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Abstract
Over the past 20 years, recent advances in science technologies have dramatically changed the styles of clinical research. Cur-
rently, it has become more popular to use recent modern epidemiological techniques, such as propensity score, instrumental 
variable, competing risks, marginal structural modeling, mixed effects modeling, bootstrapping, and missing data analyses, 
than before. These advanced techniques, also known as modern epidemiology, may be strong tools for performing good 
clinical research, especially in large-scale observational studies, along with relevant research questions, good databases, and 
the passion of researchers. However, to use these methods effectively, we need to understand the basic assumptions behind 
them. Here, I will briefly introduce the concepts of these techniques and their implementation. In addition, I would like to 
emphasize that various types of clinical studies, not only large database studies but also small studies on rare and intractable 
diseases, are equally important because clinicians always do their best to take care of many kinds of patients who suffer from 
various kidney diseases and this is our most important mission.

Keywords  Propensity score · Instrumental variables · Bootstrapping · Competing risk · Multiple imputation · Intractable 
disease · Modern epidemiology

Introduction

After the development of the concept of evidence-based 
medicine (EBM), which has been in widespread use since 
the 1990 [1], many kinds of evidence-based clinical guide-
lines have been published. Thanks to advances in computer 
technologies and internet access, clinicians can now eas-
ily view these guidelines and apply the updated knowledge, 
which largely contributes to the improvement in the quality 
of care and uniformity of medical services provided. On 
the other hand, it also reveals the difficulty of implement-
ing EBM for intractable diseases, rare diseases, and chronic 
diseases with a long history of progression because these 
diseases are often difficult to show sufficient evidence with 
“hard” outcomes based on “high-quality interventional 
clinical trials”. In nephrology, it is often difficult to show 

sufficient evidence for many diseases, and the US govern-
ment recently started to approve of the use of an eGFR 
decline of 30% as a proxy outcome in clinical trials [2]. In 
addition, because of the very strict inclusion criteria of inter-
ventional trials, the implementation of the evidence writ-
ten in the guidelines is often limited in nephrology clinical 
practice.

The mission of clinicians is to provide the best daily clini-
cal practice based on updated clinical knowledge, which is 
improving daily. If evidence is not sufficient for bedside 
clinical practice, we have to solve clinical questions by our-
selves using “real-world” clinical data. In general, evidence 
levels of observational studies are considered lower than 
those of interventional studies because of the existence of 
many biases: selection bias, information bias, missing data, 
publication bias, etc. However, recent advances in epidemi-
ology (also known as modern epidemiology), information 
technology, and computer technology allow us to conduct 
high-quality observational studies. Advances in computer 
and internet technologies have been tremendous. Now, sub-
mitting a manuscript with analog photography by interna-
tional mail has become a folk tale. It has been only 20 years 
since the first iMac by Apple Inc. and only 15 years since the 
release of Gmail by Google. Advances in these technologies 
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have dramatically changed not only human life but also clini-
cal research. In basic science, many advanced technologies 
have been launched, such as mass spectrometry, whole-
genome sequencing, omics analyses, and single-cell analy-
ses. These advanced technologies have dramatically changed 
many fields of medical sciences not only in basic science 
but also in clinical science. Thanks to these advances, all 
clinical researchers can perform advanced epidemiological 
and statistical techniques with their own personal computer, 
and clinicians have become more familiar with observational 
studies. However, statistical techniques are only one element 
for good clinical research. The other three elements are rel-
evant research questions based on clinical experience, high-
quality databases, and sufficient passion to accomplish clini-
cal studies. These elements are equally essential for good 
clinical research (Fig. 1).

Here, I would like to introduce some fundamentals 
of clinical research and recent advances in the field of 
epidemiology.

Fundamentals of clinical research

As shown in Fig. 2, many clinical studies begin with clini-
cal questions at the bedside. These questions are structured 
through the PE(I)CO format. It is essential to clarify defini-
tions of the target population (P), exposures (E) or inter-
ventions (I), comparisons (C), and outcomes (O) as a first 
step in clinical research. All clinical research is conducted in 
accordance with the ethics guidelines for medical research 
for human subjects. Therefore, almost all clinical research 
should be started only after the approval of the ethics review 
committee. A good database (DB) is one that anyone can 
understand and reanalyze. Therefore, a codebook—a list of 
codes for each variable—and the updated version history 

should be stored together with the DB. In addition, it is also 
important to create an “alive” DB that is formatted in con-
sideration of later statistical processing, rather than a “dead” 
DB that contains a mix of text and numerical characters. 
These “alive” DBs make it easy to use analytic software in 
the analysis process. DB creation and DB cleaning are time-
consuming and labor-intensive tasks, but researchers should 
keep in mind that high-quality, traceable DBs are necessary 
for good clinical research.

