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Abstract

Harvested wood products found in the built environment are an important carbon sink, help-

ing to mitigate climate change, and their trends in use are determined by economic and

demographic factors, which vary spatially. Spatially detailed projections of construction and

stored carbon are needed for industry and public decision making, including for appreciating

trends in values at risk from catastrophic disturbances. We specify econometric models of

single-family and multifamily housing starts by U.S. Census Region, design a method for

their spatial downscaling to the county level, and project their quantities and carbon content

according to the five Shared Socioeconomic Pathways (SSPs). Starts are projected to

decline across all scenarios and potentially drop to below housing replacement levels under

SSP3 by mid-century. Wood products carbon stored nationally in structures in use and in

landfills is projected to grow across all scenarios but with significant spatial heterogeneity

related to disparate trends in construction across counties, ranging from strong growth in

the urban counties of the coastal South and West to stagnation in rural counties of the Great

Plains and the northern Rockies. The estimated average annual carbon stored in wood

products used in and discarded from US residential housing units between 2015–2070 ran-

ged from 51 million t CO2e in SSP3 to 85 million t CO2e in SSP5, representing 47% to 78%

of total carbon uptake relative to uptake by all wood products in the United States in 2019.

Introduction

The Intergovernmental Panel on Climate Change (IPCC) projected the consequences of cli-

mate change and transmitted what it considered to be the urgency of reducing net emissions

of greenhouse gases [1]. In 2020, the building operations and construction industry accounted

for nearly 38% of the total global CO₂ emissions associated with energy use [2]. However, the

residential housing construction sector also plays a sequestering role in net CO2 emissions

when those constructions are built mainly of wood. For instance, more than 90% of new sin-

gle-family homes in the United States are constructed mainly of wood. Future inventories of
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residential housing in the United States and carbon stored in wood products in those struc-

tures will be determined by the net of new units built and those destroyed. Wood used in the

141 million existing housing units [3] and other end uses and wood discarded in solid wood

disposal sites (SWDS) in the United States stored an estimated 9.8 and 9.9 billion tons of car-

bon dioxide equivalent (CO2e) in 2019 and 2020, respectively. The annual changes in the har-

vested wood products (HWP) carbon stock between these two years was 110 million tons of

CO2e, representing about 16% of net CO2 uptake (flux) from the entire U.S. forest sector in

2019 [4]. Because wood products store carbon for many decades, and because wood can

replace carbon-intensive materials such as steel and concrete in construction, the forest prod-

ucts sector can play an important role in mitigating net carbon emissions [5–7]. New housing

units are demanded in part to replace the annual loss of approximately 0.4 million housing

units [8] due to natural disasters, decay, movement of mobile homes, and market factors (e.g.,

torn down to make way for new development) [9] and to accommodate a growing and increas-

ingly wealthy population. Analysts interested in understanding the long-run potential carbon

storage contribution of the residential housing sector (e.g., [10]) may benefit from the develop-

ment of statistical models with few assumptions beyond assumed rates of income growth.

Research has shown that reduced-form models of quarterly aggregate total, single-family,

and multifamily new units started in the United States can be explained with high precision

using only the rate of growth in U.S. gross domestic product (GDP), the mortgage delinquency

rate, and seasonal indicators [11]. The cited study also indicated that inclusion of an additional

variable which describes the aggregate rate of population growth could improve the fit of esti-

mated models but that population’s statistical role was uncertain. The research included pro-

jections of housing starts to 2070 under alternative rates of GDP growth and a model of

mortgage delinquencies that also depended on GDP growth. Montgomery ([12–14]) reported

that U.S. population growth is an important predictor of the number of households (housing

inventory stock). Her research would imply that models of households that included per capita

economic growth but not population growth may not predict the same demand for new hous-

ing units as models that included population as a driver. Models such as those employed by

Prestemon et al. [11], in their housing projections by GDP growth rate, would therefore over-

estimate residential construction if population growth were to decline; Japan offers a case (e.g.,

[15, 16]) illustrating how positive economic growth and a zero growth to shrinking population

combine to put downward pressure on housing demand. For the United States, population

projections are available from the U.S. Census Bureau [17] to 2060. Population and GDP pro-

jections are core components of the Shared Socioeconomic Pathways scenarios (SSPs) that are

adjuncts to the Intergovernmental Panel on Climate Change’s climate projections [18, 19].

SSPs represent contrasting world visions as described by varying assumptions about demo-

graphic, economic, technological, environmental, and policy futures, creating varying degrees

of challenges for climate change mitigation and adaptation in individual countries [18, 19].

Because land available for housing is related to income earning opportunities that vary

across space and over time, it follows that rates of change in construction should vary across

space and over time, according to how population and income vary (e.g., [20]). Private sector

projections of households (e.g., [21]) are made at the county level, but such projections are not

offered under alternative scenarios of the future. New research that offers such scenario-based

projections will be useful for those seeking to understand how demand for wood products for

construction could evolve into the future across regions in the United States (e.g., [22]), paths

of possible expansion of housing into the wildland at the county scale (e.g., [23]), and in the

identification of the locations where housing growth could interact with growing rates of cli-

mate-driven natural disturbances (e.g., [24, 25]) and rising seas (e.g., [26]).
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Prestemon et al. [11] projected housing starts and associated softwood lumber consump-

tion to 2070 under varying rates of income growth. The authors’ projection model, based on

quarterly data, evaluated but rejected as non-significant the effect of contemporaneous

changes in total population on total housing starts in the United States. The authors also

found, however, that a longer run (a 5-year) change in population could be statistically signifi-

cant, opening the door to the possibility that projections of housing starts could be improved

with the inclusion of longer run changes in population, not just aggregate U.S. income. A pos-

sible explanation of the non-significance of the contemporaneous change variable, however, is

that the data on population are reported annually by the U.S. Census Bureau, and that even

aggregate population estimates are subject to error. In other words, algebraically smoothed

estimates of population could more accurately reflect rates of change at finer temporal scales

(e.g., the quarter), enabling the identification of the effect of the population change variable on

housing starts. Another limitation of the latter article was the aggregate (total U.S.) spatial unit

being modeled. More spatially disaggregated modeling might uncover spatial differences in

data generation processes for housing starts, allowing for more accurate overall assessments of

the effects of population and income changes at finer spatial scales, such as U.S. Census

Regions and counties.

