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1  |  INTRODUC TION

The intestinal microbiome represents the collective interacting ge-
nomes and symbiotic microorganisms in the intestinal tract (Kinross 
et al., 2011). The gut microbiota is complex and dynamic microbial 

ecosystem (Johnson et al., 2019), being sensitive to perturbations, such 
as dietary changes, environmental factors, and enteric pathogens (Ren 
et al., 2017), which has co- evolved with hosts and play an integral role 
in nutrient intake, behavior, metabolism, immune function, and devel-
opment of the host (Heijtz et al., 2011; Sonnenburg & Bäckhed, 2016). 
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Abstract
Gut microbiota is associated with host health and its environmental adaption, influ-
enced by seasonal variation. Pomacea canaliculata is one of the world's 100 worst 
invasive	alien	species.	Here,	we	used	high-	throughput	sequencing	of	the	16S	rRNA	
gene to analyze the seasonal variation of gut microbiota of P. canaliculata. The re-
sults suggested that the predominant gut microbial phyla of P. canaliculata included 
Firmicutes and Proteobacteria, which helped digest plant food and accumulate en-
ergy. The gut microbiota of P. canaliculata in summer group showed the highest diver-
sity, whereas the winter group possessed the lowest, probably due to the shortage 
of food resources of P. canaliculata in winter. Principal coordinate analysis analysis 
based on unweighted unifrac and weighted unifrac indicated that the composition 
of gut microbiota of P. canaliculata significantly varied across seasons. Bacteroidetes 
tended to be enriched in summer by linear discriminant analysis effect size analy-
sis.	 Actinobacteria	 and	 Cyanobacteria	 were	 extremely	 abundant	 in	 autumn,	 while	
Fusobacteria and Cetobacterium enriched in winter. In conclusion, the structure of the 
gut microbiota of P. canaliculata was significantly different among seasons, which was 
beneficial to the environment adaptation and the digestion and metabolism of food 
during different periods.
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Gut microbiota may influence host evolution by expanding host di-
etary	niches	(Alberdi	et	al.,	2016; Moran et al., 2019), influencing the 
evolution of host phenotypic plasticity in response to environmental 
change and development (Gilbert et al., 2015), and generating selec-
tion on hosts for traits that benefit host fitness (Foster et al., 2017).

Changes in food resources and seasonal fluctuations in ambi-
ent temperature alter microbial communities (Maurice et al., 2015; 
Moschen et al., 2012; Turnbaugh et al., 2009). The gut microbi-
ota of animals is indirectly affected by environmental tempera-
tures and directly influenced by hosts' physiological responses 
to	seasonal	changes	 in	 food	sources	 (Amato	et	al.,	2015; Solden 
et al., 2017; Stevenson et al., 2014). Tong et al. (2020) found that 
the composition and structure of skin and gut microbiotas of Rana 
dybowskii changed between summer and winter due to activity 
levels, environmental conditions, nutritional, and immune status. 
The microbiota composition of digestive glands of Mytilus gallo-
provincialis was significantly different along with collection sea-
sons affected by the environmental conditions in sampling area 
(Wathsala et al., 2021).

Pomacea canaliculata	is	a	freshwater	snail	native	in	South	America	
and is listed as one of the 100 world's invasive alien species by the 
International Union for Conservative of Nature and the Invasive 
Species Specialist Group (Lowe et al., 2000).	 After	 the	 1980s,	
P. canaliculata	was	introduced	to	many	countries	in	North	America,	
Europe,	East	and	Southeast	Asia	as	aquarium	pets	or	human	 food	
(Hayes et al., 2008). Dietary of P. canaliculata was flexible, not only 
consuming crops and aquatic macrophytes but also preying on 
small snails and other aquatic animals (Carlsson et al., 2004; Kwong 
et al., 2009). P. canaliculata also has high fecundity, fast growth, to-
gether with a lack of effective natural enemies in invaded wetlands, 
which are highly adaptable to harsh environmental conditions, such 
as low dissolved oxygen concentration, high nutrient content, low 
food supply, and temperature (Cowie, 2002). In temperate winter, 
P. canaliculata hibernated through burying themselves into the top-
soil, slowing down metabolism and entering dormancy in paddy 
fields, irrigation canals, ponds and other bodies of water to possess 
the acquisition of cold hardiness (Matsukura et al., 2008, 2009; Zhou 
et al., 2003). P. canaliculata have become serious agricultural and 
ecological pests, causing massive economic losses (Cowie, 2002). 
P. canaliculata have established natural populations at least 11 prov-
inces	in	southern	China	(Yang	et	al.,	2018) were listed as one of the 
first national key invasive alien species under management in China.