We need to understand the strengths and weaknesses 
of large DBs. It is generally considered that a large, mul-
ticenter DB is the best because of its statistical power and 
low selection bias. However, large DBs often has difficulty 
obtaining additional data that researchers are interested in, 
and data access is often limited. Moreover, these larger DBs 
may contain more missing data and outliers than in-house 
data in general. Therefore, researchers should understand the 
mechanism of missing data and how to handle missing data 
and outliers before analyzing the data.

“Bench to bedside” has been an important concept for 
our medical researchers, since all advanced basic sciences 
are developed with the aim of treating patients. However, 
this concept may lead researchers to focus on one specific 
disease, since it may be the shortest route for researchers’ 
success to focus on one specific disease and to deepen their 
knowledge. If we consider the association between areas 
of kidney diseases and research technologies, advanced 
research techniques such as genome sequencing, omics anal-
ysis, single-cell analysis, and epigenomics can be applicable 
to many kinds of diseases and thus could be considered the 
horizontal axis (Fig. 3). Modern epidemiology could also 
be on the horizontal axis in the clinical research field. The 
combination of these horizontal technologies are essential 
to deepen knowledge. On the other hand, it is often difficult Fig. 1   Elements for good clinical research

Seven steps of clinical research

Research question (RQ)
• PECO or PICO

Study design
• Writing a protocol
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Data collection, Access to Database

Statistical analyses

Clinical Experiences (bedside)

Knowledge of 
Epidemiology
and Biostatistics

Clinical research

Fig. 2   Seven steps of clinical research. PECO population, exposure, 
comparison, and outcome; PICO population, intervention, compari-
son, and outcome
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for clinical researchers to limit their areas of interest on the 
vertical axis because doctors cannot select patients to care 
for in clinical practice. In addition to these elements, the 
types of clinical studies may vary depending on the number 
of patients available. For common diseases, a large DB and 
knowledge of epidemiology and biostatistics may be essen-
tial for good clinical research. However, for rare diseases, 
papers on new treatments or even case reports are equally 
important for patients. These studies often do not require 
sophisticated statistical techniques. Therefore, we need to 
understand that the necessity of knowledge of epidemiol-
ogy and biostatistics may depend on the commonality of a 
disease, and it may be natural for clinical researchers to have 
an interest in various kidney diseases and publish “bedside-
based” clinical studies.

Missing data and missing data analysis

Missing data not only leads to biased results but also poten-
tially loses many observations, which reduces the power of 
the analysis. There are four famous approaches to handle 
the problem of missing data: (1) complete case analysis, 
(2) imputation, (3) weighting methods, and (4) model-based 
approaches. A complete case analysis is often the default of 
statistical software, but it may cause biased results and the 
power of the analysis will be reduced, as mentioned above. 
Commonly used imputation procedures include hot-deck 
imputation, mean imputation, and regression imputation, 
where the missing values are estimated by known variables. 
Multiple imputation may be the most popular method for 

imputation. It refers to the procedures of replacing each 
missing value by a vector of D ≧ 2 imputed values. The D 
values are ordered in the sense that D complete datasets can 
be created from the vectors of imputations; replacing each 
missing value by the first component in its vector of impu-
tations creates the first completed dataset, replacing each 
missing value by the second component in its vector creates 
the second completed dataset, and so on. The model-based 
procedure defines a model for the observed data and bases 
inferences on the likelihood or posterior distribution under 
that model, with the parameters estimated by procedures 
such as maximum likelihood [3]. In addition, a mixed effects 
model may be an option to handle missing data. See Little’s 
textbook or other papers for more information [3, 4].

Modern epidemiology and clinical research

Biases have always been a major problem for clinical 
researchers. Randomization is an excellent research design 
that can control all biases, including unknown biases. How-
ever, ethical issues, high costs, lack of external validity, and 
“uncontrolled” patients have been major limitations of this 
study design. On the other hand, because observational stud-
ies lack randomized assignment of participants into treat-
ment conditions, researchers must employ statistical pro-
cedures to balance the data before assessing the treatment 
effects. In recent years, many excellent methods to control 
these biases have been developed, such as propensity score 
analysis, inverse probability weighting, marginal structural 
modeling, bootstrapping, instrumental variable, etc. [5–8]. 

Fig. 3   Associations between 
areas of kidney diseases and 
research technologies in clinical 
studies. DKD diabetic kidney 
disease, IgAGN IgA nephropa-
thy, MN membranous nephropa-
thy, PKD polycystic kidney 
disease
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Given the low cost and easy accessibility of DBs and the 
necessity of bias control, observational studies are consid-
ered an excellent tool for new researchers.