This research has two primary objectives. First, we seek to demonstrate how population

and income changes can be combined to project rates of new housing construction at fine and

aggregate spatial scales in the United States under alternative socioeconomic scenarios of the

future. Second, we seek to couple housing futures with projections of carbon storage in the

housing sector in the United States. To make our projections of new housing, we specify mod-

els of housing starts at the Census Region level in the United States. These models, expanding

from Prestemon et al. [11], are reduced-form specifications of single-family and multifamily

housing starts by Census Region that include population changes as well as changes in aggre-

gate U.S. income and a limited set of additional variables that control for mortgage credit mar-

ket factors. Projections of single-family and multifamily starts are made at Census Region and

U.S. aggregate level from 2016 to 2070 by SSP, applying some of the methods used by other

authors and the income and population projections reported by Wear and Prestemon [20].

Furthermore, projections at the Census Region level are downscaled to the counties within

that region. We describe in this article a method for making unbiased projections at the county

level using the Census Region parameters, based on historical housing permits. The result of

this effort is to show how rates of new construction of single-family and multifamily units

would change over space and over time, consistent with the income and population projec-

tions at those spatial and temporal scales. New construction at those scales is further described

by measures of carbon stored in the wood products that go into and remain used in housing

units in the United States, including carbon stored in wood used to repair and remodel, and

carbon stored in wood that is discarded and landfilled after demolition of housing units. These

housing and carbon projections can be used by industry and policy makers to better under-

stand where shipments will be destined and how the role of residential construction in storing

carbon could evolve into the future.

This paper is organized as follows: First, we briefly describe our theoretical and empirical

models of housing starts. We then outline how housing starts are downscaled to the county

level. We next describe the uncertainties in our starts projections with Monte Carlo methods.

We outline how starts projections at the county level are used to project harvested wood prod-

ucts carbon stored in residential wood structures in each county, including carbon stored

while the units are in use and after their discards.

PLOS ONE Housing starts and wood products carbon storage by county

PLOS ONE | https://doi.org/10.1371/journal.pone.0270025 August 11, 2022 3 / 23

https://doi.org/10.1371/journal.pone.0270025


Materials and methods

The number of new housing units constructed can be described as the equilibrium quantity

emerging from the equating of the demand for and the supply of new housing. Aggregate

demand for new housing, QH
D , is described as a function of housing price (PH), credit factors

(CH), income (Y), and population (U):

QH
D ¼ f ðPH;CH;Y;UÞ ð1Þ

Aggregate supply for new housing, QH
S , is a function of housing price (PH), construction

input prices (WH), and exogenous factors, including building regulations (ZH):

QH
S ¼ gðPH;WH;ZHÞ ð2Þ

At equilibrium, QH
D ¼ QH

S ¼ QH , so the quantity of houses built is derived by equating (1)

and (2) and solving for QH and factoring out housing price:

f ðPH;CH;Y;UÞ ¼ QH
D ¼ QH ¼ QH

S ¼ gðPH;WH;ZHÞ

QH ¼ hðCH;Y;U;WH;ZHÞ
ð3Þ

Credit factors can include the mortgage interest rate and the rate of mortgages in delin-

quency [11]. In [11], it was shown that the delinquency rate served to capture the effects of

credit access (e.g., [27]), while the mortgage interest rate can additionally account for loan

accessibility by potential home buyers. Prices of construction input factors could be indexed

by lumber and panel prices, concrete prices, and energy prices. Exogenous construction supply

factors could be indexed by regional or other fixed effects or by the inclusion of a time trend if

such factors are judged to be trending in any way. Income can be described as disposable per-

sonal income or more simply with GDP. Income can also be included by dividing GDP by

population (e.g., Montgomery [13, 14]). Prestemon et al. [11] found that wood prices were not

significant determinants of the number of new houses started. In the identification of a parsi-

monious version of a quarterly time series version of Eq (3), they additionally found that a

well-fitting model could be specified as a function of only GDP, the national mortgage delin-

quency rate, quarterly dummies, and, recognizing the autoregressive time series properties of

(3), the lagged number of housing starts. One model presented in Prestemon et al. [11]

reported that total U.S. housing starts had slightly better fit and lower likelihood of significant

residual serial correlation when including the change in the mortgage interest rate.

In this study, we specify a reduced-form model of quarterly U.S. housing starts by type (sin-

gle-family, multifamily) [28] that is similar to Prestemon et al. [11]. Different from that study,

and in the interest of refining our understanding of how housing construction may differ

across the United States, models of single-family and multifamily starts are estimated for each

of four U.S. Census Bureau regions (Northeast, South, Midwest, West) [28] and include

regional or national population as a predictor [17, 29], recognizing the differential roles of

income and population change on housing demand [13]. We additionally specify (1) a

reduced-form quarterly model of the percentage of mortgage delinquencies [30, 31], (2) a

reduced-form quarterly model of the mortgage interest rate [32], and (3) a reduced-form

model of national GDP [33] growth that captures the temporal dynamics of that variable. Cen-

sus-reported historical population data were annual observations, which we smoothed for use

in this study by converting them first to quarterly through interpolation and then by generat-

ing an equal-weighted centered moving average smoothing of the form,

Ut ¼

P

i¼� uuUtþi

�

ð

2uþ 1Þ, where u = 9. The smoothing was applied to the total U.S.
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population and to Census Region population estimates for equations that contained the

Region population as a regressor.

All dependent variables are projected jointly to 2070, with exogenous projections of vari-

ables in the reduced-form equations provided by Wear and Prestemon [20]. Multiple func-

tional forms of housing starts models, including the same variables, are estimated and

evaluated, including log-linear least squares and Poisson Pseudo Maximum Likelihood

(PPML) models, which include various transformations of population.