Previous studies of biological characteristics of P. canaliculata 
in different seasons have mainly focused on the host reproduc-
tion, growth, and temperature adaptation (Matsukura et al., 2008; 
Seuffert & Martin, 2017). The number of eggs per egg mass de-
creased as food availability reduced in winter to increase hatchling 
survival. Compared with winter, the hatchling survival of P. cana-
liculata in summer was higher, mainly due to the influence of the 
ambient temperature (Tamburi & Martín, 2011). The cold treatment 
test of P. canaliculata showed that the cold resistance was increas-
ing along with the decrease in temperature and the increase of 
habitat displacement. P. canaliculata	were	treated	at	0°C	for	5 days	

on December, with a result of almost all P. canaliculata surviving 
(Matsukura et al., 2016). The cold tolerance of P. canaliculata col-
lected from paddy fields in summer was significantly enhanced 
(Wada & Matsukura, 2007).

With the development of high- throughput sequencing, several 
studies have explored the intestinal microbiota of P. canaliculata 
using	theV3-	V4	regions	of	the	16S	rRNA	gene.	Li	et	al.	(2019) stud-
ied the diversity and composition of the microbiota of the buccal 
masses, stomachs, and intestines of P. canaliculata. The diversity of 
the microbiota was highest in the intestine but lowest in the buc-
cal mass. The composition of the microbiota was diverse among 
the different gut sections. Significant differences were found in the 
structure of gut microbiota among female, male, and juvenile groups, 
suggesting the gut microbiota of P. canaliculata has been affected by 
the developmental stages (Chen et al., 2021). Zhou et al. (2022) in-
vestigated difference of gut microbiota between P. canaliculata and 
native snail Cipangopaludina chinensis. The results found that there 
were marked differences in the gut microbiota structure between 
P. canaliculata and C. chinensis. Unique or high microbial taxa were 
more abundant in P. canaliculata, indicating that this invasive snail 
has an enhanced potential to adapt to new habitats. Most studies 
have explored the gut microbiota of P. canaliculata affected by gut 
sections, sex, the developmental stages. However, the influence of 
environmental condition such as seasonal variation on the gut mi-
crobiota of P. canaliculata has been limited explored. Studying the in-
fluence of seasonal variation on the gut microbiota of P. canaliculata 
allows us to figure out whether microbial variations of P. canaliculata 
in different seasons enables the host in response to different envi-
ronmental conditions.

In the present study, we aimed to explore the differences in the 
gut microbiota of P. canaliculata among seasons. Information con-
cerning the influence of seasonality on the P. canaliculata gut micro-
biome may help to understand how the gut microbiome is affected 
by different seasons. Studying the importance of seasonal variation 
in reshaping the gut microbiota of P. canaliculata can help under-
standing the relationship between microbiota and environmental 
adaption in this invasive snail.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

A	total	of	twenty-	eight	P. canaliculata were collected from a pond 
in Suzhou City (31.46°N, 120.95°E), Jiangsu Province, China, from 
July 2020 to January 2022, including the summer group (with 6 fe-
males and 5 males), the autumn group (with 5 females and 5 males), 
and the winter group (with 4 females and 3 males) (Table 1). The 
water temperatures of the sampling sites were recorded among 
seasons during sampling in the field. The water temperatures in 
July,	November,	and	January	were	32.60°C,	18.58°C,	7.79°C,	re-
spectively. P. canaliculata in winter were generally sampled under 
the soil by fishing net because snails overwinter were buried in 
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the	 bottom	 sediments.	 All	 experimental	 individuals	 were	 wiped	
by 75% ethanol three times, followed by rinsing twice in distilled 
water to sanitize the surface prior to dissection and removing the 
shell from each snail (Chen et al., 2021). Coiled gut contents were 
extracted carefully to avoid rupturing the gut wall. Each sample 
was stored in sterile tubes using liquid nitrogen and later stored in 
a	freezer	of	−80°C.

