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Abstract

Background: Understanding the relationship between the millions of functional DNA elements and their protein
regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding
of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA
interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall,

powerful to generate figures that are publication ready.

information in this era of big sequencing data.

the interpretation of the ever increasing amount of data generated represents a considerable challenge.

Results: We have developed ngs.plot — a standalone program to visualize enrichment patterns of DNA-interacting
proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is
not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very

Conclusions: We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic
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Background

Next generation sequencing (NGS) technology has be-
come the de facto indispensable tool to study genomics
and epigenomics in recent years. Its ability to produce
more than one billion sequencing reads within the time-
frame of a few days [1] has enabled the investigation of
tens of thousands of biological events in parallel [2,3].
Applications of this technology include ChIP-seq to iden-
tify sites of transcription factor binding and histone modifi-
cations, RNA-seq to profile gene expression levels, and
Methyl-seq to map sites of different types of DNA methy-
lation with high spatial resolution, among many others. To
convert these data into useful information, the sequencing
reads must be aligned to reference genomes so that cover-
age — the number of aligned reads at each base pair — can
be calculated. A genome browser is a very handy tool that
can be used to visualize the coverage along with other gen-
omic annotations, such as genes, repeats, conservation
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scores, and genetic variants as stacked tracks [4,5]. Design-
ing a genome browser that can effectively manage the
enormous amount of genomic information has become an
important research topic in the past decade with dozens of
tools being developed to date [6-8].

As more NGS data are being generated at reduced cost
[9], researchers are starting to ask more detailed questions
about these data. For example, after ChIP-seq data for a
given histone modification (“mark”) is generated, one
might ask: 1. What is the enrichment of this mark at tran-
scriptional start sites (TSSs) as well as several Kb up- and
down-stream? 2. If a ranked gene list is obtained based on
the enrichment of this mark, does it associate with gene
expression? 3. Does this mark show any co-occurrence
with other marks and do their co-enrichments define gene
modules? To answer these and many additional questions,
it would be very helpful to retrieve the coverage for a
group of functional elements together, perform data min-
ing on them, and then visualize the results. Classic exam-
ples of functional elements include TSSs, transcriptional
end sites (TESs), exons, and CpG islands (CGIs). With the
availability of high-throughput assays, novel functional
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elements — such as enhancers and DNase I hypersensitive
sites (DHSs), are being discovered by computational pro-
grams at a very rapid pace. Progress is being facilitated fur-
ther by the human ENCODE project [10,11], where
researchers found recently that ~80% of the human gen-
ome is linked to biochemical functions.

On the other hand, the development of tools that can
be used to explore the relationships between NGS data
and functional elements within the genome has lagged.
Some programs [12,13] have incorporated simple func-
tions for a user to generate average profile plots at TSSs,
TESs, or genebody regions, but with very limited op-
tions to customize the figures. A few program libraries
[14-17] have been developed to facilitate the calculation
and plotting of coverage from NGS data, but they re-
quire a user to have substantial programming skills and
involve a steep learning curve. Several programs [18-20]
with graphical interfaces have been developed, featuring
a point-and-click workflow to perform these tasks. They
are greatly helpful for investigators with limited pro-
gramming experience. However, their designs often
limit the choices a user has and it is not always easy to
import and export data from these programs.

To address this important need, we have developed ngs.
plot: a quick mining and visualization tool for NGS data.
We tackle the challange in two steps. Step one involves de-
fining a region of interest. We have collected a large num-
ber of functional elements from major public databases and
organized them in a way so that they can be retrieved effi-
ciently. The ngs.plot database now contains an impressive
number of 60,520,599 functional elements (Table 1). Step
two involves plotting something meaningful at this region.
Our program utilizes the rich plotting functionality of R
[21] and contains 27 visual options for a user to customize
a figure for publication purposes. ngs.plot’s unique design
of configuration files allows a user to combine any collec-
tion of NGS samples and regions into one figure.

The ngs.plot package contains multiple components: a
main program for region selecting and plotting; a genome
crawler that grabs genomic annotations from public data-
bases and packs them into archive files; a script that is
used to manipulate the locally installed genomic annota-
tion files; another script that can be used to calculate and
visually inspect correlations among samples; a plug-in that
allows ngs.plot to be integrated into the popular web-
based bioinformatic platform — Galaxy [22]. ngs.plot has
been developed as an open-source project and has already
enjoyed hundreds of downloads world-wide thus far. Here,
we will first describe the design and implementation of
ngs.plot. We will then discuss some implementation strat-
egies by using performance benchmarks. Finally, we will
employ a few examples to demonstrate how ngs.plot can
be used to extract and visualize information easily, with
rich functionality in plotting.
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Implementation

ngs.plot workflow and algorithms

The workflow of ngs.plot is depicted in Figure 1. Initially,
ngs.plot searches through its database to find the genomic
coordinates for the desired regions and uses them to query
the alignment files of an NGS dataset. It then calculates
the coverage vectors for each query region based on the
retrieved alignments. It finally performs normalization and
transformation on the coverage and generates two plots.
One plot is an average profile that is generated from the
mean of all regions. This plot provides the overall pattern
at the regions of interest. The other plot is a heatmap that
shows the enrichment of each region across the genome
using color gradients. The heatmap can provide three-
dimensional details (enrichment, region, and position) of
the NGS samples under study.