Projections of housing starts by type by Census Region are done with Monte Carlo methods

that match those of Prestemon et al. [11]. Briefly, models are estimated with a random sample

with replacement of historical data on predictor variables from 1979 to 2016 and then pro-

jected to 2070 by quarter and summarized annually. GDP and population projections for Cen-

sus Regions match U.S. regional or national GDP and population projections by SSP.

Downscaling of housing starts projections to the county level is done using the equation

estimates for housing starts and the rates of change in county disposable personal income per

capita or disposable personal income and population as reported by Wear and Prestemon

[20]. Because the number of housing starts at the county level is unknown, starts at the county

level are proxied by annual housing permits in the historical data [28]. Although county hous-

ing permit data are available on a monthly basis, permits precede starts, so that annual totals of

permits in a county are likely to be more closely aligned with annual starts in the county. But

because the starts models estimated in our current study are based on quarterly data, we cre-

ated, for each county, historical pseudo-time series of quarterly housing permits for single-

family and multifamily units. The annual permit observations, 2000–2015, were converted to

quarterly permits by applying the following equation to all counties, 2000–2015:

htt;q;R;m ¼ ½h
st
t;R;mexpðb̂

t

q;RÞ �
P4

q¼1
expðb̂tq;RÞ� þ d ð4Þ

Where htt;q;R;m is the number of housing permits of type τ (single-family, multifamily) in

year t in quarter q in Census Region R and county m. Parameters b̂tq;R are the quarterly (season-

ality) parameter estimates for housing of type τ in quarter q in Census Region R. Finally, δ is

set at 0.001, replacing zero for counties with minimal building activity (needed for the calcula-

tion of logarithmic errors of the housing starts estimate). Note that b̂t
4;R = 0 in Eq (4) (i.e., the

fourth quarter indicator) was dropped in the Census Region starts models, which included an

intercept term.

To predict quarterly permits (starts) at the county level in the historical time series, 2001–

2015, the following equation was applied:

ln ðĤ t

t;q;R;mÞ ¼ ctR;m þ xt0t;q;R;mβ̂t

R ð5Þ

Where ln is the natural logarithm operator, Ĥ t
t;q;R;m is the predicted number of housing

starts of type τ (single-family, multifamily) in year t in quarter q in Census Region R and

county m; ctR;m is the constant (fixed effect) for the county, xt0t;q;R;m is a vector containing l (� 4)

lagged predicted starts (Ĥ t
t� l;q;R;m), quarterly seasonal indicators, the quarterly rate of change in

the county’s disposable income per capita (single-family starts models only) or income (multi-

family starts models only), the quarterly change in population (single-family starts models

only), the natural log of the national total mortgage delinquency rate, and the natural log of

the mortgage interest rate. β̂t
R is a conforming vector of parameter estimates for starts of type τ

in Census Region R, excluding the intercept from the Census Region equation estimate.

Although the Census Region single-family and multifamily starts models are specified as
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functions of rates of change in GDP per capita (single-family) or GDP (multifamily), the

county level projections were based on calibrated rates of change in disposable income, follow-

ing the assumption of Wear and Prestemon [20], where the projected rate of change in dispos-

able income was forced to be a constant ratio of the gross output change at the county level. In

that way, the Census Region parameter estimates could be applied to the historical county

income in calibration and therefore not bias projected starts when modeled on county projec-

tions from their study.

The next step was to identify, for each county, the intercept of the resulting county equation

that made the average prediction error equal to zero, spanning the 60 quarters from 2001 quar-

ter 1 to 2015 quarter 4 [the estimated quarterly “pseudo permits” for 2000 quarter 1 to 2000

quarter 4 were used in place of lagged values in the quarterly predictions for 2001 using Eqs

(5) and (6)].

ctR;m ¼ ð
1

60
Þ
P2015;4

t¼2001;q¼1
½ln ðhtt;q;R;mÞ � xt0t;q;R;mβ̂t

R� ð6Þ

With an estimate of ctR;m, for every county in hand, quarterly starts by county could be pro-

jected to 2070, given projections of the predictor variables from the Census Region starts

models.

Because annual starts are not truly identical to annual permits, the last step was to propor-

tionally adjust every county’s predicted single-family and multifamily starts in the projection

time frame, 2016 quarter 1 to 2070 quarter 4, to match the Monte Carlo median annual

national projected total of single-family and multifamily starts for each quarter, 2016 through

2070.

Data sources for model variables are reported in Table 1.

To project harvested wood products carbon contained in residential housing structures,

2015 to 2070, we used various data, assumptions, and methods based on Smith et al. [34] and

McKeever and Howard [35]. The first step in estimating carbon contained in wood being used

in housing units was to estimate the quantities of each of five categories of wood products

going to single- and multifamily units, including softwood (SW) lumber, hardwood (HW)

lumber, SW plywood, oriented strand board (OSB), and non-structural panels that include

hardwood plywood, particleboard, medium-density fiberboard, hardboard, and insulation

board. Next, the quantities of each of these five categories of wood products used in repair and

remodeling were estimated. The estimates of each category of wood products going into con-

struction and into repair and remodeling activities were obtained by estimating wood use

intensity (m3/housing unit), based on the historical wood usage by wood products category in

single- and multifamily housing units, and the average floor space of housing units constructed

Table 1. Data sources for housing equation estimates.

Variable Name Data Source

Mortgage interest rate [32]

Mortgage delinquency rate [30, 31]

U.S. gross domestic product [33]

U.S. gross domestic product deflator [33]

Housing starts [28]

Housing permits [28]

U.S. population [17, 29]

U.S. population projections by county [20]

U.S. income projections by county [20]

https://doi.org/10.1371/journal.pone.0270025.t001
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each year from 1950 to 2009, as reported in McKeever and Howard [35]. The estimated aver-

age wood intensities by wood product category, housing type, and usage type (construction

and repair and remodeling) are presented in Table 2.