2.2  |  DNA extraction and sequencing

Microbial	 DNA	 was	 extracted	 from	 the	 intestinal	 samples	 using	
FastDNA®	 Kit	 (MP	 Biomedicals,	 CA,	 USA)	 according	 to	 the	 in-
structions	 of	 the	 manufacturer.	 DNA	 quantity	 was	 examined	 by	
1%	 agarose	 gel	 electrophoresis.	 The	 universal	 primers	 338F(5′-	
ACTCCTACGGGAGGCAGCAG-	3′)	and	806R	(5′-	GGACTACHVGGG	
TWTCTAAT-	3′)	were	used	to	amplify	the	V3–	V4	region	of	16S	rRNA	
gene (Lin et al., 2019). PCR products were purified and subjected to 
high- throughput sequencing using the Illumina MiSeq PE300 plat-
form by Majorbio BioPharm Technology Co., Ltd (Shanghai, China).

2.3  |  Statistical and bioinformatic analyses

Raw data were processed using the QIIME software (version 1.9.1, 
http://qiime.org/insta ll/index.html). Raw fastq files were quality 
filtered	 by	 Trimmomatic	 and	 merged	 by	 FLASH	 with	 the	 crite-
ria as previously described (Chen et al., 2021). Sequences were 
assigned to the operational taxonomic units (OTUs) with a 97% 
identity	 threshold	 by	 USEARCH	 (version	 7.1,	 http://drive5.com/
upars e/) (Edgar et al., 2011). The Ribosomal Database Project 
(RDP) Classifier (http://rdp.cme.msu.edu/) was employed for tax-
onomy	assignment	of	each	16S	rRNA	gene	sequence	against	Silva	
16S	rRNA	database	(Version	132,	http://www.arb- silva.de) (Quast 
et al., 2013). Taxonomic identity of the noranked OTUs (mean 
relative abundance >1%)	on	genus	level	was	queried	using	BLAST	
against the NCBI database.

Rarefaction curves were plotted for each sample to determine 
the abundance of communities and sequencing data of each sam-
ple.	For	the	alpha-	diversity	metrics,	Ace,	Chao1,	Shannon,	Simpson	
indices were calculated using QIIME and the Kruskal- Wallis H tests. 
Principal	 coordinate	 analysis	 (PCoA)	 was	 used	 based	 on	 the	 un-
weighted and weighted UniFrac distances and analysis of similar-
ity	 (ANOSIM)	 based	 on	 999	 permutations	 (Clarke,	 1993; Warton 
et al., 2012).	A	Venn	diagram	was	generated	to	describe	unique	and	
common OTUs among different seasons using R software (version 

3.1.0,	 R	 Core	 Team,	 Auckland,	 New	 Zealand).	 Linear	 discriminant	
analysis effect size (LEfSe) was used to analyze the differences in 
intestinal	 microbial	 composition	 among	 groups	 (|LDA	 score| > 3.5)	
(Segata et al., 2011). To identify statistically significant differences 
of intestine microbiota at the phylum and genus level among the 
groups, Kruskal- Wallis H test was used by SPSS 19.0 software. p- 
value <.05 was considered statistically significant.

PICRUSt (Langille et al., 2013) was used to predict microbial 
functions based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Evolutionary Genealogy of Genes: Non- supervised 
Orthologous Groups (EggNOG) databases. LEfSe was applied to an-
alyze differences in the functionality of the gut microbial community 
among	the	three	groups	(|LDA| > 3.5).

