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Abstract
Revealing the hidden mechanism of how cells sense and react to environmental signals

has been a central question in cell biology. We focused on the rate of increase of stimula-

tion, or temporal gradient, known to cause different responses of cells. We have investi-

gated all possible three-node enzymatic networks and identified a network motif that

robustly generates a transient or sustained response by acute or gradual stimulation,

respectively. We also found that a regulated double-negative feedback within the motif is

essential for the temporal gradient-sensitive switching. Our analysis highlights the essential

structure and mechanism enabling cells to properly respond to dynamic environmental

changes.

Introduction
For survival, cells should continuously sense and process signals to make an appropriate deci-
sion under dynamically fluctuating cellular environments [1–3]. They encode biological infor-
mation on the identity and quantity of a stimulus in different forms of patterns, for instance,
amplitude, frequency, and duration of a stimulus [3, 4]. Such information is decoded and inter-
preted by specific signaling networks (or circuits) to generate a specific cellular response [3, 5,
6]. For example, the p53-Mdm2 network encodes the gamma radiation signaling in form of
oscillatory dynamics of p53 while UV signal is encoded in sustained activation of p53 [3, 7].
The epidermal growth factor (ERK) pathway that encompasses the son of sevenless (SOS)
-mediated negative feedback loop encodes EGF stimulation in form of a transient dynamics of
ERK while nerve growth factor (NGF) stimulation is encoded in form of a sustained response
of ERK by the protein kinase C (PKC)-mediated positive feedback loop [8, 9]. Such biological
information encoded in dynamics of signaling molecules can be interpreted through many dif-
ferent types of molecular mechanisms. For example, Ca2+/calmodulin-dependent protein
kinase II (CaMKII) and PKC are well known molecular machineries that decode oscillatory
dynamics of cytoplasmic calcium [10, 11]. The incoherent feedforward loop that consists of
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ERK and c-Fos translates the transient and sustained dynamics to proliferation and differentia-
tion, respectively [12].

Another important dynamic feature of signal that conveys biological information into cells
is speed of signaling. In reality, a receptor on the cell surface can be immediately exposed to
and activated by an acute increase in ligand concentration. Alternatively, as a result of its regu-
lated secretion, cells may experience a gradual increase when a ligand is secreted from a distant
source because it takes time to accumulate and reach a certain threshold level by the affinity of
the receptor [13]. Several previous studies demonstrated that cells are capable of decoding the
temporal rate of signaling. For example, Hodgkin's Type III excitable neuron fires for a step
input (an abrupt increase of stimulation) but not a slow ramp input though these inputs have
the same final level, named as slope sensitivity [14–16]. Such slope sensitivity was also found in
auditory brainstem neurons, spinal cord neurons, and dopaminergic neurons [14, 17]. Another
example was displayed by Young et al. who examined the environmental pathway using Bacil-
lus subtilis [18]. Cells activated the response factor σB in instant increase of ethanol but not the
slow increase. Nene et al. investigated the speed-dependent cellular decision making by consid-
ering a model circuit composed of two master regulators that inhibit each other (with self-acti-
vating mechanisms) and two input nodes receiving signals with different temporal gradients
[19–21]. Note that the effect of the temporal gradient of a signal has been also widely studied in
other fields. For example, in climate science and ecology, failure to adapt to rapid changes in
environment was investigated, named as rate-dependent tipping or rate-induced bifurcation
[22, 23]. The rate of change of the CO2 concentration in the atmosphere was also revealed
affecting the Atlantic thermohaline circulation [24].

In the same vein, a recent experimental study clearly demonstrated how biological informa-
tion can be encoded in the temporal gradient of the input signal [13]. Ji and coworkers demon-
strated that when the brain-derived neurotrophic factor (BDNF) is applied to neuron cells in
two modes of acute or gradual increase (at which the input signals reach their common steady-
state concentration), the receptor activation (Tyrosine receptor kinase B, TrkB) generates quite
distinct patterns; acute stimulation induces transient response and gradual response brought
about gradual stimulation [13]. In other words, different cellular responses were delivered by
different temporal gradients of the input signal. While the internalization of the surface TrkB
could be suggested as a possible mechanism of the transient response of TrkB [13], up to now,
a systematic study has not been carried out to elucidate the relationship between the signaling
network structure, its information decoding capability, and input signal gradient.