Carbon stock and stock change (flux) associated with wood used in residential units and

landfilled after discard were estimated using the consumption approach [36], which accounts

for all wood consumed within U.S. residential housing units, including imported wood prod-

ucts. Consistent with our housing starts projections, the starting year for the estimates of car-

bon stored in wood products was 2015, where carbon stored in all types of wood products

going to all housing units constructed in 2015 was estimated first. The amount of carbon stock

remaining in use over time was estimated using the first order decay function (Eq 7, [36]) and

assumed half-lives of wood products in single-family and multifamily units (Table 3, [34]):

Ci
tþ1
¼ e� k � Ci

t þ
ð1 � e� kÞ

k

� �

� inflow tð Þ ð7Þ

Where t = year; Ci
t is the carbon stock in the particular wood product type i (SW lumber,

HW lumber, SW plywood, OSB, and nonstructural panels) used in residential units in year t

Table 2. Average1 wood use intensity (m3/housing unit2) by wood type, housing type, and usage type used to estimate carbon stored in wood products in use in resi-

dential units (source: [35]).

Wood product Category New construction Repair & remodeling

Single-family Multifamily Single-family Multifamily

SW lumber 32.0 [30.92, 32.04, 33.08] 12.3 [11.64, 12.31, 12.88] 27.2 [21.06, 27.04, 51.93] 10.4 [8.2, 10.39, 19.55]

HW lumber 1.2 [1.14, 1.23, 1.29] 0.4 [0.35, 0.45, 0.5] 1.1 [0.89, 1.1, 1.34] 0.4 [0.35, 0.4, 0.41]

SW plywood 6.3 [4.42, 6.27, 8.87] 2.8 [2.27, 2.84, 3.45] 6.8 [7.88, 8.6, 14.42] 3.9 [3.06, 3.9, 7.4]

OSB 20.9 [19.92, 20.88, 21.95] 5.9 [5.61, 5.9, 6.31] 12.1 [3.68, 5.5, 10.94] 1.6 [1.06, 1.56, 3.08]

Nonstructural panels3 8.4 [7.18, 8.39, 9.66] 4.6 [3.84, 4.57, 5.45] 6.8 [5.25, 6.35, 11] 3.5 [2.96, 3.46, 5.88]

1 The average numbers estimated in this table utilized more recent historical data (from 2000 to 2009) reported in [35] to reflect more recent wood usage trends in

residential housing units. The numbers in the square brackets are three parameters [minimum, average, and maximum] of a triangular distribution assumed for the

uncertainty analysis.
2 The average floor area per single-family and multifamily units constructed in the United States, 2000–2009, were 34.96 m2 and 17.64 m2, respectively [35].
3 Includes hardwood plywood, particleboard, medium-density fiberboard, hardboard, and insulation board.

https://doi.org/10.1371/journal.pone.0270025.t002

Table 3. Data and conversion factors used to calculate carbon stored in wood product in use in residential units and in landfills after demolition (source: [34])1.

Variables Wood product in use Wood products in landfills

Single-family Multifamily

Half-life of wood products in end uses (yrs) 100 [95, 100, 105] 70 [66.5, 70, 73.5] 14 [13.3, 14, 14.7]

Fraction of discarded wood going to landfills 0.67 [0.64, 0.67, 0.71] 0.67 [0.64, 0.67, 0.71]

Non degradable fraction of landfilled wood 0.77 [0.66, 0.77, 0.89]

Carbon contained in wood products (ton CO2e/m3)

SW lumber 0.96 [0.92, 0.97, 1.01] 0.96 [0.92, 0.97, 1.01]

HW lumber 1.18 [1.13, 1.18, 1.24] 1.18 [1.13, 1.18, 1.24]

SW plywood 0.97 [0.92, 0.97, 1.02] 0.97 [0.92, 0.97, 1.02]

OSB 1.13 [1.08, 1.13, 1.19] 1.13 [1.08, 1.13, 1.19]

Nonstructural panels 1.19 [1.14, 1.19, 1.25] 1.19 [1.14, 1.19, 1.25]

1 The numbers in the square brackets are three parameters [minimum, average, and maximum] of a triangular distribution assumed for the uncertainty analysis. For

half-lives input parameters, the maximum and minimum values are 15% more and less than the average values. For the rest of input parameters, the maximum and

minimum values are 5% more and less than the average values.

https://doi.org/10.1371/journal.pone.0270025.t003
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(beginning in 2015); k is a first-order decay parameter estimated as k = ln(2)/HLi, where HL is

the half-lives of residential units; inflow(t) is the carbon inflow to the particular wood product

category in the residential unit in years.

The change in carbon stock between the two periods was estimated as the difference

between the next period’s carbon stock and the current period’s carbon stock:

DCi
t ¼ Ci

tþ1
� Ci

t ð8Þ

Carbon stored in wood products remaining in landfills for a given number of years after

discard from residential units was estimated following methods suggested by Smith et al. [34].

Briefly, we first estimated the amount of discarded wood at year t after 2015 as the difference

in wood remaining in use between two successive years, a fraction (0.67) of which was

assumed to end up in landfills. Next, we estimated the quantity of carbon remaining in landfills

as a non-degradable pool (77% of discarded carbon), where carbon is permanently seques-

tered, and as a degradable pool (23% of discarded carbon), where carbon decays based on the

first-order decay function (7) with an assumed half-life of 14 years (Table 2).

The assumptions and model parameters used in predicting wood products use in housing

and carbon storage are associated with various uncertainties and can have substantial impact

on the results (i.e., reliability and credibility of results). Thus, a Monte Carlo simulation

approach was used to understand the effects of uncertainties on the estimated average annual

wood products carbon stored in residential units, 2015–2070. We assumed a triangular distri-

bution of input parameters (Tables 1 and 2) and the carbon storage model was iterated 5000

times for each SSP.

Results and discussion

Equation estimates

Housing starts model estimates are shown in the S10–S20 Tables. To document the signifi-

cance of population in these new equation estimates, we report models of reduced-form hous-

ing starts for both regional total and separate regional single-family and multifamily starts.

The separate regional estimates in log-linear form are those used in projecting housing starts,

although showing equation estimates for both PPML and log-linear specifications additionally

demonstrates the robust effects that population changes have on housing starts in the United

States.