3  |  RESULTS

3.1  |  Sequencing depth and alpha diversity indices

DNA	extracted	from	twenty-	eight	P. canaliculata samples was am-
plified	 successfully,	 and	 556,080	 valid	 sequences	 were	 obtained.	
P. canaliculata	yielded	3085	valid	OTUs	at	a	97%	identity.	OTUs	were	
assigned into 44 phyla, 121 classes, 274 orders, 472 families, and 
972 genera. The rarefaction curves for all the samples showed the 
observed species number gradually stabilized (Figure S1), indicat-
ing that the sequencing data were reasonable and that there was 
uniform species composition within the sample. These results indi-
cated that the sample size in this study was sufficient for follow- up 
analysis.

The Shannon index in the summer group was higher than that in 
the autumn group, and the Shannon index in the autumn group was 
higher than that in the winter group, while the Simpson index was 
opposite (Table S1). However, there was no significant difference 
in Shannon and Simpson index among these three groups (p > .05).	
The intestinal microbial diversity of P. canaliculata was the highest 
in summer and the lowest in winter. There was no significant differ-
ence among three groups (p > .05;	Figure 1a,b).

3.2  |  Taxonomic composition and beta 
diversity analysis

The predominant phyla of the intestinal microbiome of P. canalicu-
lata in summer, autumn and winter were similar, but the proportions 
of each phylum were different (Figure 2a). The dominant bacte-
rial phyla detected within gut microbiota of P. canaliculata in three 

Season Sampling date
Number of 
females

Number 
of males Shell height (mm)

Summer July 2020 6 5 42.6200 ± 1.9700

Autumn November 2020 5 5 39.8000	± 1.4900

Winter January 2022 4 3 50.0400 ± 2.9100

TA B L E  1 Sample	information	of	
different seasons

http://qiime.org/install/index.html
http://drive5.com/uparse/
http://drive5.com/uparse/
http://rdp.cme.msu.edu/
http://www.arb-silva.de
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groups were Firmicutes and Proteobacteria (Figure 2a). Except for 
these two phyla, the relative abundance of bacterial phyla in dif-
ferent seasons was variable. Microbiota of the summer group were 
also enriched with two phyla, including Bacteroidetes (9.25%), and 
Cyanobacteria (3.49%), while microbiota of the autumn group were 
enriched	 in	 the	 phyla	 Cyanobacteria	 (7.87%)	 and	 Bacteroidetes	
(3.46%), and the winter group were enriched with the Fusobacteria 
(10.57%),	Bacteroidetes	(2.87%),	and	Spirochaetes	(2.51%).

The intestinal flora of P. canaliculata in different seasons varied 
greatly at the genus level (Figure 2b). The most abundant bacterial 
genus across all samples was Leuconostoc, accounting for 23.66%, 
52.78%,	52.75%	in	summer,	autumn,	and	winter,	respectively.	In	sum-
mer, the relative abundances in descending order were Mycoplasma 
(14.59%), Aeromonas (13.02%), Cloacibacterium, (6.40%), Pantoea 
(5.35%), Lactococcus (4.21%), and Bacillus (3.14%). In autumn, the 
relative abundances are in descending order of Mycoplasma (5.53%), 
Trichodesmium_IMS101, (4.09%), and Bacillus	 (3.85%).	 In	 winter,	
the dominated genera were Aeromonas (11.12%), Cetobacterium 
(10.52%), and Lactococcus	(3.28%).

The	 PCoA	 plot	 of	 unweighted	 UniFrac	 distance	 showed	 that	
the difference in the gut microbiota structure was not significant 
between female and male P. canaliculata among three groups (all 
p > .05).	 The	 composition	 of	 the	 intestinal	 microbiota	 community	
was significantly different in three groups (R = .5271, p = .001) 

(Figure 3a). This result was also supported by the weighted Unifrac- 
based	PCoA	(R =	.2851,	p = .002) (Figure 3b).

3.3  |  Different intestinal microbiome of 
P. canaliculata in different seasons

A	 total	 of	 746	OTUs	were	 shared	 in	 three	 groups,	 accounting	 for	
36.53%, 33.30%, and 57.17% of the total number of the summer, 
autumn, and winter groups, respectively. There were 1296 unique 
OTUs in summer, 1494 unique OTUs in autumn, and 559 unique OTUs 
in winter (Figure 4a).	Among	these	shared	OTUs,	56.74%	were	from	
Firmicutes,	12.28%	from	Proteobacteria,	3.4%	from	Bacteroidetes,	
2.89%	from	Fusobacteria,	and	1.63%	from	Cyanobacteria.