A user can specify the plotting regions using a genome
name, such as “mm9” and a region name, such as “gene-
body”. Further options are provided to choose a particular
type of region, otherwise the default is used. For example,
exons are classified into “canonical” (default), “variant”,
“promoter”, etc.; CGIs are classified into “ProximalPromo-
ter” (default), “Promoterlk”, “Promoter3k”, etc.; gene lists
can be provided to create subsets of the regions. For con-
venience, we have provided the gene names/IDs in both
RefSeq [23] and Ensembl [24] format. To be more flexible,
a user can also use a BED (https://genome.ucsc.edu/FAQ/
FAQformat.html#formatl) file for custom regions. A BED
file is a simple TAB-delimited text file that is often used to
describe genomic regions. This is particularly useful if a user
performed peak calling for a transcription factor and would
like to know what is happening at or around the peaks.

The alignment files must be in BAM [25] format, which
is now used widely for short read alignments. ngs.plot con-
forms to the SAM specification [25] of BAM files and can
work with any short read aligner. A BAM file is compressed
and indexed for efficient retrieval. In ngs.plot, the “physical
coverage” instead of the “read coverage” is calculated for
both ChIP-seq and RNA-seq. This is achieved by extending
each alignment to the expected DNA fragment length ac-
cording to user input. The coverage data are then subjected
to two steps of normalization. In the first step, the coverage
vectors are normalized to be equal length and this can be
achieved through two algorithms. The default algorithm is
spline fit where a cubic spline is fit through all data points
and values are taken at equal intervals. The alternative algo-
rithm is binning where the coverage vector is separated into
equal intervals and the average value for each interval is
calculated. This first step of length normalization allows re-
gions of variable sizes to be equalized and is particularly
useful for genebody, CGI, and custom regions. In the sec-
ond step, the vectors are normalized against the corre-
sponding library size — i.e., the total read count (only the
reads that pass quality filters are counted) for an NGS
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Table 1 Summary statistics of the ngs.plot database
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Item Count Description
Annotation sources 4 Refseq, Ensembl, ENCODE, muENCODE
Species (Genome) 17(21) Human (hg18, hg19), chimpanzee (panTro4), macaque (rheMac2), mouse (mm9, mm10),
rat (4, m5), cow (bosTau6), horse (equCab?), chicken (galGal4), zebrafish (Zv9),
drosophila (dm3), Caenorhabditis elegans (ce6, ceX), Saccharomycer cerevisiae (sacCer3),
Schizosaccharomyces pombe (Asm294), Helicobacter pylori (Asm852v1),
Sulfolobus acidocaldarius (sulfAcid), Arabidopsis thaliana (TAIR10), Zea mays (AGPv2)
Biotypes 7 TSS, TES, genebody, exon, CGl, DHS, enhancer
Gene type 5 Protein coding, lincRNA, miRNA, pseudogene, misc (everything else)
Exon types 7 canonical, promoter, polyA, variant, altDonor, altAcceptor, altBoth
CGls 10 Hg18, hg19, mm9, mm10, 4, rn5, bosTau6, galGal4, panTro4, rheMac2
Enhancers 9 (hg19) Url: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/
Cell types: HThesc (default), Gm12878, Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, Nhlf.
15 (mm9) Url: http//chromosome.sdsc.edu/mouse/download.html. Cell types: mESC,
bone marrow, cerebellum, cortex, heart, intestine, kidney, liver,
lung, MEF, olfactory bulb, placenta, spleen, testes, thymus.
DHS 125 (hg19) Url: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgDnaseUniform/.
Cell types: HThesc, A549, Gm12878, Helas3, Hepg2, Hmec, Hsmm, Hsmmtube,
Huvec, K562, Lncap, Mcf7, Nhek, Th1,
Region analysis 8 ProximalPromoter, Promoter1K, Promoter3K, Genebody, Genedesert,

Otherlntergenic, Pericentromere, Subtelomere

Total count of functional elements is 60,520,599.

sample to generate the so called Reads Per Million
mapped reads (RPM) values. The RPM values allow two
NGS samples to be compared regardless of differences
in sequencing depth.

We have implemented many functions to manipulate
the visual outputs of an ngs.plot run, as follows:

RNA-seq mode
ngs.plot can accurately calculate coverage for RNA-seq
(Figure 2A). RNA-seq experiments are unique because

the short reads are derived from messenger RNAs and
other expressed RNAs, many of which result from exon
splicing. The ngs.plot database contains the exon coordi-
nates for each transcript so that the coverage vectors for
exons are concatenated to simulate RNA splicing i silico.

Bam-pair

ngs.plot can also calculate the log2 ratios for one sample
vs. another and display the values using two different
colors in a heatmap. This is a very useful feature for
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Figure 1 The workflow of an ngs.plot run. The functional elements in the database are classified based on their types, such as TSS, CGl,
enhancer, DHS. The genomic coordinates of the functional elements are used to query a BAM file which is indexed by an R-tree like data struc-
ture. Coverage vectors are calculated based on the retrieved alignments, which are further represented as average profiles or heatmaps.
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Figure 2 Design and implementation of the ngs.plot program. A. In RNA-seq mode, the program performs exon splicing in silico: the coverage
vectors for exons are concatenated with intronic coverage removed. B. A configuration file can be used to create any combination of BAM files and
regions. The program will parse the configuration and perform pre-processing on BAM files. It will then iterate through each line of the configuration
and determine the arrangement of the output figure. C. A genome crawler is developed to automatically pull genomic annotations from three public
databases — UCSC genome browser, Ensembl and ENCODE. It then performs more elaborate classifications on the functional elements and compiles
them into R binary tables. D. The exon classification algorithm classifies exons into seven categories: promoter, variant, alternative donor, alternative

acceptor, alternative both, and polyA based on pairwise comparisons of exon boundaries.

ChIP-seq where a target sample is often contrasted
with a control sample to determine bona fide differ-
ences in enrichment.