As shown in Fig. 4, the number of clinical papers using 
these modern epidemiological techniques has increased 
dramatically over the past couple of decades. It may be pos-
sible that these modern techniques will become familiar to 
all clinical researchers—such as Cox proportional hazards 
modeling in survival analysis—in the near future. Before 
implementation, we must keep in mind that there are some 
basic assumptions in a regression analysis: normally dis-
tributed errors (with a mean of zero), the independence of 
covariates (no multicollinearity), no correlation between the 

residual terms (autocorrelation), and homoscedasticity of the 
errors (equal variance around the line).

Propensity score analyses

In observational studies, treated and untreated subjects 
often differ systematically on prognostic factors leading to 
treatment selection bias or confounding in estimating the 
effect of a treatment on an outcome. Over the past 40 years, 
researchers have recognized the need to develop more effi-
cient approaches for assessing treatment effects from obser-
vational studies, and statisticians (e.g., Rosenbaum & Rubin) 
and econometricians (e.g., Heckman) have developed a new 
approach called propensity score analysis [9–11]. A propen-
sity score (PS) is the probability being assigned a treatment 
(or exposure) to accomplish data balancing when treatment 
assignment is unignorable, to evaluate treatment effects 
using non-experimental approaches and to reduce multidi-
mensional covariates into a one-dimensional score (Fig. 5a).

There are five steps in a propensity score analysis: (1) 
selecting the variables for the PS model, (2) estimating the 
PSs, (3) applying the PS methods, (4) assessing the balance, 
and (5) estimating the treatment effect [12]. The PSs are 
calculated by logistic or probit regression models consist-
ing of all the confounders in the given analysis set ranging 
from 0 to 1. In addition to all confounders, outcome predic-
tors irrespective of the exposure can improve the precision 
of an estimated treatment effect without increasing the bias 
[12, 13]. Note that variables that are strongly related to the 
treatment but not to the outcome (instrumental variables) or 
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Fig. 4   The number of published papers using modern epidemiologi-
cal techniques. Cox PH model: Cox’s proportional hazard model. 
The number of published papers was calculated by PubMed on Feb 
1, 2020

Fig. 5   Schematic diagrams of 
propensity scores and instru-
mental variables. eGFR esti-
mated glomerular filtration rate
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weakly related to the outcome should not be included in the 
PS model because such variables could amplify the bias in 
the presence of unmeasured confounding [12–15]. Assum-
ing that there are no unmeasured confounders, treated and 
untreated subjects with the same PS tend to have similar 
distributions of measured confounders [16]. For PS estima-
tion, the c-statistics is often cited as a measure of “fit” of a 
PS model; that is, the ability of the model to predict treat-
ment assignment using observed covariates [17–19]. The 
c-statistics takes on values between 0.5 (classification no 
better than a coin flip) to 1.0 (perfect classification). A very 
high or very low c-statistics implies the reduced utility of 
the PS approach. However, we have to keep in mind that the 
purpose of PS estimation is to balance risk factors for the 
outcome between treatment groups to eliminate confound-
ing. Reliance on the c-statistics in selecting a PS model may 
provide false confidence that all confounders have been bal-
anced between treatment groups [17]. For balance assess-
ments, the standardized difference (SDif) is often used to 
assess the balance between the selected treated and untreated 
subjects. It is preferable that the SDif be less than 0.1 [20]. 
If not, changing the caliper of the PSs (usually 20% of the 
standard deviation of the PSs), selecting other matching 
methods, changing the replacement status of the matching 
selection, or rechecking the choice of variables for the PS 
model (e.g., checking interactions and linearity) are often 
performed. Recently, post-matching the c-statistics of the 
PS model has been suggested as an overall measure of the 
balance across covariates [21].

There are four major analytic approaches that use PSs: PS 
matching, PS adjustment, PS stratification, and PS weight-
ing (Fig. 6). PS matching is the most widely used and prob-
ably most understandable PS analytical method [12]. On 
the other hand, because this method selects only matched 
subjects, it may result in an undesirable loss of study par-
ticipants. Note that the exclusion of unmatched subjects 
from the analysis not only affects the precision of the effect 
estimate but also has consequences on the generalizability 
of the results. The other three methods—PS adjustment, 
PS stratification, and PS weighting—do not need to con-
sider the loss of study participants. PS weighting aims to 
reweight the treated and untreated subjects to make them 
more representative of the population of interest without 
the loss of participants. Inverse probability weighting (IPW) 
using PSs has recently become popular. In IPW, the use of 
stabilizing weights could help “normalize” the range of 
the inverse probabilities and increase the efficiency of the 
analysis [12]. However, we should keep in mind that IPW 
tends to overweight participants with extremely small (or 
large) PSs. Freedman and Berk reported that PS weighting 
was optimal only under three circumstances: (1) when the 
study subjects are independently and identically distributed, 
(2) when selection is exogenous, and (3) when the selection 