To address this problem, we explored all possible topologies for a three-node enzymatic cir-
cuit and examined the capability to decode the temporal gradient of input stimulation. From a
large-scale computational simulation, we identified an entangled positive and negative feed-
backs (EPNF) network motif that can robustly realize differential responses to the temporal
gradient of input stimulation. Central to this circuit’s signal processing capacity is an embed-
ded double-negative feedback loop. Through dynamical analysis, we further revealed that the
regulated double-negative feedback (RDNF) circuit performs the function of temporal gradi-
ent-sensitive switching. We suggest that this regulated double-negative feedback is a hidden
design principle enabling cells to decode the information that is encoded in the temporal gradi-
ent of an input signal.

Results

Exploring network motif topologies
Cellular signaling networks (or signal transduction system) can be conceptually depicted as
three major modules: an input module, a regulatory module, and an output module. The input
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module may correspond to the receptor on the cell surface that receives extracellular signals
and transfer them to its downstream molecules. The regulatory module may encompass a set
of signaling molecules that merge and process signals transferred from the receptor(s). It can
also play diverse regulatory roles. The output module may include output molecules that
induce specific target genes and activate other signaling proteins to generate an actual cellular
response such as proliferation, differentiation and apoptosis. For example, the receptor tyrosine
kinase (RTK) signaling pathway includes a broad range of receptors (e.g., Insulin-like growth
factor receptor (IGFR), transforming growth factor receptor (TGFR), epidermal growth factor
receptor (EGFR), and TrkB) to which growth hormones binds, such as IGF, TGF, EGF, and
BDNF. Once the receptor is activated, the signal is transferred to their downstream pathway
in many different ways such as binding, (de)phosphorylation, and translocation. These signals
are further processed and regulated by their specific pathways (e.g., ERK, phosphoinositide
3-kinase (PI3K) and so on) and eventually activates their effector molecules (e.g., c-Myc for
proliferation, B-cell lymphoma 2 (Bcl-2) for survival). However, the three main modules of sig-
naling networks are complicatedly interlinked through crosstalks and feedback loops. For
instance, Akt negatively regulates the RTK receptors through forkhead box O (FOXO) inhibi-
tion [25, 26]. Similar regulatory patterns of RTK activation also occur by mitogen-activated or
extracellular signal–regulated protein kinase (MEK) inhibition, which is mediated through the
transcription factor Myc [27]. Although detailed regulation of signaling networks are quite
diverse and complicated, the RTK signaling network including TrkB can be functionally sim-
plified to minimal models by applying a coarse-grained approach [28, 29] while preserving the
essential functions. In addition, modularity has been proven to be a prevalent feature of net-
work biology [30, 31]. Thus, for the purposes of simplicity and computability we reduced the
complexity of the RTK signaling network to a generic three node network as shown in S1 Fig.

As a result, we have limited ourselves to exploring three-node enzymatic networks that con-
sist of input, regulatory, and output nodes corresponding to the three modules of the signaling
network (Fig 1). Actually, this approach may sacrifice resolution. However, it allows us to effi-
ciently perform a complete search of the topological space and to flexibly extract general design
principles for specific cellular behaviors [32]. Note that to explore network motifs we consid-
ered the input receiving node as the output node of the network circuits (Fig 1B), following the
experiment in which the activity of the BDNF-receiving TrkB receptor was measured as a read-
out of the signaling network [13]. Each link in the circuits can represent activation, inhibition
or no regulation, and thus we generated 405 possible network topologies in total without sym-
metric cases. Each network topology was described using ordinary differential equations
(ODEs) to model interactions of nodes, characterized by the Michaelis-Menten constants
(KM’s) and catalytic rate constants (kcat’s) of the enzymes [32]. Note that in our analysis we
implicitly assumed that the enzyme nodes operate under Michaelis-Menten kinetics and that
they are noncooperative (Hill coefficient = 1) [32] (see Fig 1C, and Methods for details). We
should also notice that it is widely accepted that the forms of rate equation (e.g., mass action
and Michaelis-Menten equations) do not significantly change simulation results [32, 33] and
thus we adopted Michaelis-Menten equations to formulate ODEs.