Visualization options

We have implemented a few approaches to generate aver-
age profiles. Besides mean values, the standard error of
mean (SEM) across the regions is calculated and shown as
a semi-transparent shade around the mean curve. This
provides users with a sense of statistical significance when
two samples are being compared. It is known that the
mean value is most influenced by extreme values that can
sometimes deleteriously distort the average profiles. We
therefore implemented robust statistics (as an optional
feature) by removing a certain percentage of the extreme
values before the average is taken. As well, curve smooth-
ing was implemented to remove the spikes from average
profiles as an option that can be controlled by moving
window size. Heatmaps can be tuned by custom color
scales and color saturation.

Gene ranking

In contrast to an average profile, a heatmap contains
an additional dimension — individual genomic regions.
This additional information allows the regions to be
organized to reflect the underlying biology. We have
therefore implemented six different algorithms to rank
such regions:

e Total (default). Regions are ranked by the sum of
the enrichment values. This always puts the most
enriched regions at the top.

e Hierarchical clustering. This method groups the
most similar regions together first followed by the
less similar ones. This process is performed
repeatedly from bottom up until all regions are
included in the grouping to form a tree-like struc-
ture. When dealing with multiple NGS samples, the
clustering is applied to all of them together.

e Max. Regions are ranked by the maximum of the
enrichment values. This is similar to the “Total”
algorithm but is most useful when dealing with
epigenomic marks that have sharp peaks.

e Product. Regions are ranked by the product of the
sums of all NGS samples. This algorithm is useful
when a user is studying several marks that may act
in concert with one another.

o Difference. Regions are ranked by the difference of
sums between two NGS samples. When two marks
are mutually exclusive, such as H3K27ac and
H3K27me3, this algorithm can maximize the
appearance of such relationships.

e Principal component analysis (PCA). PCA is
performed on all NGS samples and then the first
component is used to rank regions, which captures
the largest proportion of the variance. This algorithm
is complementary to the above mentioned methods.

Finally, a user can choose not to rank the regions and
just use the input order (called “none”). This is particularly
useful if a user has already ranked the regions. For ex-
ample, a user can rank genes by expression levels and then
plot the enrichment for histone marks to see if there is
any association.
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Multi-plot and configuration

In a multi-plot, an arbitrary number of plots can be com-
bined into one figure and each plot can represent an NGS
sample at a subset of the entire genomic region; a configur-
ation file can be used to describe this combination. The
configuration is a TAB-delimited text file where the first
column contains the alignment file names; the second col-
umn contains the gene list names or BED file names; the
third column contains the titles of the plots; the fourth and
fifth columns are optional and contain fragment lengths
and custom average profile colors, respectively. ngs.plot
will parse a configuration file and obtain a list of unique
BAM files and a list of unique regions (Figure 2B). Some
pre-processing steps will be performed on each BAM file,
such as calculating the number of alignments and indexing.
The unique regions and unique BAM files are used to
organize heatmaps into a grid so that each row represents
a unique region and each column represents a BAM file.

Other tools

Included in the ngs.plot package are several additional
useful tools. A Python script called ngsplotdb.py can be
used to install downloaded genome files, list currently in-
stalled genomes, or remove existing genomes. An R script
called plotCorrGram.r can be used to calculate all pairwise
correlations for samples in a configuration and visually
display them as a corrgram [26]. Another R script called
replot.r can be used to re-generate an average profile or a
heatmap with different visual options so that users can
tune their figures without extracting data again.

Coverage extraction

Coverage extraction is at the core of the ngs.plot work-
flow. This process often consumes a lot of computational
resources because of the large size of genomes (e.g., the
human genome has approximately 3 billion nucleotides)
and because alignment files are also very large (on the
order of tens of GB). In the history of ngs.plot, we first
used a strategy called “run-length encoding” (RLE) to rep-
resent genomic coverage vectors. RLE uses a very simple
approach so that consecutive and repetitive values are rep-
resented by the value and number of repeats. For example,

Original
000000000011111222223333300000000.

RLE
(0,10) (1,5) (2,5) (3,5) (0,8).

This leads to very efficient representation if the original
coverage vectors are sparse. For histone marks, such as
H3K4me3, which tends to generate sharp peaks, a run-
length encoded 10 million short read sample only occu-
pies ~15 MB on a hard-disk if stored as a binary file. How-
ever, as sequencing output has increased rapidly in recent
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years (which inevitably creates values at originally zero-
value regions), this strategy soon became a major problem:
the RLE files grew too large and consumed a lot of mem-
ory during loading. Another challenge arose when dealing
with epigenomic marks that have broad patterns of en-
richment — the coverage vectors are dense and may con-
sume a lot of memory.

Therefore, we developed another strategy that uses a
two-step procedure (Figure 1). First, the query regions are
grouped into chunks and the BAM index is loaded into
memory to perform alignment retrieval. Second, the re-
trieved alignments are used to calculate coverage on-the-fly
for each region. A BAM file is indexed using hierarchical
binning and linear index to allow very efficient retrieval so
that only one disk seek (moving the disk head to the de-
sired location) is often required for each query [25,27].
Grouping regions into chunks allows us to avoid frequent
index loading which is very expensive in comparison to
alignment reading. This strategy has an additional advan-
tage: no extra files need to be generated to represent cover-
age vectors. When the storage of many NGS samples
becomes problematic, this advantage is highly desirable.