S1–S4 Tables report Census Region total starts (single-family and multifamily) equations

estimated with PPML methods. Models are all significant as measured by a Wald Chi-squared

test, and pseudo-R2’s range from 0.48 (Northeast) to 0.66 (South). These models included the

change in the total U.S. population. Notably, the change in U.S. population was positive and

statistically significant for total Region starts in the Midwest, South, and West while positive

but not significant for the Northeast. The change in real U.S. GDP in these specifications was

always significant and positive. Seasonality was evident in all equations as evident by signifi-

cant quarterly indicator variables, and generally the mortgage delinquency rate and the lagged

mortgage interest rate were negatively related to starts as expected, though significance varied

by equation.

Log-linear least squares estimates of single-family starts are shown in S5–S8 Tables and

PPML estimates are in S13–S16 Tables. The log-linear estimates showed that the total U.S.

population was significant at 5% for the Midwest, South, and West regions. Model fits were

very high, with R2’s ranging from 0.95 to 0.97, highlighting a highly autoregressive process that

included lagged single-family starts also at high significance. And, consistent with the results

of Prestemon et al. [11], the log-linear models that included mortgage interest rates had
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insignificant serial correlation, as measured by Durbin’s H-Statistic. The change in real U.S.

GDP per capita in these equations was also highly significant. Unlike the total starts equations

for the regions, these equations demonstrated statistically significant and negative relation-

ships between starts and both the mortgage delinquency rate and the lagged mortgage interest

rate. Seasonality was common across all, as indexed by quarterly indicator variables.

Multifamily starts models estimated with least squares methods are reported in S9–S12

Tables. Population was not included in these specifications because initial estimates showed

insignificance, and so changes in real U.S. GDP were the primary demand driver included in

these models. Preliminary versions showed that neither mortgage delinquencies nor mortgage

interest rates explained multifamily starts in Census regions, so those two variables were

dropped from the specifications (although models that included them fit no better are available

from the authors). Whereas models were always statistically significant, the goodness of fit was

not as high as it was for single-family starts models, with R2’s ranging from 0.76 to 0.86. Serial

correlation was not significant in any model, as measured by Durbin’s H-Statistic.

PPML estimates of single-family starts by Census region (S13–S16 Tables) were specified

the same as their log-linear counterparts, except that the PPML estimates replaced the total U.

S. population with the region’s own population. Models fit the data well, all statistically signifi-

cantly different from a null model and having pseudo-R2’s range from 0.48 to 0.64. Coefficient

estimates on mortgage delinquencies and interest rates were negative, where significant. Sea-

sonality was always present, as was an autoregressive process as measured by the coefficient on

lagged starts.

Multifamily starts regional PPML estimates are reported in S17–S20 Tables, specified the

same as in their log-linear counterparts. We included the mortgage interest rates in these spec-

ifications. Here, coefficients on mortgage delinquency rates were either weakly significant and

negative or non-significant. Mortgage interest rate coefficient estimates were not significant.

To enable projections to 2070 with our starts models, we needed to estimate time series

models of real U.S. GDP, mortgage delinquency rates, and mortgage interest rates that cap-

tured both their autoregressivity and their seasonality. Models of the two latter variables were

expressed as functions of real U.S. GDP, thereby incorporating the indirect effects of aggregate

U.S. income changes on credit access. Prestemon et al. [11] did the same for the first two vari-

ables, but because our regional single-family starts models contained the mortgage interest

rate, we also developed time series model estimates of this variable. Log-linear least squares

model estimates for real GDP are shown in S21 Table and mortgage delinquency rate in S22

Table, both specified similarly to those reported in [11]. The mortgage interest rate model is

shown in S23 Table. Clear from S22 and S23 Tables is that mortgage delinquencies and interest

rates depend heavily on the rate of U.S. GDP growth.

Housing starts projections

We evaluated goodness-of-fit out-of-sample of the log-linear versus the PPML model estimates

of single-family and multifamily starts and concluded that log-linear versions (S5–S8 Tables

for single-family, S9–S12 Tables for multifamily) out-performed the PPML versions (S13–S16

Tables for single-family, S17–S20 Tables for multifamily) in terms of bias and the root mean

squared errors of starts. Goodness-of-fit was evaluated with starts models estimated to 2008

quarter 4 and forecast out-of-sample through 2015 quarter 3. We therefore report projections

of starts using log-linear specifications of all regional starts models, single-family and

multifamily.

Fig 1 shows median (out of 1,000 Monte Carlo iterations) U.S. aggregate single-family starts

projections by SSP and also based on historical rates of income and population growth, where
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historical rates of population growth are proxied by the population projection under SSP2.

The figure reports the projections, starting in 2016, of the sum of starts across the four Census

Regions, the nationwide single-family total. Included in the figure—and in all subsequent fig-

ures of starts projections—are observed starts (the solid black line) through 2020. Because his-

torical data on predictors were replaced by projected variables starting in 2019 quarter 1, all

starts models make projections from 2019 onward, so that direct comparisons between the

Monte Carlo median projected and the observed are possible for 2016–2018 but not warranted

for 2019 onward. The lowest single-family starts projected is under SSP3, which has both low

economic and population growth (negative population growth after about 2040), with levels

settling at less than 250 thousand per year by 2060, barely or even not replacing lost structures.

The highest starts are under the “historical” pattern of GDP per capita and population growth

and SSP5, and yet those starts even show steadily declining starts to median levels of about 0.5

million/year by 2070.

Multifamily starts nationwide (Fig 2), with projections summed across Census Region pro-

jections, indicate that median multi-family starts would range between 200 thousand per year

under SSP3 and 300 thousand per year under SSP5. Projection median rates settle at essentially

constant levels for each SSP because multifamily starts are driven primarily by economic

growth (i.e., GDP).