To address how the signaling network decodes the rate change of signals, we first defined the
temporal gradient of the input signal as the increasing rate of the concentration of the stimulant
and the amplitude as its steady-state concentration (Fig 1A). The targeted behavior of the net-
work was characterized as a transient output (i.e., initial increase following decrease pattern) to
the acute input, and a sustained output (i.e., monotonic increase pattern) to the gradual input.
To quantitatively evaluate the responses profiles of the network topologies we introduced two
criteria: (i) the discriminability of two outputs according to two different temporal gradients
and (ii) the sensitivity of the transient output (Fig 1A, see Methods). The discriminability is
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defined as the differences of steady state values to acute and gradual inputs. The sensitivity is
defined as the height of output response relative to the initial value.

In general, characterizing the dynamic behaviors of a network circuit requires intensive
exploration of a large range parameter space of the model, and this is computationally exhaust-
ing. Furthermore, due to the sloppy nature of models in biology, it is difficult to analyze how
robust the function of a model are with respect to the parameter changes [34]. Unfortunately,
information on the sloppiness of the parameters is not generally available for our network
model analysis, which means that all the parameters should be explored to determine the func-
tion of a motif circuit. Thus, to overcome the problems of sloppiness in the model and search-
ing size of parameter space, 100,000 sets of parameters were efficiently sampled using the Latin
hypercube sampling method [35] in a wide range of the nominal values from 0.01 to 10 fold
(Fig 1D), and they were used to investigate how each circuit model decode the temporal gradi-
ent of the input signals.

Fig 1. Overview of searching network topologies. (A) Targeted input-output relationship. Acute or gradual input stimulation causes transient or sustained
output response, respectively. Discriminability and sensitivity are introduced as two criteria characterizing the dynamic behavior of a signaling network circuit.
(B) Three-node network topology with all possible link combinations. (C) A simple example circuit modeled using Michaelis-Menten equation. (D) Illustration
of the simulation of a candidate network circuit with sampled parameters and the evaluation of the resulting dynamic behavior with the two criteria.

doi:10.1371/journal.pone.0162153.g001
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Identification of motif topology achieving the targeted behavior
To identify the network motifs capable of decoding the temporal gradient of the input signal as
shown in Fig 1, we generated 405 network motif circuits by considering all possible structures
of a 3 node network without symmetric cases. Each network topology was simulated with
100,000 random parameter sets and the sensitivity and the discriminability of the output pro-
file were calculated (Fig 1D). The response profile of each network topology can be mapped on
the two-dimensional sensitivity and discriminability plot. Thus, a particular network circuit
(and a specific parameter configuration) displaying the targeted behavior falls within the
upper-right corner of the map. These circuits show a strong transient response (high sensitiv-
ity) to acute input signal and a strong sustained response (high discriminability) to the gradual
signal. The network motif and number of parameter sets showing the target behavior was also
plotted histogramatically in Fig 2A. From this plot, we identified three network circuits highly
ranked in terms of number of parameter sets (M1, M2, and M3). Actually, the number of
parameter sets corresponding to the highly ranked networks motif are more than twice that of
other networks. Thus, we can say that these three network motifs are more ‘robust’ than other
topologies also exhibiting the rate decoding capability. Here, we defined the robustness of a
model by the number of parameter sets (of the 100,000 tested sets) that allow the model to
generate targeted behavior [29]. We should note that if each parameter set of a network model
represents a specific individual (e.g., cell) and the number of parameter set of a specific model
is much larger than others, it could assume that this model population is evolutionally more
robust.