We also explored additional alternatives (see Bench-
marking the performance of ngs.plot section). We used
samtools to pre-calculate the genomic coverage vector
for an NGS sample, merged the neighbouring base pairs
that contain the same value, and compressed them using
gzip to save space. We then used two different ap-
proaches to index the output file. Tabix [27] is a generic
indexing program for TAB-delimited text files that con-
tain a position column and a value column, and uses the
same indexing algorithm as BAM. It can directly create
an index on a compressed text file. bigWig [28] files are
converted from wiggle (http://genome.ucsc.edu/golden-
Path/help/wiggle.html) files. It is a binary format that in-
cludes a data structure called R-tree as index. We first
converted the output file to a variable-step wiggle file
and then created the bigWig file using tools from the
UCSC genome browser.

Genomic annotation databases

We developed a genome crawler that fetches various gen-
omic annotations from public databases, and processes and
saves them into R binary tables (Figure 2C). R binary tables
are very easy to create and their columns are indexed by R
internally. This helps to avoid setting up local databases,
which turns out to be a convenience for users. Currently,
we considered Ensembl [24], UCSC [29], and ENCODE
[11] [see Additional file 1: Table S2], and will incorporate
more public databases in the future. Ensembl and UCSC
provide classic genomic features such as genes, transcripts,
exons, and CGIs, while ENCODE provides more recent
epigenomic features such as enhancers and DHSs. Because
these databases host genomic information at different
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servers that are setup by separate groups of people, there
is no uniformity in constructing the URL for a specific
genome. Sometimes, a large database (such as Ensembl)
may store different classes of species, such as animal and
plant, using slightly different naming schemes. To address
this issue, we used JSON format to manually create con-
figuration files for each naming scheme so that an auto-
mated pipeline can pull data from different sources. New
naming schemes can be handled by simply adding JSON
configuration files. The files that are downloaded by the
genome crawler include Gene Transfer Format (GTF),
Gene Prediction (GP), BED, and MySQL database inquir-
ies, each of which is processed by a separate program
module. The RefSeq annotations downloaded from UCSC
are in GP format, which can be converted into GTF files
using the “genePredToGtf” utility from UCSC. The GTF
files are parsed by custom scripts to generate uniformly
formatted text files that are further converted into R bin-
ary tables. The gene annotations are used to derive gene
deserts. Locations about heterochromatic regions such as
centromeres and telomeres are downloaded from UCSC
and are used to derive pericentromeres and subtelomeres.
All the gene annotations, gene deserts, pericentromeres
and subtelomeres are used to build a genome package for
the “region analysis” utility (https://github.com/shenlab-
sinai/region_analysis) on the fly, which is used to perform
location-based classifications on CGIs and DHSs. In total,
more than 60 million functional elements have been in-
corporated into ngs.plot’s database so far (Table 1). Add-
itional genomes can be added at any time as needed. The
functional elements for each genome are packed into a
compressed archive file that can be installed on demand
by a user. A Python script (named ngsplotdb.py) is pro-
vided to manage the locally installed genomes. In the fol-
lowing, we describe each type of functional element and
how they are processed.

Genes and transcripts

Genes and transcripts are categorized into five types: pro-
tein_coding, pseudogene, lincRNA, miRNA, and misc
(everything else) according to GTF files. Gene/transcript
IDs/names are indexed for random access. Each gene is
represented by the isoform with the longest genomic span.

Exons

Exons and their neighbouring regions are known to con-
tain chromatin modifications that may facilitate exon
recognition and influence alternative splicing [30-32].
We thus developed an exon classification algorithm [see
Additional file 1] that classifies each exon into seven cat-
egories (Figure 2D):

e Promoter: the 5" end.
e DPolyA: the 3" end.
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Canonical: common to all isoforms of the gene.
Variant: absent from some isoforms.

Alternative donor: have varied 3’ end.
Alternative acceptor: have varied 5" end.
Alternative both: have both varied 3" and 5’ ends.

The first two categories are terminal exons while the
other five categories are internal exons. Briefly, our algo-
rithm goes through each gene and carries out pairwise
comparisons for all transcripts within the gene. All exons
are initialized to “canonical” category and will be continu-
ously updated when the program sees alternative boundar-
ies or missing exons in comparison to other transcripts.

Enhancers

Enhancers are important transcriptional regulators that
can activate distal promoters via DNA looping. They often
regulate subsets of genes in a cell type specific way and are
marked in part by the enrichment of H3K4mel and
H3K27ac [33,34]. We have built into our database the en-
hancers of 9 human cell types and 15 mouse cell types
(Table 1) by using data from the ENCODE [33] and
muENCODE projects [34]. For human enhancers, we in-
corporated data from the ENCODE Analysis Working
Group (AWG@) which performs integrated analysis of all
ENCODE data types based on uniform processing. We will
continuously monitor the status of their download page
and update our database as new data become available. We
excluded the enhancers that are within +5 Kb of TSSs. The
distance of 5 Kb is a cutoff inspired by this work [33] to
avoid classifying promoters as enhancers accidentally. Each
enhancer is assigned to their nearest genes whose IDs/
names are also indexed.

