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Background. P63 immunostaining has been considered as potential prognostic factor in laryngeal cancer. Considering that P63 is
mainly nuclear stain, a possible correlation between the texture of P63-stained nuclei and the tumor’s grade could be of value to
diagnosis, since this may be related to biologic information imprinted as texture on P63 expressed nuclei. Objective. To investigate
the association between P63 stained nuclei and histologic grade in laryngeal tumor lesions. Methods. Biopsy specimens from
laryngeal tumour lesions of 55 patients diagnosed with laryngeal squamous cell carcinomas were immunohistochemically (IHC)
stained for P63 expression. Four images were digitized from each patient’s IHC specimens. P63 positively expressed nuclei were
identified, the percentage of P63 expressed nuclei was computed, and 118 textural, morphological, shape, and architectural features
were calculated from each one of the 55 laryngeal lesions. Data were split into the low grade (21 grade I lesions) and high grade (34
grade II and grade III lesions) classes for statistical analysis. Results. With advancing grade, P63 expression decreased, P63 stained
nuclei appeared of lower image intensity, more inhomogeneous, of higher local contrast, contained smaller randomly distributed
dissimilar structures and had irregular shape. Conclusion. P63 expressed nuclei contain important information related to histologic
grade.

1. Introduction

Laryngeal cancer amounts to about 3% of new diagnosed
human cancers [1] and it has bad prognosis. Laryngeal
cancer has been related to a number of risk factors such
as smoking, alcohol drinking, heredity, and environmental
substances [2–6]. Considering that in Europe 55% of the
patients with laryngeal cancer may survive more than five
years after first diagnosis [7], early and accurate diagnosis
is important for adopting the right treatment and, conse-
quently, for improving patient survival. Regarding accurate
diagnosis, evaluation of the tumor’s severity or grade is
routinely performed by examining, on a conventional light

microscope, tumor biopsy specimens stained with hema-
toxylin and eosin (H&E). However, grading of laryngeal
lesions is influenced by the examining physician’s experience
and by low inter- and intraobserver reproducibility rates
[8–10] amongst experienced pathologists. Regarding early
diagnosis, many researchers have focused on identifying new
prognostic factors, one such factor being the production of
P63 protein by the TP63 gene, and the association of P63
overexpression with epithelial neoplasms of the lanynx [11–
14]. It has been found [11] that in 96% of patients with
laryngeal squamous cell carcinomas, the immunoexpression
of P63 was present in over 30% of the cells, while in another
study [14] the P63 cell-immunostaining cut-offwas set at 50%
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and it was expressed in 95% of the patients with esophageal
squamous cell carcinoma.

While P63 has been mostly used as a potential prog-
nostic factor, it is also considered as nuclear stain. On the
other hand, H&E, which is primarily used for histological
grade assessment of laryngeal cancer, is not a predominantly
nuclear stain. Thus, the question arises if there might exist
a correlation between the nucleus texture of P63-expressed
nuclei and the tumor’s grade, as determined byH&E staining.
Such a finding would be beneficial to improving diagnosis
of laryngeal cancer, since this may be related to biologic
information imprinted as texture on P63 expressed nuclei.
However, for such an association to be investigated, a
computer-based analysis of the texture of P63 stained nuclei
would be required.

Computer-assisted image analysis methods have been
previously utilized to automatically analyze digitized laryn-
geal histopathology H&E stained images, with speed and
accuracy, in the effort to assess patient survival rates or to
identify image parameters that differentiate between different
types of lesions. Delides et al. [15] evaluated the fractal
dimension, which reflects textural heterogeneity, on H&E
stained histology images of laryngeal tumor tissues and
found that patients with lower values of fractal dimension
had higher survival rates. Dobroś et al. [16] used image
analysis methods on H&E stained histopathologic sections
of patients with laryngeal carcinomas for evaluating cell
parameters, such as cell concentration, nuclear area, perime-
ter, density, roundness, and associated parameter thresholds
with patient survival. In another study regarding laryngeal
cancer [17], Galectin-3 labeled digitized microscopy images
of patients with in situ laryngeal carcinoma, laryngeal inva-
sive squamous cell carcinoma, and cervical lymph nodes
were analyzed by a commercial software. Image analysis
consisted of cell segmentation and automatic cytoplasm
counting for automatically evaluating Galectin-3 expression.
High Galectin-3 expression was related to the invasiveness
and aggressiveness of laryngeal carcinomas. In a study by
Dreyer et al. [18], computer analysis of images was employed
to automatically calculate the fractal-area feature as a basis
for discriminating between benign, dysplastic, and malig-
nant squamous epithelium of the larynx. Teresa et al. [19]
performed a computer-based analysis of AgNOR and Ki-
67 stained oral biopsy specimens, by automatically counting
positively Ki-67 stained cells and by evaluating a number
of AgNOR morphometry parameters, in order to assess the
proliferative status of oral epithelial cells in oral cancer.
A good account on algorithms used in computer-assisted
numbering of cancer cell nuclei in histological sections may
be found in [20, 21].

Furthermore, computer-based decision support systems
have been designed to function as second opinion tools in
characterizing laryngeal cancer lesions [22, 23], employing
powerful pattern recognition techniques on microlaryn-
goscopy color images. In a recent study by our group [24],
a high precision decision support system was designed,
employing immunohistochemically stained for p63 expres-
sion histopathology images, for discriminating between low
from high grade laryngeal lesions.

