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Abstract: In search of new therapies for pancreatic cancer, cytokine pathways have attracted increas-
ing interest in recent years. Cytokines play a vital role in the crosstalk between tumour cells and
the tumour microenvironment. The related inflammatory cytokines IL-4 and IL-13 can regularly be
detected at increased levels in the microenvironment of pancreatic cancer. They share a receptor
heterodimer consisting of IL-4Rα and IL-13Rα1. While IL-4Rα induces a more oncogenic phenotype,
the role of IL-13Rα1 was yet to be determined. ShRNA-based knockdown of IL-13Rα1 was performed
in Capan-1 and MIA PaCa-2. We assessed cell growth and migratory capacities under the influence of
IL-13Rα1. Pathway alterations were detected by immunoblot analysis. We now have demonstrated
that the loss of IL-13Rα1 induces apoptosis in pancreatic cancer cells. This was associated with an
epithelial-to-mesenchymal transition. Loss of IL-13Rα1 also abolished the effects of exogenous IL-4
and IL-13 stimulation. Interestingly, in wild type cells, cytokine stimulation caused a similar increase
in migratory capacities as after IL-13Rα1 knockdown. Overall, our results indicate the vital role of
IL-13Rα1 in the progression of pancreatic cancer. The differential expression of IL-4Rα and IL-13Rα1
has to be taken into account when considering a cytokine-targeted therapy in pancreatic cancer.

Keywords: interleukin 4; interleukin 13; interleukin-13-receptor-alpha-1; cytokines; EMT; pancreatic
cancer progression

1. Introduction

Pancreatic cancer (PC) remains one of the carcinomas with the worst prognosis [1].
Most patients diagnosed with pancreatic cancer show aggressive local growth combined
with rapid development of distant metastases, where innovative surgical and medical
treatments are urgently needed [2,3]. For promising approaches to detect and cure pancre-
atic cancer, it is crucial to understand the tumour development and progression, where
the tumour microenvironment (TME) has received increasing attention [4–6]. The char-
acteristic desmoplastic reaction of PC originates from a heterogeneous composition of
the TME including mesenchymal and immune cells, as well as a dense collagen-based
tumour stroma [7].

The TME components were shown to influence the malignant behaviour of PC [8–10].
One major impact are cytokines released by both tumour cells directly and by TME compo-
nents such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages
(TAMs) [11–13], as they contribute to aggressive cancer progression, metastasis, and sup-
pression of tumour-directed immune surveillance mechanisms [14–16].

Among those cytokines, the interleukin (IL)-4/IL-13 cytokine-receptor system [17,18]
has been shown promote cancer cell survival, invasion, and metastasis [19–21] both di-
rectly as well as via interactions with various immunoregulatory cells, such as TAMs and
mast cells [22].
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IL-4 and IL-13 act on pancreatic cancer cells mainly through their receptor het-
erodimers IL-4-receptor-alpha (IL-4Rα) and IL-13Rα1, termed type II IL-4R, via signal
pathways of STAT3/6, IRS-ERK/PI3K-Akt and mTOR [23]. IL-4 can also bind to the type
I receptor complex, comprising of IL-4Rα and the common gamma chain (γc) (IL-4/IL-
4Rα/γc) [13], predominantly expressed on hematopoietic cells.

In our previous studies, the expression of IL-4 and IL-13 ligands, as well as IL-4Rα
and IL-13Rα1 receptor chains, was shown in pancreatic cancer cell lines [24–27]. Exoge-
nous IL-4 and IL-13 enhanced the growth of pancreatic cancer cells in a dose-dependent
manner [25,26], which was inhibited by IL-4-/IL-13-neutralizing antibodies. Furthermore,
overexpression of IL-13 in pancreatic cancer tissues and the high co-expression of IL-13
and IL-4Rα correlated with a higher risk of lymph node metastasis [26]. Additionally, the
inhibition of IL-4Rα in Capan-1 reduced cell proliferation and migration [27].

Previous results are indicative of a contributing role of the IL-13/IL-13Rα1 axis to
pancreatic cancer. However, the isolated effects of the IL-13Rα1-receptor chain on the
malignant phenotype of pancreatic cancer cells and the underlying mechanisms were not
studied yet.

2. Results
2.1. Expression of IL-13Rα1, IL-4Rα and γc Chains in Cultured Human Pancreatic Cancer Cells

The protein levels of IL-13Rα1, IL-4Rα and γc in cultured human pancreatic cancer
cell lines A818-6, AsPC-1, Capan-1, PANC-1 and MIA PaCa-2, were determined by Western
blot (WB). All pancreatic cancer cell lines expressed IL-13Rα1 (47 kDa), IL-4Rα (140 kDa)
and γc (64 kDa) at various levels (Figure 1a). There, Capan-1 expressed the highest level
of IL-13Rα1 and was thus chosen as target cell line for IL-13Rα1 knockdown (KD). MIA
PaCa-2 expressed moderate level of IL-13Rα1 but the least levels of both IL-4Rα and γc,
which indicated MIA PaCa-2 also as an attractive target cell line, potentially being more
dependent of IL-13Rα1.