Among the robust network topologies, we identified that the M1 motif was commonly
shared in the three network circuits and it consists of a negative feedback loop between the
node N1 and N2, a double-negative loop between N2 and N3, and a direct regulation link from
N1 to N3 (Fig 2A). We named it as entangled positive and negative feedbacks (EPNF). Note
that the lower ranked motifs, M4-M6 encompass a double-negative feedback that mutually
inhibits N1 and N2 (S2 Fig). Thus, these networks were, by definition, not classified to EPNF.
The representative response profiles of the EPNF to different input patterns (i.e., acute and
gradual) were shown in Fig 2B. For the acute input, the node N1 displayed a transient response
profile. N2 and N3 showed sustained and transient response curves, respectively. For the grad-
ual input, N1 exhibited a sustained response. N2 and N3 showed a transient and sustained
response, respectively. In the further analysis, we found that the sensitivity scores of the higher
ranked motifs (i.e., M1-M3) showed relatively even distribution while the discriminability
exhibited a biphasic distribution: both high (>10−0.1�0.79) and marginal values (<10
−0.9�0.13) were dominant (S3 Fig). On the other hand, the sensitivity scores of the lower
ranked motifs (M4-M6) showed relatively even distribution similar to the higher ranked motif
(except M4 that was biased to the higher score). However, interestingly, the distribution of
discriminability scores was strongly biased toward the lower score (<0.13), which suggests that
the higher and lower ranked motifs have distinctive dynamic features. In summary, among the
network motifs that are capable to decode the temporal gradient of the input signal, the EPNF-
containing networks are more robust than other networks.

Next, we examined how the EPNF circuit decodes the temporal gradient of the input signals
into different output responses. To do this, we introduced the gradient coefficient of the input
signal (denoted by r) and gradually increased the steepness of the input signal (Fig 2C upper
panel). Depending on the r value, trajectories of EPNF converged to different steady-states (Fig
2C lower panel). Interestingly, the trajectory curves in two dimensional space of N2 and N3

were bifurcated into two distinct steady-states. If the temporal gradient of the input is lower
than the threshold value (less than 0.04 in this case), the trajectories proceed to stable states
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Fig 2. The input-output relationship and feedback structure of the EPNF circuit. (A) The number of parameter sets
for all the network models. The parameter set was selected if the product of the sensitivity and the discriminability is more
than 0.1. The most robust three motifs, (M1, M2, and M3) are shown in the inset. Note that M1 is EPNF, which is
commonly contained in M2 and M3. (B) The representative response profiles of the EPNF network to acute and gradual
increase of input stimulus, which recapitulate the predefined targeted behavior. (C) Typical input signal patterns with
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where N2 is low and N3 is high; otherwise, we got different stable states where N2 is high and
N3 is low.

To further understand the underlying mechanism of the rate decoding and the bifurcation
of trajectories, we dissected the EPNF motif circuit into a smaller piece of motifs. As shown
earlier, it encompassed three feedback loops including a negative feedback, a positive feed-
back, and a double-negative feedback loop (Fig 2D). Such feedback loops in the signaling net-
work have been known to have a specific role in generating different dynamic responses [36–
39]. For example, a negative feedback can produce transient and oscillatory behaviors [36],
and a positive feedback can generate a sustained response and exhibit a bistable switch-like
response to make all-or-none responses [40]. Similarly, a double-negative feedback (function-
ally forming a positive feedback) can function as a bistable switch, enabling the systems to
have two discrete, alternative stable steady states. [40–44]. In the EPNF structure, the node N1

mediates two feedback loops; one is the negative feedback through N2, and the other is the
positive feedback through N3 and N2. Thus, if N2 is activated, the activation of N1 is sup-
pressed by a negative regulation. If N3 is activated, N1 is sustainedly activated by a positive
regulation. The activation states of N2 and N3 are mutually exclusive by the double-negative
feedback loop between them, which suggests that this feedback loop is responsible for distinct
response profiles of N1. Therefore, we presumed that the double-negative feedback loop
embedded in the EPNF is a central mechanism that decodes the temporal gradient of the
input signal.