In the present study, digitized images of histologic sec-
tions from laryngeal cancer lesions, immunohistochemically
stained for P63 expression, were used to analyze, by computer
processing, the amount of P63 staining and the texture of P63
expressed nuclei and relate them to the histologic grade of
the lesion.The grade of laryngeal lesions had been previously
determined by an experienced pathologist by means of
H&E stained digitized images of specimens from the same
laryngeal lesions. A number of textural and morphologic
features were computed from the P63 expressed nuclei.
Computer analysis revealed textural properties that differed
significantly between the grades of laryngeal cancer. This
constitutes new important information related to histologic
grade. Additionally, a nonlinear prediction equation was
designed, employing as equation parameters the percentage
of P63 staining and a few textural and morphologic features.
That equation would estimate the probability of a P63 stained
laryngeal tumor biopsy specimen for being of low or high
grade. To our knowledge, similar study on immunohisto-
chemically stained for P63 expression laryngeal cancer biopsy
specimens that relates texture and morphology properties
of P63 stained nuclei to histological grade has not been
previously published.

2. Material and Methods

2.1. Clinical Material. Archival material from fifty five
patientswith diagnosed laryngeal cancer, whohadundergone
biopsy between the years 2008 and 2012, was collected by
an experienced histopathologist (P.R.) in the Department
of Pathology, University Hospital of Patras, Rio, Greece.
Patients had a mean age of 63, ranging between 44 and
89 years old, and most were smokers (47/55). Laryngeal
lesion sites (see Table 1) were 35 glotic and 11 supraglottic,
3 were spread to more than one laryngeal subsite, and for
6 patients information related to lesion site was not filed.
Clinical and pathological staging were determined following
the American Joint Committee on Cancer (AJCC) guidelines
[25]. There were eight T2, twenty-nine T3, and thirteen T4
cases. There were forty-three N0 cases, two N1 cases, and
five N2 cases. Seven cases were stage II, twenty-seven stage
III, and sixteen stage IV. For five cases the TNM evaluation
(T: tumor size, N: lymph nodes involvement, and M: distant
metastasis) was not filed. All lesions were diagnosed as
laryngeal squamous cell carcinomas.

Biopsy sections were formalin-fixed and paraffin embed-
ded, and the specimens were hematoxylin and eosin (H&E)
stained for histological tumour grading and stage assessment,
and immunohistochemically (IHC) stained for P63 expres-
sion. Thus, for each case H&E and P63 stained specimen
tissues were generated. Twenty-one cases were diagnosed as
grade I, eighteen as grade II, and sixteen as grade III. The
material was retrospectively retrieved from the archives of the
Histopathology Department. Tumor grade was assessed by
an experienced histopathologist (P.R.) on the H&E stained
specimens, following routine visual assessment under the
microscope [26]. At the time of conducting the present study,
the quality of H&E slides was checked by the histopathologist
and few cases were omitted from the initial material due to
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Table 1: Site, stage, and grade distribution of laryngeal tumor lesions.

High differentiation
(grade I)

Moderate
differentiation
(grade II)

Low differentiation
(grade III)

Total

21 18 16 55

Lesion site

Glotic 17 11 7 35

Supraglotic 3 3 5 11
Spread

to subsites 0 2 1 3

N/A 1 2 3 6

Stage

T2 3 3 2 8

T3 13 9 7 29

T4 4 4 5 13

N0 18 12 13 5

N1 1 0 1 43

N2 1 4 0 2

N/A 1 2 2 5
II 3 3 1 7

III 12 7 8 27

IV 5 6 5 16

muddy and/or uneven stain. Furthermore, P63 expression
was assessed by visual inspection on the IHC-stained spec-
imens by the same histopathologist, who set the threshold at
50% (regarding the percentage of positively expressed nuclei
present in the whole of the slide under examination) for
considering a case as having positive P63 expression. Below
that threshold cases were not considered and were removed
from the material of the present study. P63 staining was
visually assessed by the same physician who at the same
time marked regions on the substrate of the slide, indicating
regions of interest for subsequent computer based image
analysis. During the IHC evaluation the physician did not
take under consideration the case’s histological grade. Finally,
a total of 55 cases were considered suitable and were used for
further processing.

2.2. Computer-Based Analysis. From each case, four nonov-
erlapping images were selected from IHC-stained specimens
regions that the pathologist had outlined on the substrates.
Images were digitized at ×400 magnification, using a Leica
DM2500 light microscope equipped with a Leica DFC420C
digital camera, connected to a PC, with image resolution of
1728 × 1296 × 24 bits. The accompanying imaging software
regulated automatically image capture parameters, such as
exposure time, image contrast, image amplification, gamma
value, and white balance.