Fig 1. Annual U.S. single-family housing starts projections, 2015–2070, by Shared Socioeconomic Pathway and historical GDP and

population growth rates, based on log-linear regional starts models, summed across median regional levels, based on 1,000 Monte Carlo

iterations.

https://doi.org/10.1371/journal.pone.0270025.g001
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Census Region projections of single-family housing starts under the same SSPs and histori-

cal population and economic growth rates are shown in the S1 to S8 Figs. In the Northeast (S1

Fig), because population growth rates had already achieved low levels and are projected to

remain low, starts levels drop from about 60 thousand/year in the latter half of the 2010s to

range from about 20 thousand (SSP3) to 40 thousand (SSP5) by 2070. The Midwest Region (S2

Fig) shows much steeper drops in single-family starts, with median starts levels falling from

about 125 thousand/year in the late 2010s to as low as about 15,000 under SSP3 by 2070 but

only as high as 50,000/year in 2070 under SSP5. The South Region (S3 Fig) also shows broad

declines mirroring the Midwest decline. But because the rate of construction is maintained at

3 to 4 times higher than that of the Midwest, projections show that the South would remain

the nation’s most active single-family construction market into the foreseeable future. The

West (S4 Fig) is intermediate between the Midwest and the South, with median single-family

starts dropping from an average of about 200 thousand/year in the late 2010s to between 50

thousand (SSP3) and 120 thousand (SSP5 and historical) by 2070.

S5–S8 Figs show the rapid approach to lower levels of multifamily starts under all SSPs by

about 2030 compared to the late-2010s. Rates of multifamily starts are lowest with SSP3 and

highest with SSP5 and “historical” scenarios, as was the case with the single-family starts except

for the Midwest. The Midwest Region (S6 Fig) has perhaps the narrowest range in multifamily

Fig 2. Annual U.S. multifamily housing starts projections, 2015–2070, by Shared Socioeconomic Pathway and historical GDP and

population growth rates, based on log-linear regional starts models, summed across median regional levels, based on 1,000 Monte Carlo

iterations.

https://doi.org/10.1371/journal.pone.0270025.g002
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housing starts projected across SSPs, and median projections also indicate that rates in the

coming five decades would not differ much from recently observed historical rates. Like sin-

gle-family starts, multifamily starts are the highest in the South (S7 Fig), followed by the West

(S8 Fig), Midwest (S6 Fig), and Northeast (S5 Fig), the same ordering of regional activity

shown for single-family starts.

Downscaled projections of housing starts to the county level are shown in Fig 3. The maps

report the downscaled county projection of starts that are calibrated to match the national

total median starts projected in 2020 under SSP1 (as a reference; projected levels are very simi-

lar across all SSPs in 2020, near the beginning of the 2016–2070 projection) and then in 2070

under each of SSP1 through SSP5. One notable feature of the maps is that starts are lower over-

all in 2070 across all SSPs compared to SSP1 in 2020. Another is that starts growth is projected

to be highest in the far southwest (California, Arizona, Nevada), the Gulf Coast, Florida, and

the Carolinas across all SSPs, but also including the Lake States under SSP1, 2, and 5. Places

where starts are not projected to increase or to decline, under SSP3 especially, in the Great

Plains and northern Rockies, are featured in the maps in red. These counties are projected to

lose population and to have relatively low economic growth and so do not attract the level of

construction expected in faster growth counties.

Harvested wood products carbon projections

The trajectories of estimated carbon stored in wood products used in residential structures

mimic those of the projected housing starts across the nation, the Census Regions and SSPs,

with the lowest carbon stocks and changes in stocks projected for SSP3 and in the Northeast

region, while the highest of those projected under SSP5 and in the South (Table 4). By 2070,

Fig 3. Projected housing starts by county in 2020 under Shared Socioeconomic Pathway (SSP) 2 (upper left) and in 2070 for SSP1-5 (upper- mid to lower

right). Figure was created by the authors in ESRI’s ArcGIS 10.5 software (https://www.esri.com). The USDA-NRCS topo (https://gdg.sc.egov.usda.gov/

GDGHome.aspx) was used as a basemap (NRCS Counties by State, and NRCS States by State) in this figure.

https://doi.org/10.1371/journal.pone.0270025.g003
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combined carbon stocks in wood products remaining in use in single- and multifamily houses

projected to be built in the United States, 2015–2070, and those remaining in discarded wood

in landfills after the demolition of a structure were shown to range from about 3 billion t CO2e

in SSP3 to 5 billion t CO2e in SSP5 (Fig 4A). The average annual changes in this stock, 2015–

2070, were estimated to range from 51 million t CO2e in SSP3 to 85 million t CO2e in SSP5

(Fig 4B and Table 4). To provide a perspective, these figures represent 47% to 78% of total car-

bon uptake from all wood products in the U.S. in 2019 [4], suggesting that the U.S. residential

housing sector would continue to remain the largest HWP carbon sink several decades into

the future.

Consistent with the housing starts projections, the South comprises more than 50% of the

total U.S. residential housing sector carbon sink in all SSPs, with an estimated average annual

change in carbon stock, 2015–2070, of 27 (SSP3) to 45 (SSP5) million t CO2e, followed by the

West (~25%), the Midwest (~15%) and the Northeast (~10%) (Table 4).

Projections at finer scales (county and aggregate state levels) indicate that states such as

Texas, Florida, California, Michigan, Ohio, North Carolina, and Georgia would remain among

the top 10 contributors to the U.S. residential housing sector carbon sink because of their

greater projected housing construction activities, with average annual contributions, 2015–

Table 4. Total and U.S. Census Region estimates of carbon stocks and average annual changes in carbon stocks (million t CO2 e) in U.S. single-and multifamily

housing units projected to be constructed, 2015–2070, by Shared Socioeconomic Pathway.

Carbon stock by 2070 Average annual changes in carbon stock, 2015–2070

Census Region SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5

South 2,284 2,199 1,538 2,002 2,527 40 39 27 35 45

West 1,136 1,098 738 991 1,233 20 19 13 18 22

Midwest 682 622 344 512 619 12 11 6 9 11

Northeast 414 392 265 353 460 7 7 5 6 8

Total U.S. 4,517 4,311 2,885 3,858 4,839 80 76 51 68 86

https://doi.org/10.1371/journal.pone.0270025.t004

Fig 4. Projected carbon stocks (billion t CO2e) (a) and annual changes in carbon stocks (million t CO2e) (b) in U.S. single-and multifamily housing units

projected to be constructed, 2015–2070, by Shared Socioeconomic Pathway.

https://doi.org/10.1371/journal.pone.0270025.g004
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2070, ranging from 3 to 7 million t CO2e in SSP5 (Table 5 and Fig 5). Looking at the county

level projections, counties such as Boulder (Colorado), Harris (Texas), Wayne (Michigan),

Maricopa (Arizona), and Los Angeles (California) were shown to be the largest contributors to

the U.S. housing sector carbon sink, with more than one million t CO2e stored per year, on

average, 2015–2070, in SSP5, in concurrence with greater residential housing construction

activities projected for those counties (Fig 5).