DHSs and CGls

DHSs are thought to be characterized by open, accessible
chromatin and are functionally related to transcriptional
activity. DHSs have been used as markers of regulatory
DNA regions [35,36] including promoters, enhancers, in-
sulators, silencers, and locus control regions. High-
throughput approaches, namely DNase-seq (using NGS)
and DNase-chip (using tiled microarrays), were used to
map DHSs on the human genome [37]. In ENCODE,
DNase-seq was recently used to map genome-wide DHSs
in 125 human cell and tissue types [38]. We have built into
ngs.plot’s database the DHSs of 125 human cell types
(Table 1) from the download page provided by AWG and
will update them in the future. CGIs are genomic regions
that contain high frequency of CpG sites and are often in-
volved in gene silencing at promoters. CGIs are provided
in ngs.plot (Table 1) based on the annotations from the
UCSC genome browser. Both DHSs and CGIs are classi-
fied into different groups based on their genomic locations
using the region analysis utility.
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Galaxy integration

ngs.plot command interface features simple and easy
usage. This allows users to blend ngs.plot with other bio-
informatic and Unix tools seamlessly. However, the com-
mand interface may be intimidating to wet lab biologists.
Therefore, we developed a plug-in so that ngs.plot can be
integrated into Galaxy [22] — a very popular web-based
bioinformatics platform, which allows users to build their
own point-and-click workflows using various tools. The
plug-in features an easy-to-use graphic interface that can
typically generate a figure in 3-4 steps. We have created a
wiki-page to demonstrate such an example: https://code.
google.com/p/ngsplot/wiki/webngsplot. Currently, this
plug-in requires a locally installed Galaxy instance and is
not available on the main Galaxy server.

Website and community involvement

ngs.plot’s hosting website provides manuals, source code,
installation files, and links to many other resources. The
source code is tracked by Google’s git server and is open
for public contributions. To facilitate users in using ngs.
plot, we have created nine wiki-pages so far and will
keep adding new ones. Issue tracking is used for users
and developers to report bugs and make suggestions. As
this manuscript is being written, users from all over the
world have downloaded ngs.plot for hundreds of times.
We have also created an online discussion group for
users to ask questions and help one another. So far,
there are 51 active members who have contributed to 69
topics. We also use this opportunity to collect opinions
from users so that we can improve the program further.

NGS data processing

The NGS data used in this manuscript were obtained from
the Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.
gov/Traces/sra). The accession numbers and references of
the datasets are listed in Table S1 [see Additional file 1].
ChIP-seq data were aligned to the reference genome by
Bowtie [39]. Peak calling was accomplished by use of
MACS [40] using default parameters. RNA-seq data were
analyzed by the Tuxedo Suite [41]. The differential chroma-
tin modification sites were detected by diffReps [42] using
default parameters and the FDR cutoff was set as 0.1.

Results and discussion

Benchmarking the performance of ngs.plot

To benchmark different coverage extraction methods,
we used a ChIP-seq dataset that we previously published
[43]. H3K9me?2 is a histone mark that displays dispersive
enrichment patterns and is often associated with gene si-
lencing [44]. The ChIP-seq samples were derived from a
mouse brain region (nucleus accumbens) where two bio-
logical conditions were assessed: chronic morphine and
chronic saline administration. For each condition, three
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biological replicates were analyzed. We merged and
sorted the alignment BED files for the three biological
replicates under saline conditions and used BEDTools
[45] to create a large BAM file that contains nearly 250
million alignments. From this file, 10, 20, 40, 80, and
160 million alignments were randomly sampled to create
a series of BAM files that increase in alignment size ex-
ponentially. Different methods were used to extract
coverage vectors for the TSS +5 Kb regions of all pro-
tein coding genes (~20,000). A number of metrics such
as run time, memory usage, and file size were measured
for different alignment sizes. All tests were performed
on a Linux workstation with two 2.4 GHz CPU cores
and sufficient memory.

At first, coverage needs to be pre-calculated for Tabix,
bigwig, and RLE. This takes a long time to complete and
the run time is strongly associated with the alignment size
(Figure 3A). It takes samtools around 1,000 s to calculate
the coverage for a 10 million read BAM file and more than
5,000 s for a 160 million read BAM file. RLE is much fas-
ter but involves a more rapid increase in time than sam-
tools: it takes 80 s for a 10 million read BAM file and
more than 800 s for a 160 million read BAM file. This is
because RLE tries to load all alignments into memory and
then performs calculations in a batch while samtools does
the calculations by reading alignments in a stream. After
coverage calculations, Tabix and bigWig also require the
coverage files to be indexed. The indexing is more than 10
times faster than coverage calculation and shows strong
association with the alignment file size (Figure 3A). Tabix
is faster than bigWig: this is most likely because bigWig
uses more than one index for different zoom levels [28].

Memory usage is a big problem for RLE. Even for the 10
million read BAM file, it uses 6 GB to finish the run, while
for the 160 million read BAM file, it uses 75 GB (Figure 3B).
In contrast, the memory footprint for Tabix indexing is very
small: it uses ~50-60 MB for all BAM files. bigWig uses
more memory for indexing than Tabix but is still reason-
ably small: at 160 million alignments, it uses 2 GB to finish
the run (Figure 3B).

File size is another important metric. Both Tabix and
bigWig create large coverage files that strongly associate
with alignment file size (Figure 3C): at 160 million align-
ments, the Tabix coverage file is 1.2 GB while the bigWig
coverage file is 1GB. As a comparison, RLE files are three
times smaller: at 160 million alignments, the RLE file is
330 MB. Both Tabix and BAM have very small index file
sizes. For BAM, the index remains around 6 MB for all
alignment sizes while Tabix index is three times smaller.
For bigWig, the index is an integral part of the format and
its size is unknown to us.

By grouping regions into chunks we can save resource
in index loading. This strategy worked well in our tests
(Figure 3D). Based on a 10 million alignment file, it took
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the BAM method 1,200 s to load all TSS + 5 Kb regions
into memory for chunk size of 1. For a chunk size of
10, the time was reduced to less than 200 s — a six fold
reduction. The time was further reduced to 88 s for a
chunk size of 100. The other two methods — Tabix and
bigWig — enjoyed similar degrees of time reduction by
use of region grouping. It should be noted that Tabix
used much less time than BAM at small chunk sizes.
This is expected since the Tabix index is much smaller
than the BAM index (Figure 3C). bigWig used the lon-
gest time among the three methods at small chunk

sizes (1-100), suggesting its index is larger than the
other two.