LEfSe analysis was performed to identify species that differ sig-
nificantly	among	groups	(|LDA| > 3.5)	(Figure 4b; Table S2). From the 
distribution	histogram	of	LDA	effect	value,	the	intestinal	microbiome	
of P. canaliculata in different seasons showed that Proteobacteria, 
Bacteroidetes, Gammaproteobacteria, Enterobacteriaceae, 
Chloroflexaceae, Aeromonas, Shewanella, Acinetobacter, Citrobacter, 
Klebsiella	 were	 significantly	 enriched	 in	 summer;	 Actinobacteria,	
Bacillaceae, Nostocaceae, and Bacillus were significantly enriched in 
autumn; Desulfobacterota, Methylocystis were significantly enriched 
in winter.

F I G U R E  1 Comparison	of	alpha	diversity	index	of	intestine	microbiome	in	different	seasons	of	Pomacea canaliculate. (a): Shannon index; 
(b):	Simpson	index;	(c):	Chao1	index;	(d):	Ace	index.	Significant	differences	were	marked	as	“*”	(p < .05)	and	“**”	(p < .01).
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At	 the	 phylum	 level,	 the	 relative	 abundance	 of	 Cyanobacteria	
was the greatest in autumn, and the relative abundance of 
Fusobacteria was the greatest in winter based on the Kruskal- Wallis 
H test (H = 14.6463, p = .0007) (Figure 6a; Table S3).	At	the	genus	
level, the relative abundance of Cetobacterium was the greatest in 
winter (H = 17.5221, p = .0002), and the relative abundances of 
Cloacibacterium (H = 15.3263, p = .0005) and Bacillus (H =	15.4889,	
p = .0004) in summer and autumn was significantly greater than 
those in winter (Figure 6b; Table S4).

A	 total	 of	 23	metabolic	 functions	were	 predicted	 in	 all	 samples	
from EggNOG database (Figure 5a). The principal functionality primar-
ily consisted of amino acid transport and metabolism (9.67%), followed 
by	 translation,	 ribosomal	 structure	and	biogenesis	 (8.79%),	 carbohy-
drate	transport	and	metabolism	(6.87%),	cell	wall/membrane/envelope	
biogenesis (6.60%), etc. To better understand the functional differ-
ences,	LEfSe	analysis	(|LDA| > 3.5)	was	conducted	in	the	three	groups	
(summer, autumn and winter). The results showed that no difference of 
function prediction was detected among these three groups.

A	total	of	7210	KEGG	Orthology	(KOs)	were	mapped	to	404	level	
3 KEGG pathways and were then classified into 46 level 2 KEGG 

pathways.	At	level	1,	predicted	functional	pathways	metabolism	ac-
counted for the highest proportion, followed by genetic information 
processing, environmental information processing, human diseases, 
cellular processes, organismal systems, etc (Figure 5b).	 At	 level	 2,	
predicted functional pathways global and overview maps accounted 
for the highest proportion, followed by carbohydrate metabolism, 
amino acid metabolism, energy metabolism, and metabolism of co-
factors and vitamins, etc (Figure 5c). LEfSe analysis identified that 
no difference of function prediction was detected among groups.

4  |  DISCUSSION

4.1  |  Structure and function of the intestinal 
microbes of P. canaliculata in different seasons

In this study, the alpha diversity of the gut microbiome was observed 
in different seasons. The highest diversity of gut microbiota was de-
tected in summer group (Figure 1a,b). Previous studies suggested 
that higher α diversity leads to a more complex and stable intestinal 