Fig 6(A)–6(E) shows the probabilistic distribution (as histogram and cumulative) of annual

wood products carbon stored in residential units for each SSP. With 95% certainty, the annual

wood products carbon stored in SSP1 is between 74.5 and 87.6 million t CO2e (-7% and

+10%). For SSP2, SSP3, SSP4 and SSP5 the annual wood products carbon stored in residential

units is 71.9–84.2, 50.1–58.2, 65.6–76.5, and 81.5–95.7 million t CO2e, respectively. Fig 6(F)

shows the model input parameters’ impacts on the results for SSP2 only. Among all input

parameters, the quantities of each of five categories of wood products going to single-family

housing units most heavily impact the results. For example, the annual carbon stored in hous-

ing units would increase or decrease by 4% if the softwood lumber used in the housing units

were to increase or decrease (respectively) by 4%. For all SSP scenarios, the influencing pattern

of input parameters on the results is similar, and those details are available from the authors.

Our carbon analyses also considered the potential effects of recycling/reuse of discarded

wood products (Table 6). We did additional calculations under Shared Socioeconomic

Table 5. Top 25 states with the projected largest contributions to US residential housing sector carbon sink (thousand t CO2e per year), 2015–2070, sorted by

Shared Socioeconomic Pathway 5.

Average annual changes in carbon stock, 2015–2070

County and State SSP1 SSP2 SSP3 SSP4 SSP5

Texas 7.31 7.17 5.58 6.78 7.25

Florida 6.29 6.15 4.70 5.79 6.22

California 5.45 5.29 3.88 4.90 5.70

Michigan 3.34 3.06 1.42 2.49 4.88

Ohio 2.48 2.28 1.12 1.88 3.56

North Carolina 3.42 3.33 2.48 3.12 3.41

Georgia 3.13 3.06 2.27 2.86 3.12

Colorado 2.90 2.78 1.86 2.51 3.09

Tennessee 2.50 2.43 1.76 2.26 2.51

Wisconsin 1.77 1.64 0.84 1.36 2.49

Washington 2.31 2.23 1.58 2.05 2.46

Illinois 1.84 1.71 0.96 1.46 2.45

New York 2.22 2.17 1.72 2.07 2.15

Indiana 1.44 1.33 0.68 1.11 2.04

South Carolina 2.00 1.95 1.43 1.82 2.01

New Jersey 1.91 1.85 1.35 1.71 1.98

Pennsylvania 1.92 1.88 1.46 1.79 1.81

Arizona 1.67 1.62 1.13 1.48 1.81

Minnesota 1.30 1.21 0.65 1.02 1.80

Louisiana 1.79 1.73 1.23 1.60 1.78

Virginia 1.75 1.71 1.27 1.60 1.73

Missouri 1.20 1.12 0.61 0.95 1.65

Alabama 1.38 1.33 0.96 1.24 1.37

Oregon 1.23 1.18 0.82 1.08 1.33

Maryland 1.03 1.01 0.78 0.95 1.00

https://doi.org/10.1371/journal.pone.0270025.t005
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Pathway 1 (SSP1), to quantify the effects of recycling on the estimated wood products carbon,

using a 17% recycling rate, based on data from US Environmental Protection Agency (EPA)

[37] and two rounds of recycling. The additional calculations revealed that recycling discarded

wood products for one round would increase the total US residential housing sector wood

products carbon stock by 150 million mt CO2e (3.5%) by 2070 and average annual carbon stor-

age (2015–2070) by 2.72 million mt CO2e (3.6%). Evaluated separately for single-family and

multifamily units, we found that the percentage contribution to total carbon from recycled

wood discarded from multifamily units would be 4.3% higher and single-family units 3.4%

higher, although the absolute recycled wood carbon contribution was much larger from sin-

gle-family units (122 million mt CO2e by 2070) than from multifamily units (28 million mt

CO2e by 2070). The relatively higher percentage contribution of recycled wood from multi-

family units was due to their assumed lower half-life (70 years) compared to single-family

units (100 years), resulting in earlier discard (and recycling) of wood products. Because only a

small additional wood quantity would be discarded in the second round of recycling (17% of

those discarded in the first round), recycling in the second round generated only a minor addi-

tional increase (by 0.1%) in both the carbon stock and average carbon storage over the projec-

tion period.

Conclusions

Our reduced-form estimates of housing starts show that historical starts contrast with projec-

tions made with simpler models reported by Prestemon et al. [11], and their differences have

implications for projections of stored carbon. In [11], an economic growth rate of 2% would

lead to long-run median total starts nationally of slightly less than 1.3 million/year, and 1%

Fig 5. Projected average annual changes in harvested wood products carbon stocks (thousand t CO2e) contained in U.S. single-and multifamily housing

units in use and in landfills after demolition, 2015–2070, by county by Shared Socioeconomic Pathway. Figure was created by the authors in ESRI’s ArcGIS

10.5 software (https://www.esri.com). The USDA-NRCS topo (https://gdg.sc.egov.usda.gov/GDGHome.aspx) was used as a basemap (NRCS Counties by State,

and NRCS States by State) in this figure.

https://doi.org/10.1371/journal.pone.0270025.g005
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growth would bring them to about 1 million/year. In this study, we show aggregate total starts

(summing starts displayed graphically in Figs 1 and 2) starting out at 1.0 to 1.3 million/year

but drifting down over time as projected GDP growth shrinks and population growth declines

or turns negative, depending on the SSP in question. The specific addition of population, with

its projected slowing to negative growth, depending on the scenario, explains why median

national total projected starts are lower by about 0.1 to 0.3 million/year by 2070, compared to

[11]. These results are not unexpected, based on evidence from Japan [15, 16], which has in

recent years experienced an overall population decline. We contend that the projection models

in this research are more accurate than those in [11], based on out-of-sample performance of

these models compared to the equivalent models reported in that article. For example, good-

ness-of-fit out-of-sample (2009q1 to 2015q3) of models that included population show a root

mean squared error 24% smaller than models that predicted starts without population. Our

models, unlike those in [11], alleviate accuracy distortions of aggregating across single- and

multifamily starts: the disaggregation produced reductions in out-of-sample bias (2009q1 to

2015q3) by 93% (and root mean squared by 70%).