In our tests, Tabix was implemented with the Rsam-
tools [46] package and bigWig was implemented with
the rtracklayer [47] package. Note that Tabix is a gen-
eric index program for text entries. After the texts are
loaded into memory, they must be converted into binary
representation of numerical numbers. The rtracklayer
package, however, will unfortunately merge and sort the
query regions before coverage vectors are retrieved.
This means that the loaded coverage vectors are mixed
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and must be distinguished between the query regions
for them to be useful for our purposes. All of the above
operations require a significant amount of computa-
tional resources. At chunk size of 100, it took bigWig
>3,500 s and Tabix >2,500 s to finish the operations
(Figure 3E). In comparison, it took BAM only 64 s to
calculate the coverage vectors on-the-fly. In the end, we
abandoned support for Tabix and bigWig for this rea-
son. A future goal of the field is to re-write the extrac-
tion functions in Rsamtools and rtracklayer extensively
in order to optimize the retrieval time. Once that is
done, we can add support for these two file formats.

Finally, we tested the entire process of coverage extrac-
tion and calculation for both BAM and RLE for different
alignment sizes with regard to time and memory usage.
The BAM method was tested with chunk size of 100 that
is the default value for ngs.plot. BAM functioned super-
iorly compared to RLE on both metrics at all alignment
sizes (Figure 3F). BAM’s run time only slightly increased
from 143 s to 165 s for 10 and 160 million alignments;
and its memory usage remained stable: less than 1 GB for
all alignment sizes. In contrast, RLE used 4.1 GB RAM at
10 million alignments and increased to 159 GB RAM at
160 million alignments. RLE’s run time was also signifi-
cant: at 160 million alignments, it took >1,200 s to finish —
seven times longer than BAM.

In summary, the BAM strategy we chose in ngs.plot is
a versatile, low profile approach that works robustly even
with very large alignment files. This approach was intro-
duced in ngs.plot v1.64 and has remained the approach
of choice ever since.

Analysis of Tet1 and 5hmC ChIP-seq data in the
differentiation of P19.6 cells

An easy-to-use and flexible visualization method of
NGS data is necessary for computational biologists to
formulate and validate hypotheses quickly. To demon-
strate the power of ngs.plot, we used ChIP-seq data
[see Additional file 1: Table S1] to study the relationship
between Tetl (ten eleven translocation protein-1), a me-
thylcytosine dioxygenase, and 5-hydroxymethycytosine
(5hmC) in the differentiation of mouse embryonal carcin-
oma P19.6 cells. P19.6 cells can be differentiated into neu-
rons or glia by exposure to retinoic acid (RA) [48], and are
widely used in research on stem cell differentiation. Tet
family proteins play important roles in the conversion of 5-
methylcytosine (5mC) into 5hmC, 5-formylcytosine (5fC),
and 5-carboxymethylcytosine (5caC) in DNA [49-51], and
are important regulators in the maintenance and differenti-
ation of embryonic stem cells (ESC) [52,53]. 5fC and 5caC
are present low abundance in mammalian genomes [54]
and are difficult to be detected by ChIP-seq. Therefore, we
focus on 5hmC in this study. 5hmC is known to be
enriched at TSSs, exons, CGIs, and enhancers [55-57]. The
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distributions of Tet proteins and 5hmC across the genome
roughly overlap, while Tetl and Tet3 prefer CpG enriched
regions [50,58]. This preference is at least partially due to
their CXXC domains [58].

First, we used ngs.plot to investigate the enrichment pro-
files of Tetl and 5hmC in P19.6 cells at different genomic
regions, including genebodies, CGIs, exons, and enhancers
(Figure 4A & Additional file 1: Figure S2). As the genebody
plot (Figure 4A) shows, Tetl is most enriched at TSSs but
generally depleted at genebodies. CGI plots (Figure 4A &
Additional file 1: Figure S2A) indicate that Tetl is enriched
at all kinds of CGIs at similar levels (~0.5-0.9 RPM) and
demonstrates a clear drop of enrichment at flanking regions
(£3 Kb). This suggests that the CXXC domain of the Tetl
protein highly prefers CpG abundant regions. In addition,
Tetl shows some enrichment at exons as well as enhancers
(Figure 4A & Additional file 1: S2B) but the enrichment
levels are weaker than that of CGIs, with enhancers being
the weakest. As we expected, the enrichment patterns of
5hmC are highly similar to those of Tetl (Figure 4A &
Additional file 1: Figure S2), indicating concordance be-
tween the two marks. All of the above plots can be gener-
ated by ngs.plot with only one command for each. The user
only needs to input into ngs.plot which regions and sam-
ples to examine and the size of the flanking regions.