F I G U R E  2 Composition	of	the	bacterial	community	in	the	guts	of	Pomacea canaliculata in different seasons (mean relative 
abundance>1%).	(a):	At	the	phylum	level;	(b):	at	the	genus	level.
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microbiota composition, enhancing resistance to external interfer-
ence and adaptability, which is beneficial to the host health (Stoffel 
et al., 2020).	 PCoA	 analysis	 based	 on	 unweighted	 and	 weighted	
UniFrac distance (Figure 3a,b) indicated that seasonal variations had 
significantly influence on the structure of gut bacterial community. 
Seasonal fluctuation is an important factor causing changes in the gut 
microbiota, which may be related to the environmental temperature 
(Pierce et al., 2016), habitat, and food composition (Baniel et al., 2021) 
and other factors. Temperature can induce significant changes in the 
gut microbiota and metabolism of European seabass (Dicentrarchus 
labrax) juveniles (Liu et al., 2022). Different habitat conditions in irra-
diance and riparian vegetation modulated the composition of the gut 
microbiota and their biochemical properties in the freshwater black-
worms (Lumbriculus variegatu) (Kim et al., 2021). Furthermore, due to 
the gut microbiota of animals directly affected by hosts' physiologi-
cal responses to seasonal changes in food resources, it responds to 
dietary fluctuations and presumably to adapt to new dietary niches 
(Amato	et	 al.,	2015). Microbiota variations of Fejervarya limnocharis 
in dominant gut microbiota at different seasons imply that frogs ac-
quire different bacteria due to variations in their seasonal diet (Huang 
et al., 2021). Due to winter is a period of food shortage for most ani-
mals relative to summer and seasonal changes in the field foraging 
of P. canaliculata, intestinal microbiome gradually changes to adapt to 
this condition (Seuffert et al., 2010; Tamburi & Martín, 2011).

Although	seasonal	differences	are	generally	considered	to	be	the	
determinants of the seasonal changes of gut microbiota, a total of 
33.30%–	57.17%	of	OTUs	were	consistent	in	all	three	seasons.	The	
common microbiota identified in shared OTUs were Firmicutes, 
Proteobacteria, Bacteroidetes, Fusobacteria, and Cyanobacteria. 
The common microbiota in different seasons plays an important role 
in maintaining the basic physiological function of the snail and the 
seasonal homeostasis of the gut microbiota (Hao et al., 2020).

The phyla Firmicutes and Proteobacteria were dominated in 
the gut of P. canaliculata among three groups (Figure 2a). The 

gut microbiota structure in the present study were similar to 
previous studies found in P. canaliculata (Chen et al., 2021) and 
Crassostrea gasar (Conceição et al., 2021), C. gigas, C. sikamea, 
and C. corteziensis (Fernández et al., 2014). Higher proportions 
of these two bacteria were often associated with diets contain-
ing plant ingredients (Rimoldi et al., 2018). P. canaliculata as 
an omnivorous species, except for the feed of small snails and 
other aquatic animals (Kwong et al., 2009; Kwong et al., 2010), 
they prefer to herbivorous food such as crops, phytoplankton, 
aquatic macrophytes (Carlsson et al., 2004). Firmicutes play an 
important role in the degradation of cellulose, helped to digest 
broadly herbivorous food. Firmicutes also have been reported 
to be able to promote preservation of gut homeostasis and host 
immunity development (Ben David et al., 2015). Leuconostoc be-
longed to the phylum Firmicutes was the most abundant genus 
in the gut of P. canaliculata (Figure 2b), which was also enriched 
in the autumn by LEfSe analysis (Figure 4b). Leuconostoc, which 
originates from green vegetation and roots, plays important 
roles in the production of polysaccharides, mannitol, vitamins- K, 
bacteriocins, and the hydrolysis of α- galactosides (Hemme 
& Foucaud- Scheunemann, 2004; Sybesma et al., 2003). In all, 
Firmicutes and Leuconostoc may have crucial importance in the 
digestion of plant and other plant wall components (Escobar- 
Correas et al., 2019).

Proteobacteria is related to environmental adaptation due 
to its ability to secrete lipase, protease, and amylase (Pemberton 
et al., 1997). Aeromonas within Proteobacteria has been iden-
tified as dominant and indigenous microbiota of silver carp 
(Hypophthalmichthys molitrix) that aids in digestion (Khurana 
et al., 2021). Previous studies have also demonstrated that 
Proteobacteria mainly associated with energy accumulation in mam-
mals	 (Amato	et	al.,	2014; Chevalier et al., 2015). This phylum may 
help P. canaliculata to digest food and accumulate energy, further 
adapting seasonal variations (Kaakoush, 2015).