The first stage of the computer analysis consisted of
locating the nuclei present in each image of the patient,
delineating their outline, and calculating the P63 positively
expressed nuclei as a fraction (%P63) of the total number of
nuclei present in the patient’s four images. The segmentation
method that was used in the present study for identifying

the nuclei has been previously developed by our group for
other similar applications and a detailed account the method
may be found in [21]. Briefly, the segmentation algorithm
comprised two stages, first an image preprocessing stage, in
which the original digitized image was transformed from
a three-colour RGB image into a two-colour 𝐿∗𝑎∗𝑏∗ [21]
image, for easier processing (𝐿∗: light and dark intensities
differences, 𝑎∗: redness-greenness differences, 𝑏∗: blueness-
yellowness difference). In the second stage, the fuzzy
C-means clustering algorithm divided the 𝐿∗𝑎∗𝑏∗ image
into three pixel clusters, the expressed nuclei pixels cluster,
the unexpressed nuclei pixels, and the background pixels
cluster, which belonged to the surrounding the nuclei tissues.
Two images were, thus, formed one from the expressed and
the other from the nonexpressed pixels only, which were
displayed with their original RGB value. Nuclei in the first
image attained brownish colour (expressed nuclei) and in
the second image bluish colour (nonexpressed nuclei). Both
images were next processed by morphological and size filters
to complete the shape of the nuclei and to discard formations
less than 300 pixels in size; 300 was the lower threshold
set for identifying a formation as nucleus and it was set
experimentally. Figures 1(a) and 1(b) present the original and
segmented (P63 expressed) nuclei images. The correctness
of segmentation was visually evaluated by the experienced
pathologist by examining the nuclei in the segmented and
the original images.

The second stage of the computer analysis consisted of
evaluating a large number of textural and morphological fea-
tures from each one of the P63-expressed nuclei and in each
one of the lesions’s four images. Each lesion was, thus, rep-
resented by one feature-vector, containing one hundred and
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Figure 1: (a) Digitized frame from P63 stained specimen and (b) P63 expressed nuclei.

eighteen feature averages. Three classes were, then, formed
each containing the feature-vectors of the corresponding to
grade I, grade II, or grade III cases. Next, each feature’s dis-
criminatory power, in terms of statistical significance differ-
ences between laryngeal lesion grades, and each feature’s cor-
relation to laryngeal tumour grade advancement were esti-
mated.This is expected to produce useful information regard-
ing the change of nuclei texture and shape with disease sever-
ity. Textural features were generated using the gray-scale ver-
sion of the P63 expressed nuclei. Four featureswere calculated
from the nucleus-image histogram (mean value, standard
deviation, skewness, and kurtosis). Twenty six (26) features
were extracted from the nucleus-image’s cooccurrencematri-
ces [27] (in fact, 13 features, each represented by two feature-
values, the average and range over four directions). Ten
features were evaluated from the nucleus-image’s run-length
matrices [28] (actually, 5 features, each represented by two
feature-values, the average and range over four directions).
Twelve features were calculated from the frequencies of the
3-bin histograms of the nucleus-image Radon transform at
0, 45, 90, and 135 degrees [29, 30]. Twenty-four (24) features
were estimated from the frequencies of the nucleus-image
multi-scale histograms at 3, 5, 7, and 9 bins [31]. Six Tamura
[32] textural features were estimated, regarding nucleus-
image coarseness, directionality, and contrast and the three
frequencies of the 3-bin histogram. Eleven edge statistics [33]
features were formed by convolving the nucleus-image with
the Prewitt gradient and calculating the mean, median, vari-
ance, and the frequencies of the 8-bin histogram of the pro-
cessed nucleus image. Since P63 predominantly stained the
nuclei, it meant that nuclei were better definedwithin the sur-
roundingmatter and this led us to consider additional nuclear
features. Ten features were calculated from the morphology
of the nuclei (area, perimeter, eccentricity, length major axis,
length of minor axis, convex area, solidity, equivalent diame-
ter, rectangularity, and compactness). Six features evaluating
the shape of the nucleus outline were computed [34] (mean,
standard deviation, range and entropy of the radial distance
from the nucleus centroid, circularity ratio or circle variance,
which is defined as the ratio of the mean over the standard
deviation of the radial distance, and outline roughness index).
The spread or physical topology of the nuclei in the imagewas

evaluated employing architectural features. Those features
were derived from theminimum spanning tree (MST), which
is formed by joining all nuclei in the imagewith theminimum
length. Seven such features were evaluated by measures of
the MST (mean, range, standard deviation, maximum, mini-
mum, sum, and total length).Additionally, the fractal dimen-
sion, which evaluates heterogeneity of tumour tissue and has
been shown to be a prognostic factor in laryngeal carcinoma
[15], was evaluated. Finally, the percentage of P63 expressed
nuclei in the patient’s digitized images was calculated, since it
has been previously associated with patient prognosis [11].

Textural features from the nucleus image histogram, the
cooccurrence, and run-length matrices were evaluated as
described in a previous study by our research group [21].
Features from the nucleus morphology, the MST, and the
fractal dimension were evaluated from functions available
in the Matlab software. The rest of the features (Radon
transform, multiscale histograms, Tamura descriptors, edge
statistics, and shape features) were calculated in accordance
with previous studies [29–34]. Each case was, thus, repre-
sented by a 118-dimensional feature vector, in which each
feature was the average calculated from all P63-expressed
nuclei detected in the case’s four digitized images.

The third stage of the computer analysis consisted of
determining textural features that sustained statistically sig-
nificant differences between the grades of laryngeal cancer,
employing Wilcoxon statistical test, when considering two
grade comparisons, and the KruskalWallis test for 3 grade
comparisons [35]. The correlation between each feature and
the tumour’s grade was evaluated employing the Point Bis-
erial Correlation (for feature values against distinct grades)
and the correlation amongst features was estimated by
employing Spearman’s correlation [35].