Our study has also uncovered the wide degree of spatial heterogeneity in projected trends

in construction nationwide, which we have translated into similar patterns of spatial

Fig 6. Probability distribution (as histogram and cumulative) of annual wood products carbon stored in residential units in use and in landfills, 2015–2070, for

SSP 1–5 (a, b, c, d, and e, respectively) and the impact of critical input parameters on the estimated average annual wood products carbon in SSP2 (f).

https://doi.org/10.1371/journal.pone.0270025.g006

Table 6. Total harvested wood products carbon stock by 2070, and average annual carbon storage (2015–2070) in single-family (SF) and multifamily (MF) units

estimated with and without recycling of wood products for Shared Socioeconomic Pathway 1 (million metric tons CO2e).

No recycling Recycling—round 1 Recycling- round 2

SF MF Total SF MF Total SF MF Total

Carbon stock by 2070 3,632 647 4,280 3,754 675 4,429 3,754 676 4,432

Average annual carbon storage (2015–2070) 64.47 11.43 75.90 66.68 11.94 78.62 66.73 11.95 78.68

https://doi.org/10.1371/journal.pone.0270025.t006
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heterogeneity in growth trends of harvested wood products carbon storage. When the housing

starts projections were converted to projections of harvested wood product carbon stored in

built structures and landfills, we see that such carbon stocks are projected to increase across

much of the United States. The increase suggests that additions to the wood products carbon

pool by construction activities more than offsets carbon decay (emissions) resulting from

destruction of those structures, which is consistent with starts projections in counties. Despite

lower rates of future construction, we find that the U.S. residential housing sector would con-

tinue to play an important role in removing carbon from the atmosphere for the next several

decades.

Projections of housing starts and harvested wood products carbon generated from our anal-

ysis can contribute to refining existing models and in the development of new models of the

U.S. forest sector. For example, projections of housing starts generated from our econometric

models can serve as inputs to forest sector market models that project changes in U.S. and

global demands for forest products (e.g., [38]). Because our models provide county to regional

projections of residential housing demand, they can provide the regional demand inputs

needed for projections of the inputs demanded by the construction sector at finer than

national scales (e.g., [22]). Similarly, projections of multifamily housing starts presented in this

study can provide baseline information needed to estimate potential future demand for mass

timber, a low-carbon, renewable potential alternative to steel and concrete [39, 40]. In addi-

tion, starts projected at the county level offer the opportunity to compare housing growth in

wildland-urban interface parts of the United States from this analysis to those using alternative

methods (e.g., [41, 42]). Such comparisons may offer new insights on how WUI growth

modeling methods might be adjusted to better project development that can impact ecosys-

tems service provisioning [23].

This study offers a framework for development of accurate yet simple models of construc-

tion that could be adapted for projections of construction and its impacts at fine spatial scales

that may be needed in other countries. Although we focused on the United States and wood-

dominated single-family and multifamily housing, prevalent in a limited set of countries with

wood-dominated housing such as Canada, the Nordic countries, and Russia, there are carbon

consequences of non-wood based construction (which can be potentially more carbon emit-

ting) elsewhere, which could be modeled in similar ways.

Our spatially downscaled projections of starts and harvested wood products carbon in

housing reveal where they may be vulnerable to catastrophic risk. Research on climate change

and its impacts predict rising rates of wildfire in the United States [24, 43], potentially more

damaging hurricanes in the East [25, 44], and rising sea levels along all coasts of the United

States (e.g., [26, 45]). A rising number of residential structures may be exposed to these phe-

nomena, potentially accelerating annual rates of housing destruction above the approximate

0.4 million/year observed historically. Although rebuilding following losses would provide

new demands for wood, the events themselves would help to contribute to carbon emissions.

The models reported in this study carry with them a set of assumptions that must be

acknowledged, each of which could have generated inaccuracies in how housing construction

and wood products carbon were projected. First, the projections reported in this study take as

given the projections of population and income by county by scenario as reported by Wear

and Prestemon [20], whose authors acknowledge the potential limitations of their simple

downscaling approach. Importantly, their downscaling models did not directly account for the

effects of climate variables or the effects of future changes in climate on demographic shifts,

such as those related to rising sea levels impacting coastal counties or rising temperatures that

may affect counties differently over time. Likewise, the SSPs presuppose a set of policies influ-

encing population growth—including those affecting fertility rates (e.g., [46–48]), human
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longevity (e.g., [49, 50]), and immigration (e.g., [51])—and such policies could have unmo-

deled heterogeneous impacts across counties of the United States not accounted for in our

study.

Our estimates of projected wood products carbon attributed to residential construction

activities are based on the average historical sizes (square footage) of single- and multifamily

homes and the types and wood usage intensity (m3/m2) in their construction. To the extent

that the average size of homes changes in the future (e.g., due to consumers preferring smaller

or larger homes compared to the past) or that future innovation results in new wood products,

the quantity and types of wood products going into construction and landfills also would

change, rendering our estimates of projected carbon more uncertain. Another factor affecting

our carbon results is our assumptions on recycling/reuse practices of discarded wood materi-

als. Although our analysis provided insights into the likely wood products carbon effects of

recycling/reuse of wood materials, the analysis did not consider the potential effects on timber

harvests from the consequent reduction in the demand for unrecycled wood products, suggest-

ing that the net carbon effects of wood products recycling/reuse activities are more uncertain

than reported in this study.
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