same time

frame to the genomes in the database (although when aligning

to each reference separately, additional effort will have to be

spent combining and interpreting the results). To perform this

experiment, we have created 99 genomes in addition to GRCh37

(100 genomes total) and aligned the simR, simNA, simHG,

NA18626 and HG00122 read sets using BWA with each of

these genomes individually. More specifically, each genome

was created by adding its known variants on top of build

GRCh37. The number of reads aligned has increased for each

read set as follows: simR: 95 954 ! 95 961; simNA: 95668 !

96 655; simHG: 95 619 ! 96 656; NA18626: 81264 ! 81 594;

HG00122: 93 931 ! 94 065. BWBBLE aligned the following

number of reads to the original 1090 individuals multi-genome

and the 99 individuals multi-genome (note: no rare variant fil-

tering was performed for this reference), respectively: simR:

(96252; 96 283); simNA: (96 670; 96 633); simHG: (96 647;

96 641); NA18626: (81 627; 81 598); HG00122: (93 720; 93 713).

As expected, BWA (and BWBBLE on the 99 individuals multi-

genome) aligned most of the same reads that BWBBLE aligned

to the 1090 multi-genome, as many of the variants can be ex-

pected to be present in these 100 genomes.

6 CONCLUSION

In this article, we proposed a compact representation for a col-

lection of genomes (the reference multi-genome) that captures

the genomic variations in the collection and presented

BWBBLE, a BWT-based short-read aligner that operates on

this compiled reference. We demonstrated the performance of

BWBBLE on a human reference multi-genome incorporating

variants from 1090 individuals. A limitation of our reference

multi-genome representation is its use of read length dependent

padding to capture structural variants, which to achieve best

results necessitates multiple reference indices to be built for

each particular read length. In addition, padding can also

cause a significant increase in the length of the reference for

highly variable species.
Although aligning to the reference multi-genome is much

slower than to a single genome, it is considerably more efficient

than aligning to each genome in a large collection separately. As

the number of sequenced genomes grows, aligning with

BWBBLE should become much more time and space efficient.

Moreover, because BWBBLE can align reads that span long

(known) indels, its utility will increase once large databases of

structural variants are available. BWBBLE can also be useful in

functional genomics assays of parent/offspring trios, where un-

biased peak calling is desired (Goncalves et al., 2012). Finally,

BWBBLE can output important information about the SNPs

and structural variations that a given read was mapped to (e.g.

the number of genomes in the collection that contain this par-

ticular variation), which should simplify and improve the current

post-alignment processing pipeline.
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APPENDIX

Let E¼ the total expected number of SA intervals;

�A, �T, �C, �G ¼ the occurrence percentage of the four nucleo-
tides in the genome; cA, cT, cC, cG ¼ the number of separate SA
intervals associated with each of the four nucleotides. We have:

E ¼ �AcA þ �TcT þ �CcC þ �GcG

and we need to show that E is minimized with the four-bit Gray
code bAbTbCbG.

Let’s assume that all �’s are equal (this assumption will be

lifted later). Without loss of generality, we rename all c’s to be

c1, c2, c3, c4 and assume 1 � c1 � c2 � c3 � c4. As mentioned

in Section 3.1.1, the four-bit Gray code leads to

c1 ¼ 1, c2 ¼ 1, c3 ¼ 2, c4 ¼ 4. To demonstrate that the Gray

code results in the minimized E, we will disproof the existence

of the following two cases: (i) c1 ¼ 1, c2 ¼ 1, c3 ¼ 1, c4 � 4 and

(ii) c1 ¼ 1, c2 ¼ 1, c3 ¼ 2, c454.

PROOF: We represent an IUPAC symbol with four features,

each for an A/C/G/T base. The feature associated with base �i is

denoted by �i if base �i can match this IUPAC character, and it

is denoted by ��i if base �i does not match this character. The

‘don’t care’ features are omitted. For instance, the IUPAC sym-

bols that match base �2 but do not match �1 have the features

ð ��1�2Þ.

Case (i). Suppose an order � with c1 ¼ 1, c2 ¼ 1, c3 ¼ 1

exists. Define uj¼ the jth smallest IUPAC symbol in this order.

Because c1 ¼ 1, the IUPAC symbols with features ð�1�2Þ and the

symbols with ð�1 ��2Þ are consecutive in �. Similarly, because we

have c2 ¼ 1, the symbols with ð�1�2Þ and those with ð ��1�2Þ are

also consecutive. With these two constraints, we assign uiþ1–uiþ4
to the symbols with ð�1 ��2Þ, uiþ5–uiþ8 to the codes with ð�1�2Þ,

and uiþ9–uiþ12 to the symbols with features ð ��1�2Þ, where

0 � i � 4. To meet the requirement of c3 ¼ 1, we need to assign

ujþ1–ujþ8 to the symbols with ð�1�2�3Þ, ð ��1�2�3Þ, ð�1 ��2�3Þ and

ð ��1 ��2�3Þ. A value j that meets this demand does not exist and

therefore we reach a contradiction.

Case (ii). To make c3 ¼ 2, we need to assign uiþ3–uiþ6 and

uiþ11–uiþ14 to the IUPAC symbols with ð�3Þ, where 0 � i � 2.

Without loss of generality, let i be 0. Thus, to guarantee that all

16 IUPAC codes represent distinct subsets of four bases, for any

k we know that u2kþ1 and u2kþ2 must have opposite features for

base �4; that is, one is ð�4Þ while the other one must be ð ��4Þ. The

only assignment that makes c4 ¼ 4 is assigning u4kþ2–u4kþ3 to the

symbols with the feature ð�4Þ for all 0 � k � 3. In any order, c4
cannot be smaller than four.
In the context of the human genome, the nucleotides A and T

occur more frequently than C and G. In other words,

�A 	 �T4�C 	 �G. With the nucleotide-to-bit assignment

bAbTbCbG, we have cA ¼ 1, cT ¼ 1, cC ¼ 2, cG ¼ 4. The

expected SA interval number can be rewritten as:

E ¼ �A � 1þ �T � 1þ �C � 2þ �G � 4

Switching any two values in the c’s assignment will result in the

increment of the E value. Therefore, this assignment is the opti-

mal solution for this problem. œ
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