Finally, the fourth stage of the computer analysis con-
sisted of using the logistic regression analysis [35] to construct
an equation, using nuclei properties (features), for assessing
a laryngeal lesion’s probability of being of either low or high
histological grade of laryngeal cancer. The nonparametric
Receiver Operating Characteristic (ROC) curve was used
for estimating the discriminating power of the nonlinear
logistic regression model, by means of the Area Under the
ROC curve (AUC). First, data were normalized to zero mean



Analytical Cellular Pathology 5

and unit standard deviation by means of 𝑓
𝑖
= (𝑓
𝑖
− 𝑚)/𝜎,

where 𝑓
𝑖
is the normalized version of feature 𝑓

𝑖
and 𝜇 and

𝜎 are the mean and standard deviation of feature 𝑓
𝑖
, both

calculated over all patterns of both classes. This measure was
taken in order to avoid feature-value bias. Second, a feature-
vector of high discriminatory power was selected, amongst
the 118 features, in order to construct the nonlinear logistic
regression equation. This was accomplished by means of the
Sequential Forward Floating Selection (SFFS) feature selec-
tion technique [36], employing a class separability measure,
and the leave-one-out (LOO) cross-validation method [36]
for a less biased assessment of the equation’s discriminatory
power. The class-separability function was calculated by
means of 𝐽 = trace {𝑆−1

𝑤
𝑆
𝑚
}, where 𝑆

𝑤
is the within-class

scatter-matrix, 𝑆
𝑚
is the feature vector covariancematrix, and

trace refers to the sum of the main diagonal matrix terms.
Most of the above statistical test procedures are available as
functions in the Matlab software and/or in [37].

3. Results

In the image segmentation stage, about 87%, on average, of
the segmented objects were recognized by the physician as
nuclei. This is not far from the findings of previous studies
[21, 38–41]. The physician had to inspect segmented images
against the original RGB images of each patient, with the
task of identifying and excluding from the images segmented
objects that were not nuclei. This was accomplished by
means of the custom developed software. Those segmented
images, containing only the verified positively and negatively
expressed nuclei, were used for further processing.

Examining the values of nuclei textural features and how
these values may change with advancing grade, it was found
that at the 1% (𝑃 = 0.01) statistical level there were two
features that displayed statistical significant difference (SSD)
amongst the three grades; the Long Run Emphasis (LRE) and
the Run Percentage (RP) textural features from the run length
matrix.

Regarding the Long Run Emphasis textural feature,
Figure 2(a) shows the boxplots of the three grade-classes,
depicting, at each grade, the spread, andmedian of the feature
values. LRE revealed SSD amongst the three grade classes
of 𝑃 = 0.006 and negative correlation of 𝑟 = −0.42 at a
confidence level (probability for the null hypothesis to hold)
of 𝑃 < 0.005 (𝑃 = 0.004). Examining the between the grade-
classes SSDs of the LRE feature, it was found that only grade
I and grade III classes sustained SSD (𝑃 = 0.0008), while
grade II and grade III class comparisons showed no SSD at
the 1% statistical level. Figure 2(b) shows the point biserial
correlation of the RLE feature with advancing grade and the
95% confidence levels.

SSDs amongst the three grade classes at the 1% statistical
level were also revealed by the Run Percentage textural
feature. Figure 2(c) shows the boxplots of the three classes
for the RP feature, sustaining SSD amongst grade classes of
𝑃 < 0.01 (𝑃 = 0.009) and positive correlation of 𝑟 = 0.45
at statistical confidence level of 𝑃 < 0.005 (𝑃 = 0.002).
Examining the between classes SSDs of RP, it was found that

grade I class sustained SSD with grade III class (𝑃 = 0.01)
and that there was no SSD between grade II and grade III
class-comparison at the 1% statistical level. Figure 2(d) shows
the point biserial correlation of the RP feature with advancing
grade and the 95% confidence levels.

Since both LRE and RP features showed no SSDs between
grade II and grade III classes and since non-SSDs were
also verified in the overwhelming majority of the examined
features, it was decided to combine grade II and grade III
classes into one class, the High Grade class. Thus, from here
on, a two-class problem is considered, consisting of the low
grade (LG) class, containing the grade I laryngeal tumour
cases, and the high grade (HG) class, comprising the grade
II and grade III laryngeal tumour cases.

In the LG againstHG class comparisons, sixmore textural
features showed SSDs at the 1% level as well as correlations at
good confidence levels; contrast, inverse difference moment,
difference variance, difference entropy, run length nonunifor-
mity, and solidity.The first four features were calculated from
the cooccurrencematrix, the fifth from the run-lengthmatrix
and the sixth from the morphology of the nuclei. As shown
in Figure 3 and Table 2, all eight features had SSDs between
the LG and HG classes and correlations with advancing
grade either positive or negative. Additionally, by relaxing
the statistical threshold to 𝑃 < 0.05, which is well accepted
statistical level in medical studies, four more features were
found to sustain SSDs between LG and HG laryngeal lesions,
the mean value, the percentage of P63 expressed nuclei, the
Tamura histogram feature (third component of the 3-bin
coarseness histogram), and the edge statistics feature (the 8th
component of the 8-bin histogram).