Figure 1. Immunoblot analysis of IL-13Rα1, IL-4Rα and γc chains. Expression of IL-13Rα1, IL-4Rα,
and γc was determined in cultured pancreatic cell lines A818-6, AsPC-1, Capan-1, PANC-1 and MIA
PaCa-2 (a), and sham-transfected clone C-N-2 and C-KD clones (b) by Western blot; (c) Expression
of IL-13Rα1 chain in M-WT, sham-transfected clones and M-KD clones. Representative blot of
3 independent experiments was shown. β-actin was used as loading control. Abbreviations: C-KD:
Capan-1-IL-13Rα1-knockdown; C-N: Capan-1 sham-transfected cells; M-KD: MIA PaCa-2-IL-13Rα1-
knockdown; M-N: MIA PaCa-2 sham-transfected cells.

ShRNA-based transfection targeting IL-13Rα1 was used to generate clones with re-
duced expression of the receptor chain. WB was performed to verify the downregulation
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of IL-13Rα1 with the highest efficacy in clones C-4-1 and C-4-2 (Figures 1b and S1a,b).
Sham-transfected clones C-N-2 and C-N-3 showed no difference in IL-13Rα1 expression
compared with Capan-1 wild type (C-WT). In MIA PaCa-2, immunoblotting revealed
high efficacy of IL-13Rα1-downregulation in clones M-1-6, M-3-5, M-3-8, M-4-3 and M-4-4.
Sham-transfected clones M-N-3 and M-N-4 showed no difference in IL-13Rα1 expression
compared with MIA PaCa-2 wild type (M-WT) and were used as control clones in further
experiments (Figure 1c).

Furthermore, IL-4Rα expression showed no difference between C-WT, C-N-2, C-4-1,
and C-4-2 (Figures 1b and S1c). Interestingly, the expression of γc was decreased in C-KD
clones after transfection (Figures 1b and S1d).

2.2. Effects of IL-13Rα1-Downregulation on the Malignant Phenotype in Pancreatic Cancer Cells
2.2.1. Effect of IL-13Rα1-Downregulation on Cell Growth

The effect of IL-13Rα1-downregulation on pancreatic cancer cell proliferation was
investigated by cell viability assay (MTT assay) and colony formation assay. The results
indicated an increasing difference in viable cells between control groups and C-KD clones in
the MTT assay over time (Figure 2a). After 72 h, significantly less viable cells were detected
for clones C-4-1 and C-4-2 compared to clones C-N-2 and C-N-3 (p < 0.0001, Figures 2b and
S6a). There was no significant difference among C-WT and C-N clones. Furthermore, as
shown in the soft agar assay (Figures 2c,d and S6b,c), the number, as well as the size of the
colonies formed by pancreatic cancer cells in soft agar after 21 days, was decreased in the
IL-13Rα1-KD clones.

These findings were replicable in MIA PaCa-2 (Figures 3 and S6d–f). Thus, IL-13Rα1-
downregulation reduced pancreatic cancer cell survival in both anchorage-dependent and
-independent assays.

2.2.2. Effect of IL-13Rα1-Downregulation on the Cell Cycle

Cell cycle analysis (Figure 4a) showed no significant difference in cell cycle progression
through G0/G1, S, and G2/M phase. However, C-4-1 and C-4-2 cells showed high fractions
of cells in the sub-G1 phase. We can therefore conclude that the results seen before are
not due to reduced proliferation but rather that the loss of IL-13Rα1 induces apoptosis
of Capan-1 cells. We confirmed an increase in apoptotic cells by Annexin V staining
(Figure 4b). No consistent alterations were shown in alternative cell death pathways (S7)

2.2.3. Effect of IL-13Rα1-Downregulation on Cell Mobility and Migration

Migratory capacities were tested in the scratch assay first. As shown, wound healing
rates of C-4-1 and C-4-2 were significantly higher than C-WT and C-N-2 (Figure 5a).
Wounds of IL-13Rα1-KD clones, unlike the control groups, were closed at 48h, which
indicates that IL-13Rα1-downregulation enhances the mobility of pancreatic cancer cells
(Figures 5 and S8a). Wound healing rates of control groups and C-KD clones were further
investigated after the treatment with recombinant IL-4 and IL-13. As shown, exogenous
IL-4, but not IL-13 increased the wound healing rates of C-WT and C-N clones (Figure 5c,d).
Wound closure of IL-13Rα1-KD clone C-4-1 was not affected by exogeneous IL-4 or IL-13.
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Figure 2. Effect of IL-13Rα1-downregulation on the basal growth of Capan-1 cells. (a,b) Anchorage-
dependent growth in the MTT assay. (a) Cell viability at 24, 48, 72 and 96 h. The absorbance
values at 570 nm detected in the MTT assay represent the cell viability and are shown as means of
3 independent experiments of quadruplicate determinations. There is an increasing difference in
cell growth of Capan-1 cells with normal IL-13Rα1 expression (C-IL-13-Rα1-WT) and KD clones in a
time-dependent manner; (b) Relative cell viability at 72 h. Data are shown as mean cell viability in %
(±SEM) compared to C-IL-13-Rα1-WT and are means of 4 independent experiments of quadruplicate
determinations; (c–e) Anchorage-independent growth in the colony formation assay; (c) Colonies
formed in soft agar. Representative pictures show colonies formed by C-WT, C-N-2, C-N-3, C-4-1
and C-4-2 cells growing in soft agar after 21 days at 4x magnification. Scale bar: 500 µm. Pictures of
colonies in 6-well plates were evaluated at random position in each of 9 fields per well. Colonies of
C-WT and C-N were more abundant and larger in size; (d) Mean number of colonies lager that 50 µm2
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(±SEM) and (e) mean colony size of the largest 10 colonies µm2 (±SEM) in one well (9.4 cm2) of
a 6-well plate. Colony number and size were automatically calculated using ImageJ 1.52a. Data
shown are means of 3 independent experiments (* p < 0.05, ** p < 0.01). Abbreviations: C-IL-13-Rα1-
WT: Biological replicates with normal IL-13Rα1 expression (WT and sham transfected Neo clones),
C-IL-13-Rα1-KD: Biological replicates with reduced IL-13Rα1 expression (C-4-1 and C-4-2).