F I G U R E  3 PCoA	analysis	based	on	(a):	unweighted	and	(b):	weighted	Unifrac	distances	of	intestine	microbiome	from	different	seasons.
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4.2  |  Seasonal variation of dominant microbiome 
in the intestinal microbes of P. canaliculata

Bacteroidetes, Gammaproteobacteria, Enterobacteriaceae, 
Chloroflexaceae, Aeromonas, Shewanella, Acinetobacter, Citrobacter, 
and Klebsiella were enriched in summer (Figure 4b). Bacteroidetes 
plays a critical role in the degradation of carbohydrates and pro-
motes the development of the gastrointestinal immune system (Jami 
et al., 2013). Previously study reported that Bacteroidetes was highly 
rich in P. canaliculata, indicating that Bacteroidetes can degrade high 
molecular weight organic matter (Zhou et al., 2022). P. canaliculata 
feeds on various abundant diet resources in summer. By contrast, 

the food resource of P. canaliculata is scarce due to cold temperature 
in winter. The function of this phylum was related to utilize the diet 
resource in summer for animal growth and reproduction and main-
tain immune homeostasis in higher temperature.

Actinobacteria,	Bacillaceae,	Nostocaceae,	and	Bacillus were en-
riched in autumn (Figure 4b).	Actinobacteria	as	gram-	positive	bac-
teria distributed in the terrestrial or aquatic environment (Servin 
et al., 2008).	Actinobacteria	was	thought	to	be	a	dominant	glucose	
degrader and was pivotal in the maintenance of gut homeostasis 
(Binda et al., 2018; Ito et al., 2012).	Actinobacteria	enriched	in	the	in-
testine microbiome of Litopenaeus vannamei, which as gram- positive 
and gram- negative (Proteobacteria), were kept in balance in order 

F I G U R E  4 (a):	Venn	chart	shows	the	
common and unique OTU between the 
groups. (b): LEfSe analysis of Pomacea 
canaliculata intestine microbiome from 
different	seasons	(|LDA| > 3.5,	p < .05).	
Histogram	of	the	LDA	scores	computed	
for features differentially abundant 
between groups. The c, g, f, o, p in 
diagram represent class, genus, family, 
order, and phylum, respectively.
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to maintain the organic homeostasis (Fan et al., 2019). Moreover, 
Actinobacteria	 were	 well-	known	 bioactive	 natural	 product	 pro-
ducers (van Keulen & Dyson, 2014), which can be used to isolate 
the potential probiotics (Bernal et al., 2015). It was speculated that 
Actinobacteria	in	the	gut	microbiota	of	P. canaliculata maintains the 
gut homeostasis.

The relative abundance of Cyanobacteria was significantly 
higher in autumn than those in other two groups (Figure 6a). The 
typical seasonal dynamics of phytoplankton in ecosystems usu-
ally	 consist	 of	 two	 peaks:	 winter–	spring	 and	 autumn.	 Algae	 au-
tumnal blooms may be the primary biological factors that cause 
changes	 in	 the	proportion	of	Cyanobacteria	 (Xie	 et	 al.,	2021).	A	

high proportion of Cyanobacteria in the guts of invasive silver 
carp (Hypophthalmichthys molitrix), indicating a connection to 
their	green	algae	feeding	habits	in	the	Mississippi	River	Basin	(Ye	
et al., 2014). Dietary items of P. canaliculata in stomach contents 
included amorphous detritus, macrophytes, cyanobacteria, dia-
toms, green algae, and invertebrate parts (Kwong et al., 2010). The 
high abundance of Cyanobacteria was probably associated with 
the green algae in dietary of P. canaliculata.