Regulated double-negative feedback is a gradient sensitive switch
To test whether the double-negative feedback loop of the EPNF is enough to decode the tempo-
ral gradient of the input signal, we further simplified the EPNF motif to the two-node network
topology that consists of N2 and N3 nodes, and one input (I) which activates N2 and N3 at
same time. We called it the regulated double-negative feedback (RDNF). The simulation results
showed that N2 and N3 have opposite response profiles to the two different input patterns (Fig
3A). That is, N2 and N3 displayed a sustained and a transient response, respectively, to acute
stimulation, but the response profiles to gradual stimulation were switched with each other,
which suggests that the RDNF itself functions as a rate decoder of the temporal gradient of the
input signal.

In previous studies the RDNF motif was suggested to have capability to decode the change
in the amplitude of the input signal [43, 45], although our simulation results showed the
decoding capacity of the temporal gradient. Thus, we carried out the additional simulation to
analyze the effect of the amplitude of the signal on the rate decoding capability of the signaling
network. From the simulation analysis the opposite response profiles (sustained and tran-
sient) were showed in N2 and N3, respectively, to the high gradient and high amplitude input
signals, and the response patterns were switched by the low gradient with the same amplitude
(Fig 3B). In contrast, the two nodes exhibited the opposite output responses to low amplitude
and high gradient but the pattern were not switched by low gradient with the same amplitude.
These observations prompted us to further simulate the response profiles of the RDNF by
gradually increasing the amplitudes and temporal gradients of the input signal. We plotted
two dimensional heat map of amplitude and gradient (Fig 3C middle). From this figure, we

different temporal gradients (upper panel). The representative state trajectories of EPNF that were projected to the two
dimensional space of N2 and N3 (lower panel (D) Three feedback loops comprising the EPNF circuit. The first two positive
and negative feedback loops are interlinked at the output node N1 and these feedbacks are further controlled by the third
double-negative feedback loop that might selectively turn on N2 or N3.

doi:10.1371/journal.pone.0162153.g002
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identified a sharp transition of the response profiles depending on the temporal gradient as
well as the amplitude of the input (Fig 3C left and right). The steady state value of N2 (N3)
were sharply switched from low (high) to high (low) around the threshold level of the ampli-
tude and gradient. Taken together, these results hypothesize that the RDNF is able to decode
two different dynamic features (i.e., the amplitude and the temporal gradient) of the input
stimulation.

Fig 3. Bifurcation properties of the RDNF circuit. (A) The RDNF circuit and a representative response profile to two different temporal gradient of input.
(B) Response patterns of N2 and N3 to different amplitude and temporal gradient. (C) Steady-state responses of N2 and N3 to various input amplitudes and
temporal gradients. Bifurcation occurs depending on not only the input amplitude but also the temporal gradient.

doi:10.1371/journal.pone.0162153.g003
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Phase plane analysis of the temporal gradient decoding
A double-negative feedback can be functionally simplified to a single positive feedback since
both the double-negative feedback loop and the positive-feedback loop can convert a graded
input into switch-like, irreversible responses [40]. Thus, to visualize the dynamic behaviors of
the network and to analyze the rate decoding mechanism more intuitively we further simplified
the RDNF motif to an one node network topology composed of two variables, one input (I)
and one output (X) with positive autoregulation as shown in Fig 4A, since a system with more
than three dimensions like the RDNF makes it difficult to analyze the dynamic behaviors based
on the phase-plane method. Note that the input variable I of the reduced network is a continu-
ous function with the temporal gradient r and the maximal amplitude I0 (see Methods for
model equations) and thus the dynamic behaviors of the network topology is displayed in a
two dimensional phase plane.