Table 2 shows, for each one of the 12 features, the mean
values and standard deviations of each feature as well as the
SSDs between the LG and HG classes and the point biserial
correlations at statistically significance level (at least 𝑃 < 0.05
or smaller). In more detail and as shown in the boxplots
in Figure 3 and the values of Table 2, LRE and RP features
both sustained SSDs at 𝑃 < 0.005 and correlations of −0.43
and 0.44, respectively. Similarly, the contrast (CONT) feature
sustained SSD between LG and HG classes at 𝑃 < 0.01 and
𝑟 = 0.44, the inverse difference moment (IDF) feature SSD
at 𝑃 < 0.01 and 𝑟 = −0.43, the difference variance (DVAR)
feature SSD at 𝑃 < 0.01 and 𝑟 = 0.43, the difference entropy
(DENTR) feature SSD at 𝑃 < 0.01 and 𝑟 = 0.43, the run
length nonuniformity (RLNU) feature SSD at 𝑃 < 0.01 and
𝑟 = 0.35, the solidity feature SSD at 𝑃 < 0.01 and 𝑟 = −0.35,
the mean value (MV) feature SSD at 𝑃 < 0.05 and 𝑟 = −0.32,
Tamura histogram feature (TamuraH) SSD at 𝑃 < 0.05 and
𝑟 = −0.3 and the edge statistics feature (EdgeSt) SSD at
𝑃 < 0.05 and 𝑟 = −0.35.

Regarding the percentage of P63 expressed nuclei, the
particular parameter was calculated for each patient automat-
ically by computer processing of the 4 patient images, and it
referred to the percentage of P63 expressed nuclei over the
total number of nuclei detected within the areas of interest,
which were indicated by the expert physician. As seen in
Figure 3(j) and Table 2, it was found that the percentage of
P63 expressed nuclei in the two classes differed significantly at
the 5% level (𝑃 = 0.02) and displayed a negative correlation of
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Figure 2: Box plots and correlation plots of the Long Run Emphasis ((a) and (b)) and Run Percentage ((c) and (d)) features, respectively,
sustaining statistically significant differences (𝑃 < 0.01) between the three laryngeal grades.

decreasing P63 expression with advancing grade (𝑟 = −0.3).
This correlation was significantly different from zero at 𝑃 <
0.05 level of confidence. That is, the percent of P63 expressed
nuclei decreases with advancing grade.

Although the features described above showed SSDs
between LG and HG classes, that is, they possessed rea-
sonably high discriminatory power between the two classes,
however, when examined individually it was realized that
they could not be used to assess the probability of a case
as belonging to either the low or the high grade classes.
This becomes clear when one examines the mean values and
standard deviations in Table 2 and the spread of values in the
boxplots of Figure 3; features of good discriminating power
and with valid, positive, or negative correlation, had their
feature values distributedwith an evident overlap between the
two classes. This means that one would hesitate to propose
an index, based on the values of an individual feature, which
would assign one case to either low or high grade class,
with reliable prediction accuracy. For this to be feasible, a
number of features would have to be combined, linearly

or non-linearly, into one equation, which hopefully would
draw apart the multifeature distributions of the two classes
and, thus, form a multidimensional index, to be used as
a grade prediction model. Those features, however, would
have to be as much uncorrelated as possible, if classes
were to be distinctively separated [36]. Following feature
normalization to zero mean and unit standard deviation,
it was found that, in their majority, those features bared
high correlations amongst themselves. Thus, when they were
examined in various combinations, as parameters in the
nonlinear logistic regression equation, the so formed grade
prediction model was of low prediction credibility. Searching
for other feature combinations, by looking into the set of
118 generated features in the present study, of up to seven
features (a rule of thumb is that features in a combination
should not exceed 1/3 of the cases in the smallest class
[36]), it was found that the following features combination
(or vector) provided highest prediction accuracy: percentage
of P63 expressed nuclei, Angular Second Moment (range),
correlation (average), Inverse Difference Moment (range),



Analytical Cellular Pathology 7

Statistical significance: P = 0.0037

20

25

30

35

40

45

50

55
Lo

ng
 ru

n 
em

ph
as

is

Low grade = grade I High grade = grade II + grade III

(a)

0.22

0.24

0.26

0.28

0.3

0.2

Ru
n 

(%
)

Statistical significance: P = 0.0016

Low grade = grade I High grade = grade II + grade III

(b)

0.22

0.24

0.26

0.28

0.18

0.16

0.2

Statistical significance: P = 0.0021

Low grade = grade I High grade = grade II + grade III

C
on

tr
as

t

(c)

0.18

0.19

0.16

0.15

0.14

0.17

0.2

Statistical significance: P = 0.0026

Low grade = grade I High grade = grade II + grade III

D
iff

er
en

ce
 v

ar
ia

nc
e

(d)

0.86

0.87

0.89

0.88

0.9

0.91

0.92

Statistical significance: P = 0.0025

Low grade = grade I High grade = grade II + grade III

In
ve

rs
e d

iff
er

en
ce

 m
om

en
t

(e)

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Statistical significance: P = 0.0025

Low grade = grade I High grade = grade II + grade III

D
iff

er
en

ce
 en

tro
py

(f)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Statistical significance: P = 0.0091

Low grade = grade I High grade = grade II + grade III

Ru
n 

le
ng

th
 n

on
un

ifo
rm

ity

(g)

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

Statistical significance: P = 0.0071

Low grade = grade I High grade = grade II + grade III

So
lid

ity

(h)

Figure 3: Continued.