The relative abundance of Bacillus and Bacillaceae was higher in 
the summer and autumn groups than in the winter group (Figures 4b 
and 6b). Bacillus and Bacillaceae were important cellulolytic bacte-
ria in Firmicutes. Cellulose comprised the main ingredients of plant, 

F I G U R E  5 (a):	Gut	microbiota	predict	metabolic	functions	from	EggNOG	database	in	the	summer,	autumn,	and	winter	group.	Relative	
abundance column diagram of microbiota functions based on the KEGG database. (b): Microbiota functions are shown on the first level; (c): 
microbiota functions are shown on the second level.
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which was the primary food source. Bacillus from Bacillaceae had 
unique properties on their hosts, such as inhibition of pathogenic 
bacteria, accelerated growth, and increased immunity. They also 
produce various extracellular enzymes such as amylase, protease, 
lipase, further aiding in digestion (Ray et al., 2012). The reason for 
their higher abundance in summer and autumn may be due to the 
abundant kinds of food in summer and autumn comparing with win-
ter, and this microbiome may be involved in plant degradation.

The relative abundance of beneficial bacteria such as Fusobacteria 
and Cetobacterium increased significantly in winter to maintain 

the energy supply and immune system homeostasis of P. canalicu-
lata in a cold environment (Figure 6a,b). The relative abundance of 
Fusobacteria in winter was at rather high levels, contrary to sum-
mer and autumn. Fusobacteria are anaerobic, Gram- negative bailli 
(Bennett & Eley, 1993), associated with a protein- rich diet, which 
exhibit proteolytic activity (Soverini et al., 2016). It digests carbohy-
drates into short- chain fatty acids and butyrate. Butyrate provides 
many benefits to the host, including providing a majority of the 
energy supply to gastrointestinal cells (Collinder et al., 2003; von 
Engelhardt et al., 1998). Moreover, short- chain fatty acids levels can 

F I G U R E  6 (a):	Comparison	of	gut	
microbiota composition abundances 
of P. canaliculata at the phylum level in 
different seasons; (b): comparison of 
gut microbiota composition abundances 
of P. canaliculata at the genus level in 
different seasons.
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directly affect substrate and energy metabolism, including skeletal 
muscle and liver (Larsen et al., 2014; Rimoldi et al., 2018). Evidence 
has shown that P. canaliculata could enhance their cold hardiness 
by energy accumulation (Matsukura & Wada, 2007; Matsukura 
et al., 2009). Significant enrichment for Fusobacteria in winter could 
be explained by the more reservation of heat energy and the heat 
consumption of P. canaliculata in winter.

Genus Cetobacterium within the phylum Fusobacteria were more 
abundant in winter comparing with other two groups (Figure 6b). 
This bacterium produced vitamin B12 at high efficiency and was ca-
pable of glucose fermentation (Tsuchiya et al., 2008). Cetobacterium 
as a common anaerobic inhabitats of the channel catfish (Ictalurus 
punctatus) is involved in vitamin metabolism and the production 
of antimicrobial peptides, which suggests the beneficial effects of 
this bacterium for its host (Bledsoe et al., 2018). The presence of 
Cetobacterium in P. canaliculata is probably beneficial for the host.

4.3  |  Seasonal variation of predicted function and 
function pathways in the intestinal microbes of 
P. canaliculata

In this study, metabolism, genetic information processing, environ-
mental information processing, human diseases, cellular processes, 
and organismal systems play important roles in the adaptation to 
abundant food resources, consistent with the results previously re-
ported in P. canaliculata among female group, male group, and juvenile 
group (Chen et al., 2021). Our results indicated that no difference was 
detected in the functional analysis of gut microbiota in P. canaliculata. 
Metagenomic approach can be used to illustrate the interactions of 
microbial structure and function in P. canaliculata in further studies.

5  |  CONCLUSION

In this study, significant differences were found in the diversity and 
structure of the intestinal microbiota of P. canaliculata among dif-
ferent seasons. The diversity of intestinal flora of P. canaliculata was 
the highest in summer and the lowest in winter. The results indicated 
that variations in food abundance caused by seasonal change have 
an impact on the intestinal microbiota of P. canaliculata. This study 
will provide insights into understanding the adaptive strategies of 
P. canaliculata to environmental changes. Further study will focus on 
the interaction between the gut microbiota and the host.
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