The simulation results showed that a single node positive feedback loop can generate differ-
ent response patterns to different temporal gradients. We found that the response converges to
a low steady state value by a low temporal gradient but to a high steady state by a high gradient
of the input signal (Fig 4B, upper panel). The phase plan clearly demonstrated the input-output
dynamics of the reduced system (Fig 4B bottom). The nullclines of the system (dI/dt = 0 and
dX/dt = 0, respectively) drawn in the phase plane were intersected at three fixed points, in
which two are stable and one is an unstable point. It means that all solution trajectories for the
given initial values eventually converge to one of the stable fixed points (called attractors)
which correspond to steady-state responses. A set of initial conditions leads to trajectories that
converge to a particular stable fixed point and we call it the basin of attraction. In this simula-
tion we found that the separatrix of the basins (boundary between basins) was changed by dif-
ferent temporal gradients, which means that even the solution trajectories starting at the same
initial points can be converged at different fixed points depending on the temporal gradient
values. For example, the solution trajectories starting at the same initial values (i.e., (X, I) =
(0.8, 0)) are moving along different pathways and eventually approach different stable fixed
points (Fig 4B bottom). In other words, by changing the territory of the basin, the network
may decode the temporal gradient. However, we note that the maximum amplitude of the
input (I0) influences the nullcline locations of the input and, thus, the existence of bistabiliy
may be determined by strength of input signal (S4 Fig). To further validate these findings, we
carried out additional simulation using the more complex EPNF network. To do this, we
changed the temporal rate and amplitude of the input signal and observed the trajectories of
N2 and N3. Interestingly, the sepatrix of the basins was changed by different rates (S5A–S5C
Fig left and middle). That is, the trajectories starting at the same initial states were converged
to different attractors depending on the temporal gradient while the attractors remained
unchanged. On the other hand, the location of attractors was moved to different places by
changing of the amplitude (S5C Fig middle and right). Considering all the simulation results,
we conclude that the amplitude of the input signal is related to the location of fixed points and
that the temporal gradient determines the fixed points to which the rate decoding system
converges.

Discussion
How the signaling network encodes and decodes the biological information and what mecha-
nism underlies this process have been a fundamental question in biology [1–3, 37]. Our study
revealed that the EPNF topology decode the speed change of the input signal into two different
response profiles of sustained and transient. In addition, we also showed that the EPNF
was enough to recapitulate the rate decoding capacity of TrkB signaling network to BDNF
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stimulation [13]. In detailed analysis, we identified the RDNF topology, a subset of the EPNF,
is a core mechanism of the rate decoding function. Although motivated by the study of Ji et al
[18] in which the input receiving node was considered as the output node of the network cir-
cuits, our findings demonstrated that the rate-decoding capacity of the network do not depend
on the choice of input/output since N2 and N3 clearly exhibited distinct response profiles to
two different input gradients (Fig 2B). Moreover, the fact that the regulated double-negative

Fig 4. Analysis of the temporal gradient decodingmechanism. (A) A simplified single node network. (B) Input-output relationship (top) and phase
plane analysis (bottom) of the simplified model with two different temporal gradients. The temporal gradient influences the state trajectories and
determines the critical state transition towards different steady-states. (C) Schematic illustration of the cellular signal decoding process by the proposed
temporal gradient-sensitive switch network.

doi:10.1371/journal.pone.0162153.g004

A Regulated Double-Negative Feedback in Cell Signaling Decodes the Temporal Gradient of Input

PLOS ONE | DOI:10.1371/journal.pone.0162153 September 1, 2016 10 / 17



feedback is ultimate underlying mechanism of the rate decoding of the input signal (Fig 3A)
definitely supports that the rate decoding capability of the network does not depend on the
choice of an output node. The phase plane analysis explained that the temporal gradient of an
input signal determines the direction of the trajectory (solution) curves which leads to different
steady-states of the system. In summary, our findings bring a new insight into how cells inter-
pret the time-varying cellular environment which they might continuously encounter.