8 Analytical Cellular Pathology

4.6

4.8

5

5.2

5.4

5.6

5.8
M

ea
n 

va
lu

e
Statistical significance: P = 0.0353

Low grade = grade I High grade = grade II + grade III

(i)

65

70

75

80

85

90

95

Ta
m

ur
a h

ist
og

ra
m

Statistical significance: P = 0.0578

Low grade = grade I High grade = grade II + grade III

(j)

20

25

30

35

40

Ed
ge

 st
at

ist
ic

s

Statistical significance: P = 0.0164

Low grade = grade I High grade = grade II + grade III

(k)

40

45

50

55

60

65

70

75

80

85

90

Statistical significance: P = 0.0238

Low grade = grade I High grade = grade II + grade III

P6
3 

ex
pr

es
se

d 
(%

)

(l)

Figure 3: Box plots of features sustaining statistically significant differences between low and high grade classes. (a) Run length emphasis,
(b) run percentage, (c) contrast, (d) inverse difference moment, (e) difference variance, (f) difference entropy, (g) run length nonuniformity,
(h) solidity, (i) mean value, (j) Tamura histogram feature, (k) edge statistics feature, and (l) percentage of positively expressed nuclei.

Table 2:Means, standard deviations, statistical significance, and correlations of features with statistically significant differences betweenHigh
Grade and Low Grade laryngeal tumor lesions.

LG-class HG-class LG versus HG LG versus HG

mv std mv std Statistical significance Correlation 𝑟
at P < 0.05

% P63 84.840 3.251 79.833 9.565 0.02 −0.300
MVa 5.170 0.260 5.010 0.211 0.03 −0.322
CONTa 0.216 0.024 0.238 0.02 0.002 0.436
IDFa 0.893 0.012 0.883 0.009 0.003 −0.434
DVARa 0.168 0.014 0.179 0.010 0.003 0.434
DENTRa 0.515 0.033 0.542 0.023 0.003 0.434
LREa 39.475 9.026 32.351 6.122 0.004 −0.428
RLNUa 0.057 0.008 0.064 0.009 0.009 0.354
RPa 0.240 0.022 0.261 0.019 0.002 0.447
Solidity 0.945 0.008 0.940 0.005 0.007 −0.332
TamuraH 70.751 7.601 65.974 7.021 0.040 −0.307
EdgeSt 32.205 5.939 28.356 4.245 0.016 −0.356
% P63: percentage of P63 expressed nuclei, MV: mean value, CONT: Contrast, IDF: Inverse Difference Moment, DVAR: Difference Variance, DENTR:
Difference Entropy, LRE: Long Runs Emphasis, RLNU: Run Length Nonuniformity, RP: Run Percentage, TamuraH: Tamura histogram feature, EdgeSt: edge
statistics feature, mv: mean value, and std: standard deviation, a: average of the feature over four directions (0∘, 45∘, 90∘, and 135∘).
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Table 3: Contingency table of predicting the grade of laryngeal squamous cell carcinomas by the nonlinear logistic regression equation.

LG+ LG− HG+ HG− % overall accuracy Cohen-Kappa AUC
16 5 31 3 85.5 0.654 0.87
LG+ and LG− refer to low grade (grade I) of correctly and incorrectly predicted carcinomas and HG+ and HG− refer to correctly and incorrectly predicted
high grade (grade II + grade III) carcinomas, respectively. AUC: area under the curve; overall prediction accuracy was estimated by the LOO cross validation
method.

Sum Entropy (range), Solidity, and Radial Distance (range).
That best-feature vector was determined by means of the
SFFS feature selection method. Its prediction accuracy was
evaluated by means of the leave-one-out cross-validation
method and it was found 85.5% (see Table 3); 16 out of 21
LG cases and 31 out of 34 HG cases were predicted correctly.
Table 3 also shows the index value (0.654) of the Cohen-
Kappa test statistic, which is rated as a “good” indicator
that the result was not achieved by chance. Employing the
ROC curve, as an estimate of class separability, the particular
feature-combination, when used in the nonlinear logistic
regression equation, resulted in an (area under the curve)
AUC = 0.87, by employing the LOO cross-validation
method. This AUC is rated as “very good” and it assesses
the ability of the particular equation in predicting the grade
of a laryngeal lesion (see Figure 4). The nonlinear logistic
regression equation, using the values of those 7 features, was
formed as follows:

𝑃 (𝑓
𝑖
) =

1

(1 + 𝑒
−𝐹𝑤𝑖)

, (1)

where 𝑃 is the probability assigned to a particular pattern; if
𝑃 > 0.5 then the particular pattern is assigned to theHGclass,
otherwise to the LG class where

𝐹𝑤
𝑖
=

7

∑

𝑖=0

𝑤
𝑖
∗ 𝑓
𝑖

(2)

and 𝑤
𝑖
={1.63, −3.96, 30.06, 10.37, −7.32, −22.25, −2.52, −1.38}

for 𝑖 = 0, 1, . . . , 7 are weights of the constructed discriminant
function and𝑓

𝑖
= {1, “%P63 expressed nuclei”, “Angular Second

Momentr”, “Correlationa”, “Inverse DifferenceMomentr”, “Sum
Entropyr”, “Solidity”, and “Radial Distance range”} represent
the actual numerical values of the particular normalized
features vector in the equation, and where 𝑎 and 𝑟 stand for
average and range of the feature over four directions (0∘, 45∘,
90∘, and 135∘).