5hmC plays an important role in stem cell differenti-
ation, where its conversion from 5mC is mediated by Tetl
[49,51,55,59]. The activities of enhancers are known to be
specific to differentiated cell types and are often marked
by the dynamics of 5hmC [60]. Here we illustrate the role
that Tetl plays in the conversion of 5hmC by studying the
differential sites of Tetl between control and RA-induced
P19.6 cells (Figure 4B & Additional file 1: Figure S2). dif-
fReps is a powerful program to detect differential chroma-
tin modification sites using ChIP-seq data [42]. We used
diffReps to find 7,735 (Increased: 3,762, Decreased: 3,973)
Tetl differential sites in total. To restrict the analysis to
enhancers, we used H3K27ac as a mark for active en-
hancers [33]. Peak calling using MACS was performed in
both control and RA-induced P19.6 cells and the two peak
lists were combined to obtain 135,280 H3K27ac enriched
sites (excluding the TSS + 3 Kb regions). The peak list was
used to filter the Tetl differential sites that are not in en-
hancer regions. After filtering, we obtained 507 increased
and 1,875 decreased enhancer-specific Tetl sites induced
by RA, whose genomic coordinates are then converted
into two separate BED files. ngs.plot was applied on each
BED file to plot the enrichment of both Tetl and 5hmC
(Figure 4B). It can be seen clearly that the trends of 5hmC
dynamics follow those of Tetl dynamics, with an overall
consistency ratio of 82% (Tetl increased sites: 74%; de-
creased sites: 84%). Their log fold changes are also weakly
correlated (Pearson’s r=0.46, Spearman’s p =0.32, both
with P <2.2E-16). This is a vivid example illustrating how
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Figure 4 Applying ngs.plot to the study of Tet1 in mESC P19.6 cells during differentiation. All heatmaps are resized to match each other’s
height for display purposes. A. Tet1 and 5hmC enrichment at different functional regions — CGls at proximal promoters, canonical exons, and
enhancers, including 3 Kb flanking regions. All regions are ranked by the “total” algorithm. “L" - 5" left, “R" — 3’ right as defined by the gene that
includes the CGI; "A" - 5" acceptor, “D" — 3" donor; “E” — enhancer center. B. Tet1 and 5hmC enrichment before and after RA treatment at Tet1's
differential sites defined by diffReps, filtered by active enhancers, including 3 Kb flanking regions. The differential sites are ranked by the "diff"
algorithm. The up and down sites are plotted separately. Both average profiles and heatmaps are shown. “L" — genomic left, “R" — genomic right
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different computational tools can be used to identify bio-
logically meaningful genomic regions and then feed them
into the ngs.plot program for visualization.

Integrative analysis of poised and active promoters in ESC
Integrative analysis using genomic sequence informa-
tion and multiple NGS samples is essential to investi-
gate gene transcription and epigenomic regulation. ngs.
plot’s ability to graph both ChIP-seq and RNA-seq sam-
ples allows a user to quickly establish correlations between
different epigenomic marks and associated gene expression
levels. Here, we demonstrate this feature of ngs.plot by use
of multiple ChIP-seq samples, including several histone
marks (H3K4me3, H3K27ac, and H3K27me3) and tran-
scription factors (Suzl12, Oct4, and Tetl), and an RNA-seq
sample, from mouse ESCs (mESCs) [see Additional file 1:
Table S1]. H3K4me3 is a promoter-enriched histone mark
that is generally associated with transcriptional activation
[33]. H3K27ac is an activation mark that locates at both
promoters and enhancers [33]. The enrichment of both
H3K4me3 and H3K27ac provides a signature of CpG-
related promoters [61]. H3K27me3 is catalyzed by the Poly-
comb group proteins and is implicated in the silencing
of genes [62]. The enrichment of both H3K4me3 and
H3K27me3 marks the so-called “bivalent” domains that are
prevalent in ESCs. They maintain the silencing or low ex-
pression of many genes in ESCs, which are poised for acti-
vation in differentiated cell types [33,63]. Suz12 is a subunit
of the Polycomb repressive complex 2 (PRC2) — a tran-
scriptional repressor that catalyzes H3K27me3 [64]. Oct4,
also known as POU5SF], is a critical transcription factor in
the self-renewal of ESCs [65].

We divided all promoters (TSS + 3 Kb) of the coding re-
gions of genes into two groups, namely, Polycomb-targeted
(PT, n=5,132) and non-Polycomb-targeted (nPT, n=
19,013), based on the presence or absence of H3K27me3
peaks. To reveal the relationship between genomic se-
quences and epigenomic regulation, we sorted all pro-
moters within each group based on their CG di-nucleotide
percentages (CGP) and entered the gene lists into ngs.plot’s
configuration files. We ran ngs.plot with its ranking algo-
rithm set to “none” so that it used the input order. We also
used a DNA input sample to pair with each epigenomic
mark so that ngs.plot’s bam-pair functionality plots log fold
changes. The use of the input sample is to counteract
various biases introduced in ChIP-seq experiments [66].
All of the ChIP-seq samples within each group were
then plotted with one command by use of the configur-
ation file (Figure 5). We also plotted the RNA-seq sam-
ple using the same gene list with another command
using the “RNA-seq” mode (Figure 5).

Figure 5 shows that the PT group has lower gene expres-
sion levels than the nPT group, indicating that genes con-
taining the H3K27me3 mark are suppressed. Conversely,
the activation mark H3K27ac shows lower enrichment in
the PT group. As previously reported [67], H3K27ac is mu-
tually exclusive with H3K27me3. However, another activa-
tion mark, H3K4me3, appears to be enriched in both
groups. H3K4me3'’s enrichment in the PT group demon-
strates the prevalent existence of the “bivalent” domain in
mESCs. The heatmaps of Figure 5 also indicate that there
are strong correlations between certain epigenomic marks
as well as with gene expression. To quantitatively measure
these correlations, we used the plotCorrGram.r script
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Figure 5 Applying ngs.plot to the study of epigenomic regulation of PT and nPT promoters in mESCs. The log2 enrichment ratios of
several histone marks and transcription factors vs. DNA input at TSS + 3 Kb regions. The TSSs are ranked by CGPs in descending order (using
algorithm “none”). Gene expression levels are illustrated by RNA-seq enrichment in the same order (using RNA-seq mode), including 3 Kb flanking
regions. The upper panel represents PT promoters and the lower panel represents nPT promoters. They are resized to have the same height.