Under fluctuating cellular environments, the signal transduction systemmight have evolved
to decode not only the steady-state level of input stimulation but also its temporal pattern for a
proper decision-making (Fig 4C). Decoding the temporal gradient of input stimulation provides
cells with additional useful information about the environment. For example, akin to the manner
in which a safety belt senses acceleration, the temporal gradient of a car’s speed, cells can detect a
rapid increase of a toxic molecule’s concentration and cope with it by activating a protection
pathway in advance. In addition, cells can respond appropriately to a constitutive or regulated
secretory mode of molecules by decoding the temporal gradient, as argued previously [13]. For a
further study, it would be interesting to investigate the possibility of the temporal gradient decod-
ing mechanism with respect to cellular recognition of the frequency of an oscillating signal.

Previous studies characterized the RDNF circuit that can be employed for decoding mor-
phogen gradients to select gene activation in response to different levels of a single external
signal and buffering their profile against fluctuations in gene dosage or environmental pertur-
bations [43, 46]. For instance, Saka et al. demonstrated that the mutual inhibitory genetic
network having a single input can convert a graded signal into an on/off binary output [43].
Bergman et al. modeled and analyzed that an interlinked multiple negative feedback mecha-
nism is capable of pre-steady-state decoding a spatial gradient signal to expression of different
target genes [46]. In this study, we showed that the double-negative feedback network that was
derived from the EPNF can interpret the rate change of an input signal to different response
profiles of target proteins before the signal converge to a steady state. Thus, we can infer that
the RDNF circuit might have a crucial role in early differentiation during development since
the double-negative feedback loop may interpret information regarding the temporal dynamics
of morphogen fluctuation to elaborately decide the cell fate [43, 47]. Taken together the dou-
ble-negative feedback mechanism can be obtained in different ways in different biological con-
texts, and it can provide a general mechanism for controlling the cell-fate decision.

From this study, we proposed that the cell can respond differently according to the temporal
pattern of stimulation even though the final concentrations are unchanged, which suggests that
the delivery mode is important in determining the effect of the molecules.

Methods

Candidate motif circuit topologies
To find the motif circuit for decoding the temporal gradient of input stimulation, we search
possible topologies of three-node enzymatic regulatory networks. Within a motif circuit, there
are six possible directed links among the nodes. Each link has three possibilities: positive regu-
lation (activation), negative regulation (inhibition), or no regulation. Thus there are 36 = 729
possible topologies. By excluding circuits with symmetric cases, the remaining 405 topologies
are explored in this study. An input receiving node of the motif circuits is regarded as an output
responding node to mimic the BNDN experiment [13].

Modeling motif circuits
Each node of a motif circuit can have an active or inactive form, which is reversible by positive
or negative regulation, and has a fixed total concentration of 1 by normalization. In the
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modeling scheme, we assume that a catalytic reaction of the enzymatic network consists of for-
ward and backward reactions. The forward reaction indicates that the active enzyme (E, for
example), convert the other enzyme (X) from its inactive to active state (see the rate equation
below). The backward reaction is, inversely, that the active enzyme (X) is converted to inactive
state by another active enzyme (Y). If the enzyme that catalyzes the forward or backward reac-
tion is not specified in the network, we assume that a basal (nonregulated, unspecific) enzyme
would activate of inactivate X, respectively. All regulations of a motif were modeled with
Michaelis-Menten equations (S1 Text). All parameters in the equations were sampled from a
range of 0.01 to 10. The general equation for a motif is modeled combining the forward and
the backward reactions as follows:

dNi

dt
¼

X
l

kNlNi
Nl

ð1� NiÞ
KNlNi

þ ð1� NiÞ
�
X
m

k0NmNi
Nm

Ni

K 0
NmNi

þ Ni

;

where Ni = N1, N2 or N3 denote the normalized concentration of active form of nodes; 1—Ni

denote the concentration of inactive form of nodes; Nl = N1, N2, N3 is I (input) or E (active
enzyme) that has a positive regulation to node Ni; Nm = N1, N2, N3 or E denote the concentra-
tion of the node which has a negative regulation to node Ni; KNlNi

or K 0
NmNi

denote the Michae-

lis-Menten constants, and kNlNi
or k0NmNi

denote the catalytic rate constants of the regulations.