equation is properly specified [22]. For treatment effect esti-
mation, careful interpretation of the treatment effect estimate 
is needed. PS matching typically focuses on the effect of 
the treatment in either the treated or the untreated subjects, 
not on the average treatment effect on the whole population 
[23, 24]. PS adjustment and PS stratification give condi-
tional treatment effect estimates [25]. However, marginal 
structural modeling methods using IPW estimate a marginal 
treatment effect in randomized studies; thus, the estimate can 
be directly interpreted as the average causal treatment effect 
between treated and untreated patients [26, 27]. See the text-
book and papers on PS for more information [9, 12, 28, 29].

Longitudinal data analyses

Survival analysis is one of the most familiar analyses for 
medical scientists. On the other hand, survival data have 
two common features that are difficult to handle with con-
ventional statistical methods: censoring and time-dependent 
covariates. Kaplan–Meier analysis and Cox proportional 
hazard modeling are probably the most widely used tech-
niques in our field (Fig. 4), although there are many differ-
ent methods, including exponential regression, log-normal 
regression, Weibull AFT modeling, competing risks mod-
els, and discrete-time methods. Cox proportional hazards 
models have a basic assumption called the proportional haz-
ards assumption: the hazard ratio comparing two groups is 
constant. This assumption is often tested by log–log plots 
and Schoenfeld residuals, which should be tested before 
estimation.

Additionally, competing risks are an important concept 
in clinical research, since survival analysis is often applied 
to study death or other events of interest. However, an 

Flow of a propensity score analysis
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PS stratification
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Fig. 6   Flow of a propensity score analysis. PS propensity score
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important assumption of standard survival analyses such as 
the Kaplan–Meier method is that censoring is “independent”, 
which implies that the censored patients at a certain time point 
should be representative of those still at risk at same time. This 
condition is usually the case when a patient is lost to follow-up. 
In oncology and cardiovascular medicine, the analytical prob-
lem of competing risks has been acknowledged for many years. 
In nephrology, death and ESRD are competing risks in ESRD 
risk studies because death before ESRD prevents ESRD from 
occurring. If death before ESRD was censored, it may result 
in biased estimates because death is strongly related to future 
ESRD events [30, 31]. The cause-specific Cox hazard model is 
often suitable for studying associations between covariates and 
the instantaneous risk of a clinical event. However, the cause-
specific hazard model cannot produce predicted probabilities of 
the event of interest without additional models for the compet-
ing risk event, because the predicted probability of ESRD must 
take into account both the incidence of ESRD and death. In 
this case, the sub-distribution hazard (SHR) approach proposed 
by Fine and Gray [32] is considered a preferable approach for 
prognostic studies, because this method can be used to predict 
the future risk of ESRD, taking into account the attrition due to 
death [5, 30]. Note that the SHR model directly provides indi-
vidual probabilities of an event, given a patient’s characteristics, 
but it cannot be interpreted as a hazard ratio (HR) [6].

Qualifying the effect of treatment duration in survival 
analysis is a major problem for researchers, since only peo-
ple who survive for a long time can receive a treatment for a 
long time. A direct comparison of subjects with longer and 
shorter follow-ups would be biased. For analyses of these 
longitudinal data with time-varying confounders, Robins 
reported a g formula to measure the healthy worker survi-
vor effect [7]. Although this formula is complicated, Hernan 
recently reported a simple three-step approach to estimate 
the effect of treatment duration on survival outcomes using 
observational data [8]. The first step is duplicating people 
to assign them to treatment duration strategies at time zero, 
eliminating immortal time bias [33–35]. The second step 
is censoring the duplicates when they deviate from their 
assigned treatment strategies through follow-up. The intro-
duced selection bias can be eliminated by the third step 
with inverse probability weighting to adjust for the potential 
selection bias introduced by censoring. Applications of these 
new approaches can be found in the areas of nephrology 
[36–38], infectious diseases [39, 40], gastroenterology [34], 
and urology [41].

Instrumental variable method

Instrumental variable (IV) analysis is one of the methods 
used to control for confounding and measurement error in 
observational studies so that causal inferences can be made. 