4. Discussion

Textural, morphology or shape properties of cell-nuclei have
been previously employed in the analysis of microscopy
images. These properties, in the form of numerical features,
have been used for improving diagnosis, prognosis, and even-
tuallymanagement of various types of tumours, such as breast
[42, 43], thyroid [44], brain [45, 46], endometrium [47],
larynx [15, 17, 18], and lung [48].The aim of the present study
was to analyse by computer processing microscopy images
of biopsy material from laryngeal cancer lesions, which
had been stained for P63 expression. P63 targets mainly
the nuclei, in contrast to H&E that stains the surrounding
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Figure 4: ROC curve: using best features combination in the logistic
regression equation and the LOO cross-validation method, highest
prediction accuracy was achieved (AUC = 0.87, features involved:
%P63 expressed nuclei, Angular Second Moment𝑟, Correlation𝑎,
Inverse Difference Moment𝑟, Sum Entropy𝑟, Solidity, and Radial
Distance range). 𝑎: average and 𝑟: range of the feature over four
directions (0∘, 45∘, 90∘, and 135∘).

the nucleus matter, too. It is, thus, of importance to identify
the nuclei in the P63 stained image, to analyse the nucleus
properties, regarding texture, shape, and morphology and
to investigate if some of those properties may be related to
tumour progression and to changes in the nucleus structure
with advancing grade. Such an approach, employing P63
staining methods to analyse the laryngeal tumour nucleus, to
our knowledge, has not been previously published.

Data of the present study were histologically graded into
three distinct classes (grades I, II, and III) by an experienced
histopathologist, employing theH&E staining routine exami-
nation and theWHOrules for grading.Datawere also stained
for P63 expression. Regarding textural features, the most
important features found were the Long Runs Emphasis and
the Run Percentage. Both features displayed statistical signifi-
cant differences amongst the three classes, when examined by
the Kruskal-wallis statistical test (Figure 2).Those differences
were due to the statistical strong differences sustained, for
both features, between classes of grade I and grade III, while
there were no statistical differences found between the other
classes.
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The Long Run Emphasis textural feature reflects the
presence of large formations in texture. It was found that the
LRE-values in the low grade class were higher than in the
higher grade classes (Figure 2(a)) and this was reflected in
the negative correlation shown in Figure 2(b). This probably
indicates a break down in the structure of the texture of the
high grade P63-stained nuclei, which in turn indicates the
destruction of P63 receptors at advanced grade, resulting in
the dismantling of textural content and loss of continuum
in image structures. This is in line with the fact that high
grade cells are poorly differentiated and lack normal tissue
cell structure [25]. Similar findings were also found, with
regards to the LRE feature, in the two class comparisons (i.e.,
LG versus HG), as it may be seen in Table 2 and Figure 3(a).

The Run Percentage is a textural feature that assesses
the number of different structures existing in the image and
it attains low values when this number is small, indicating
that the image is mostly of linear structure. As shown in
Figure 2(c), the RP feature sustained statistically significant
difference amongst the three grade-classes at 𝑃 < 0.001,
having a positive correlation of 𝑟 = 0.547 at a confidence
level of 𝑃 = 0.0005. This finding indicates that the texture
of high grade P63 stained nuclei tends to be more inhomo-
geneous and it appears to contain more different structures.
Most probably, the loss of continuum in stained nucleus
texture, due to the destruction of P63 receptors at advance
histological grades, results in the formation of a multitude of
microstructures of various sizes and, thus, in a nucleus texture
of increased inhomogeneous appearance and loss of image
linearity. Similar findings were also found, regarding the RP
feature, in the two class comparisons (i.e., LG versus HG), as
it may be seen in Table 2 and Figure 3(b).

By splitting data in two classes, the LG class containing
grade I cases and the HG class consisting of the grade II and
III cases, six more textural features were found to sustain
statistically significant differences at the 1% level between the
two classes: contrast, inverse difference moment, difference
variance, difference entropy, run length nonuniformity, and
solidity and four more at the 𝑃 < 0.05 level, the mean value,
the percentage of P63 expressed nuclei, the Tamura histogram
feature, and the edge statistics feature.

The Contrast feature is a measure of image contrast. It
evaluates the amount of local variations present in the image
texture, and it attains high values for large amounts of local
variations. As it may be observed from Figure 3(c), high
grade nuclei display higher local variations that probably lead
to patchy staining of P63 nuclei. This may be explained by
considering the destruction of P63 receptors in high grade
nuclei, which contributes to randomness in the location of
the remaining P63 receptors within the nucleus texture, thus
resulting in increased variations in the staining of the nucleus
texture across the nucleus image.

The Inverse Difference Moment feature is a measure of
image homogeneity, and it attains larger values for smaller
gray-tone variations. It was found that high grade P63
expressed nuclei had smaller IDF values (see Figure 3(d)),
which translates into higher gray-tone variations across the
nucleus image.This finding indicates that P63 staining in high
grade nuclei was more inhomogeneous and that P63 stain

homogeneity decreased with advancing laryngeal grade.This
may again be attributed to the dismantling of the high grade
nuclei and to the subsequent destruction of P63 receptors.

The Difference Variance feature is a measure of variation
in image contrast. It attains low values for equally distributed
contrast transitions. As shown in Figure 3(e), DVAR attained
larger values in high grade P63 stained nuclei, indicating
that high grade nuclei images contained many unequally
distributed local variations in the P63 stained nuclei.

The Difference Entropy is a measure of randomness or
lack of structure or order in the image contrast. It attains high
values in randomly distributed image gray-tone differences.
As it can been seen in Figure 3(f), DENTR increased with
advancing grade. This indicates that the P63 stained texture
of high grade nuclei has more unstructured distribution of
image contrast.