included in the ngs.plot package to calculate and visually
demonstrate all pairwise correlations between the samples.
All the correlation coefficients and p-values are presented
in [Additional file 2]. The corrgram is presented in [Add-
itional file 3]. As expected, H3K27me3 and Suzl2 show
very strong correlations in both groups (PT: r =0.89, nPT:
r = 0.94, both with P = 0). Interestingly, CGPs show a mod-
erate correlation with gene expression in the nPT group
(r =0.69, p=0.73, both with P =0), but this correlation is
significantly decreased in the PT group (r=0.20, p = 0.24,
both with P =0). As we mentioned above, Tetl has a pref-
erence for CG-rich regions due to its CXXC domain. A
moderate correlation is observed between Tetl and CGPs
in the PT group (r = 0.53, p = 0.54, both with P = 0), while a
weak correlation is observed in the nPT group (r=0.30,
p =0.37, both with P=0). Tetl also shows a moderate

correlation with Oct4 in both groups (PT: r=0.59, 0.57,
both with P =0; nPT: r =0.76, p = 0.71, both with P =0). It
has been reported that Tetl can replace the role of Oct4 in
inducible pluripotent stem cell (iPSC) reprogramming, a
process that is implicated in the regulatory circuit of ESCs
[68]. This example demonstrates the ngs.plot’s capability to
quickly correlate multiple epigenomic marks with other
genomic features and with gene expression and creates fig-
ures that are publication-ready. A user can use these figures
to gain biological insights into their NGS data and even
generate novel hypotheses.

Examination of RNA-seq 3’ bias

The RNA-seq mode of ngs.plot can perform exon spli-
cing in silico and this functionality can be exploited dur-
ing RNA-seq quality control. For instance, in studies of
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human postmortem brain tissue, a major problem is that
the RNA samples are often severely and variably degraded,
as measured by the RNA integrity number (RIN) [69]. An
RNA sample with low RIN is often associated with strong
3’ bias, which can impair the ability to otherwise assess
the sample’s mRNA quantity. To demonstrate this, we an-
alyzed an in-house RNA-seq dataset (unpublished) from
human postmortem brain tissue obtained from two indi-
viduals with schizophrenia: one sample has an acceptable
RIN (=7.8) and the other sample has a very low RIN (=3).
The figure (Figure 6) generated by ngs.plot shows that the
sample with low RIN is clearly biased towards 3" in com-
parison to the sample with high RIN. A plot like this pro-
vides a visual inspection of the read coverage of RNA-seq
samples and can help an investigator derive useful infor-
mation from suboptimal tissue, while guiding decisions re-
garding whether a sample should be discarded or not.

Conclusion

High throughput assays that utilize NGS platforms have
revolutionized biomedical research [1,2]. Biology is be-
coming more of a data-driven discipline than ever. The
bottleneck is now in the processing and interpretation of
the massive amount of data that are being generated
[70,71]. We have developed ngs.plot — a quick data mining
and visualization program for plotting NGS samples. ngs.
plot is easy and simple to use but yet still very powerful.
Its signature advantage is a built-in database of functional
elements that are ready to use, which saves users consider-
able time in managing genomic coordinates on their own.
These features help make ngs.plot a popular tool among
bioinformatics researchers.

Over the past few years, we have seen many exciting de-
velopments in applying NGS technologies to epigenomics.
Large international efforts such as the ENCODE project
[11] and the NIH roadmap epigenomics project [72] have
generated an enormous amount of data about the human
and other mammalian genomes. The scale of such projects
is unprecedented. These data have provided an invaluable
resource of information concerning the functional ele-
ments that regulate genes and non-genic regions. Under-
standing how these functional elements are controlled by
different protein regulators to yield numerous, diverse
phenotypic outputs is essential to advance our knowledge
of genome regulation and function. In this great adven-
ture, ngs.plot represents a highly useful tool that helps fill
the gap between data and information. Nevertheless, a lot
of work is still needed to curate these data and to incorp-
orate them into our database.

Another direction for future research is to make the ngs.
plot program more interactive. As we incorporate tens of
millions of additional functional elements into our data-
base and perform more elaborate classifications, a com-
mand line interface will become too cumbersome to use.
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Therefore, a Google search like interface should be devel-
oped to help users find genomic regions of interest from
our database, upon which the ngs.plot visualization engine
can be used to display enrichment patterns and to perform
related data mining tasks.

Availability and requirements
Project name
ngs.plot.

Project home page
https://code.google.com/p/ngsplot/.

Operating system
Platform independent.

Programming language
R and Python.

Other requirements
R package doMC; Bioconductor package BSgenome,
Rsamtools and ShortRead.

License
GNU GPL3.

Any restrictions to use by non-academics
Contact Lisa Placanica (lisa.placanica@mssm.edu) or the
technology transfer office of Mount Sinai.

Additional files

Additional file 1: Supplemental materials including exon
classification algorithm, Figure S1-2, Table S1-2.

Additional file 2: Correlation coefficients and p-values of all
pairwise comparisons between the samples in Figure 5.

Additional file 3: Corrgrams of histone marks, transcription factors,
and gene expression using the same data as Figure 5. Each region is
represented by the row sum of the data matrix. The left panel represents
PT promoters and the right panel represents nPT promoters. The upper
triangle represents correlation coefficients: the sizes of pies represent the
absolute values of the correlation coefficients; blue represents positive
correlation; red represents negative correlation. The lower triangle
represents scatter plots using ellipses. The red lines represent LOWESS fit
to the scatter plots.
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