This method was invented in the 1920s in economics and 
has appeared in the health sciences [42]. Suppose X and Y 
are the exposure and outcome of interest, respectively, and 
we can observe their relation to a third variable Z (Fig. 5b). 
Let Z be associated with X but not associated with Y except 
through its association with Y. Here, Z is called an IV [33]. 
That is, an IV is a factor associated with the exposure but 
not with the outcome. For example, the price of alcohol can 
affect the likelihood of expectant mothers drinking alcohol, 
but there is no reason to believe that it directly affects the 
child’s birth-weight [43]. There are three assumptions of IV: 
(1) Z affects X, (2) Z affects the outcome Y only through 
X, and (3) Z and Y share no common cause [42, 44]. The 
obvious example of an IV is in randomized controlled tri-
als, since the random treatment assignment Z is independent 
of confounders and affects Y only through X. IV analyses 
are promising for the estimation of therapeutic effects from 
observational data as they can circumvent unmeasured con-
founding [45]. However, even if the IV assumption holds, 
Boef et al. reported that IV analysis will not necessarily pro-
vide an estimate closer to the true effect than conventional 
analyses, as this result depends on the estimates’ bias and 
variance [46]. They also reported that IV methods have the 
most value in large studies if considerable unmeasured con-
founding is likely and a strong and plausible instrument is 
available.

Bootstrapping

In clinical research, we always assume that results from a 
sample population (e.g., CKD patients in our hospital) imply 
the same results in the source population (e.g., CKD patients 
in Japan or around the world). Given the central limit theo-
rem and law of large numbers, the mean of all the samples 
from the population will be approximately equal to the mean 
of the population if the samples are large enough. Further-
more, all the samples will follow an approximate normal 
distribution, with all variances being approximately equal 
to the variance in the population, divided by each sample’s 
size. The original concept of bootstrapping was proposed by 
Bradley Efron [47, 48]. The basic idea of bootstrapping is 
that inference about a population from sample data can be 
modeled by resampling the sample data with replacement 
and performing inference about a sample from the resam-
pled data. For example, after generating sufficiently large 
randomly selected pseudo-sample sets (e.g., 500 bootstrap-
ping sample sets) from the original sample, the distribution 
of these statistics across the bootstrapping sample sets (e.g., 
the mean of the distribution of the means of bootstrapping 
sample sets) will be approximately equal to the distribu-
tion of the original sample statistics (e.g., the mean of the 
distribution of the original sample). This method is very 
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useful when inferring the unknown distribution of the origi-
nal sample statistics. This kind of simulation method has 
been developed and implemented in medicine [47, 49–51].

Challenges for intractable kidney disease: 
importance, relevance and novelty

The treatment of intractable diseases requires a great deal 
of effort and passion, but from the viewpoint of clinical 
research, these diseases are often rare, and small studies, 
including case series papers, are valuable for bedside treat-
ment. For example, clinical studies of pediatric nephritic 
syndrome and amyloidosis have been published in major 
journals despite the limited number of participants [52, 53]. 
These examples suggest that not only methodology and 
DB issues but also clinical relevance and novelty are very 
important in clinical research. For example, in 1996, we 
started using arterial embolization therapy for intractable 
PKD patients on dialysis [54]. This new treatment method 
can dramatically reduce the size of enlarged kidneys and 
improve their symptoms as well as nutritional conditions, 
and this method has spread across the world. Additionally, 
although diabetic nephropathy is a common disease, its 
pathophysiology is largely unclear. Therefore, we examined 
the association between pathological changes in diabetic 
nephropathy and clinical outcomes [55–62]. Other exam-
ples can be found in many areas, such as in the areas of 
treatment of polycystic liver disease [63, 64], amyloidosis 
[65–68], and severe ischemic limb treatment [69–72]. Clini-
cal relevance and novelty sometimes overcome the limitation 
of the number of patients, especially in the areas of rare and 
intractable diseases.

Closing remarks

Here, I briefly introduce modern epidemiology techniques, 
as well as the importance of novelty and relevance in all 
research areas of interest. PS analyses, IV methods, compet-
ing risk analysis, and other recently developed methods are 
becoming more familiar to clinical researchers. Thanks to 
recent advances in the field of computer science and internet 
technologies, it is now very easy to learn and perform these 
techniques by ourselves. On the other hand, there are many 
unsolved research questions, especially in the areas of rare 
diseases and intractable diseases. In these areas, it is not 
always necessary to use these modern techniques; rather, it is 
important to treat patients with sincerity and with passion. A 
case report or case series should be valuable in these areas. 
I hope that many doctors will become interested in clinical 

research, publish many excellent clinical papers, and as a 
result, contribute to improving patients’ quality of life.
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