The Run Length Nonuniformity feature measures
nonuniformity of the run lengths and it attains low values if
structures (run-lengths) are equally distributed throughout
the lengths. As can be observed from Figure 3(g), RLNU
increased with advancing grade. This finding indicates that
the size of formations or structures within the P63 stained
nuclei texture differed and was unevenly distributed in the
HG class.

The Solidity feature is a measure of nucleus shape con-
vexity, it is calculated by the ratio of the nucleus area over
the area of the smallest convex hull polygon that can contain
the nucleus, it indicates nucleus outline uniformity and it
decreases with increasing nuclei boundary irregularity. As
can be observed from Figure 3(h), solidity decreased with
increasing grade and this suggests that P63 expressed nuclei
tend to attain irregular shapes at high grades.

Themean value feature is ameasure of the nucleus texture
intensity and it is related to the existence of P63 receptors in
the nucleus. It can be seen from Figure 3(i), the nuclei in the
HG class were of lower intensity. This again is most probably
attributed to the destruction of P63 receptors as a result of the
nucleus break-down at high grades.

The Tamura histogram feature, which refers to the third
constituent of the 3-bin coarseness histogram, reflects the
frequency of large components (primitives) in the nucleus
image. HG nuclei are expected to have fewer large compo-
nents, because of the destruction of P63 receptors, leading
to smaller values in the Tamura feature (see Figure 3(j)) and
to coarser nucleus texture due to the existence of relatively
smaller primitives.

The edge statistics feature, which is the eighth component
of the eight bin magnitude histogram, echoes the frequency
of high intensity pixels in the nucleus texture. As shown in
Figure 3(k), it decreased at higher grades, which is indicative
of lowering intensity in HG nuclei that may be attributed to
the damage of P63 receptors at high grades.

Regarding the positive immunoexpression of P63, it was
found that the percentage of P63 (%P63) stained nuclei
decreased with advancing histological grade (see Figure 3(l)).
It was found that between low grade and high grade cases
there was a negative correlation at a confidence level of 𝑃 <
0.05 (see Table 2), meaning that P63 expression was found
lower in the high grade nuclei. It was also found that P63
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staining was statistically different between the low grade and
high grade cases at 𝑃 < 0.05. This may be due to alterations
in the structure of cell nuclei in high grade tumours that
may have a destructive effect on the P63 receptors, which
are responsible for the P63 staining of the cell nucleus. Such
finding, that relates advancing laryngeal histology grading to
diminishing P63 staining, has not been previously reported.
However, since high grade laryngeal tumours are usually
associated with bad prognosis, there have been previous
published studies that relate P63 expression to prognosis.
In previous study [11], it has been found that decreased
immunoexpression of P63 in grade II laryngeal squamous cell
carcinomas was related to the risk of recurrence and death
by cancer and that it has bad prognosis. On the contrary, in
another study [12] the opposite has been claimed while other
studies [13, 49] have not found any association among P63
expression and prognosis.

As it is made obvious, several of the above textural
features evaluate similar aspects of textural properties, such
as image intensity, contrast, homogeneity, and content. How-
ever, for complicity, those features had to be described as to
the textural properties they express, as part of the analysis of
P63 staining of the laryngeal cancer nuclei across histological
grades.

Regarding the need for predicting the grade of a laryngeal
lesion, one would be tempted to use combinations of those
features of high discrimination power in the formulation
of the logistic regression model. However, such an attempt
would probably fail to produce high discriminative models,
since those features are highly correlated with each other
[36]. In fact, the ROC curve of such an attempt resulted in
AUC = 0.77, found after experimentation with all possible
combinations within the 12 highly discriminative features,
employing the LOOmethod. Such an outcome, however,may
be rated as of “low” discriminatory ability. On the other hand,
when a search by the SFFS method for up to 7 features com-
binations within the available 118-features was performed,
there was one feature-combination that produced a ROC
curve (see Figure 4), which was rated as of “very good” dis-
criminating ability (AUC = 0.87), using the LOO evaluation
method. This feature combination comprised the percentage
of P63 expressed nuclei, theAngular SecondMoment (range),
the Correlation (average), the Inverse Difference Moment
(range), the Sum Entropy (range), the Solidity, and Radial
Distance range. The Angular Second Moment (range) evalu-
ates the anisotropy in nucleus-image homogeneity along four
directions (0, 45, 90, and 135 degrees), the Inverse Difference
Moment (range) estimates the anisotropy in image gray-tone
differences, the Correlation (average) measures the gray-tone
linear-dependencies in the nucleus-image, the Sum Entropy
(range) estimates the anisotropy in randomness or lack of
structure or order in the nucleus-image, the Solidity expresses
the convexity of the nucleus shape, and the Radial Distance
range evaluates the irregularity of the nucleus outline. Of
those best features, only the percentage of P63 expression and
the Solidity showed statistical significant differences between
the two classes. Those two features displayed negative corre-
lationwith increasing grade, indicating that high grade nuclei
appear less stained and of irregular shape.

Summarizing, it was found that with advancing grade,
P63 staining of laryngeal lesion nuclei decreases with sub-
sequent lowering of nucleus image intensity, the texture of
the P63 stained nuclei becomes more inhomogeneous, of
higher local contrast, it contains smaller dissimilar structures
randomly distributed and nuclei are of more irregular shape.
Prediction of the histologic grade by the logistic regression
equation may be accomplished, based on P63 staining,
textural, morphology, and shape features of the nuclei.
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