All the equations of the analyzed motifs and parameters used in the figures are provided in S2
Text.

Evaluation of network motifs
The input signal I is modeled as follows:

dI
dt

¼
r

0

ðt < I0
r
Þ

ðt � I0
r
Þ

8>><
>>:

where I0 denotes the maximum amplitude of the input signal and r denotes the temporal gradi-
ent. Note that only increasing input is considered in our simulations. In the case of an acute
input, r is regarded as having an infinite value. The network motifs were simulated with inputs
after the response profile converges to a steady-state.

The dynamic behavior of a simulated circuit model was evaluated by the discriminability
and sensitivity, defined as follows:

Sensitivity ¼ Ma � Fa

Discriminability ¼ Fg � Fa

where Fa and Fg denotes the final values of the output response profiles to acute or gradual
inputs, respectively, andMa denotes the maximum value of the output response to acute input.
The capability of a network motif was measured by the score of the sensitivity and the discrimi-
nability. If the product of sensitivity and discriminability is more than 0.1, the network circuit
is defined to be able to decode the temporal gradient.
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Dynamical analysis of the simplified model
The mathematical description of the simplified model (Fig 4A) is as follows:

dI
dt

¼ rðI0 � IÞ
dX
dt

¼ ð1� XÞ kXa � I
KXa þ ð1� XÞ þ ð1� XÞ kXb � X

KXb þ ð1� XÞ � X
kXc

KXc þ X

where I denotes exponentially increasing input, I0 denotes the maximum amplitude, r denotes
the temporal gradient, and X denotes the positively self-regulating node.

Phase plane illustrates all the states and trajectories in the state space. The nullcline is a
curve where the derivative of a system variable equals zero. The fixed points are located on
intersecting points between nullcline curves of a system. According to the stability of the
points, they are categorized as stable fixed points and unstable fixed points. All the states of the
system consequently approach one of the stable points.

Supporting Information
S1 Fig. Modeling of the three-node enzymatic network. The RTK signaling networks can be
conceptually depicted as three major modules: an input module, a regulatory module, and an
output module. This signaling network can be functionally further simplified to minimal mod-
els by applying a coarse-grained approach while preserving the essential functions. In addition,
modularity has been proven to be a prevalent feature of network biology. Thus, for the pur-
poses of simplicity and computability the complexity of the original model was reduced to a
generic three-node enzymatic network.
(TIF)

S2 Fig. Six network motifs ranked by robustness to exhibit the targeted behaviors.M1-M3
are the high-ranked motifs and M4-M6 are the low-ranked motifs.
(TIF)

S3 Fig. Distribution of the sensitivity and the discriminability of the six network motifs.
Sensitivity and discriminability from the simulation of parameter sets are represented in the
scatter plot with marginal histogram. X-and Y-Axis are log-scale, respectively.
(TIF)

S4 Fig. Effect of the amplitude of the input. Input-output relationship (top) and phase plane
analysis (bottom) of the simplified model with the changed amplitude of the input I0 from Fig
4B. I0 affected the nullcline location of the input and determined the existence of bistabiliy.
When I0 is 0.5, only one stable fixed point exists.
(TIF)

S5 Fig. Different effect of the temporal gradient and the amplitude of the input signal on
the basin of attractors of the EPNF network. (A) Blue or red regions are the basin of attrac-
tors which correspond to transient or sustained responses of N1, respectively. The inset shows
the basin of attractors in full-scale and the blue and red circle are attractors. (B) Sample state
trajectories starting at the different initial states, which are projected in two dimensional space
of N2 and N3. Blue or red lines corresponds to the basins of (A). (C) Sample state trajectories
starting at the different initial states in three dimensional space of N1, N2 and N3. The location
of attractor is noted as (N1, N2, N3).
(TIF)
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S2 Text. Equations of the analyzed motifs and mathematical kinetic parameters used in fig-
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