Figure 3. Effect of IL-13Rα1-downregulation the basal growth of M-WT, M-N and M-KD clones.
(a) Basal anchorage-dependent growth of MIAPaCa-2 control groups and IL-13Rα1-downregulated
clones in the MTT assay. Relative cell growth at 72 h is shown as mean cell viability in % (±SEM)
compared to M-IL13-Rα1-WT and are means of 5 independent experiments of sextuplicate determi-
nations; (b) Colonies formed in soft agar. Representative pictures show colonies formed by M-WT,
M-N-3, M-N-4, M-1-6, M-3-5, M-3-8, M-4-3 and M-4-4 cells growing in soft agar after 21 days at 4x
magnification. Pictures of colonies in 6-well plates were taken at random position in each of 9 fields
per well. Scale bar: 500 µm. M-WT and M-N cells formed more and larger sizes of colonies; (c) Mean
number of colonies (±SEM) and (d) mean colony size in µm2 (±SEM) in one well (9.4 cm2) of 6-well
plate. Data shown were performed as means of 3 independent experiments. (ns p > 0.05, * p < 0.05).
These findings were replicable in MIA PaCa-2 (Figures 3 and S6d–f). Thus, IL-13Rα1-downregulation
reduced pancreatic cancer cell survival in both anchorage-dependent and -independent assays. Ab-
breviations: M-IL-13-Rα1-WT: Biological replicates with normal IL-13Rα1 expression (WT and sham
transfected Neo clones), M-IL-13-Rα1-KD: Biological replicates with reduced IL-13Rα1 expression
(M-1-5, M-3-5, M-3-8, M-4-3, M-4-4).
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Figure 4. Cell cycle and apoptosis analysis. (a) Cell cycle analysis. Data acquired by Flow Cytometer
and analysed by Flowjo are shown as relative difference of cell cycle fraction of C-N and C-KD clones
in % (±SEM) compared to C-WT and are means of five independent experiments. The percentage
of Sub G1 represents the fraction of cells in apoptosis. (b) Staining of Annexin V in Capan-1 cells
indicates higher percentages of apoptotic cells after IL-13Rα1 knockdown. Results are shown as
means of 3 independent experiments. (* p < 0.05, **** p < 0.0001).

Figure 5. Cell mobility in the wound healing assay. (a,b) Effect of IL-13Rα1-downregulation on cell
mobility. (a) Wound healing of C-WT, C-N-2, C-4-1 and C-4-2. Representative pictures shown were
recorded at 0, 24 and 48 h after scratch. C-4-1 and C-4-2 managed wound closure at 48 h; (b) Wound
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healing rate. Data are shown as means ± SEM of (A-B)/A × 100% (A is the wound gap at 0 h
and B is the wound gap at 24 h after scratch) of C-IL-13-Rα1-WT and C-IL-13-Rα1-KD cells and
are means of 3 independent experiments of quadruplicate determinations; (c,d) Effect of exogenous
IL-4 and IL-13 on wound healing. Cells were cultured in full medium with or without IL-4 (1nM)
and IL-13 (1nM), respectively after the scratch. Representative pictures shown were recorded at
0, 24 and 48 h (c); (d) Baseline-corrected wound healing rates after 24 h IL-4 and IL-13 treatment.
The baseline represents the wound closure rate for each cell line untreated. Data are displayed as
100% × (A-baseline)/baseline (A represents the wound healing rate of respective group) and were
obtained from 3 independent experiments. Scale bar: 500 µm. (ns p > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001).

Furthermore, the directed migration of C-WT, C-N and C-KD clones was accessed
in the Boyden chamber assay. Consistently, the migratory capacity of the IL-13Rα1-KD
clones were increased (Figure 6a,b). Migration was increased 4.5-fold in C-4-1 and 2.5-fold
in C-4-2 clones, respectively, compared to control cells (p < 0.0001) (Figure S8b).

Figure 6. Directed migration in the modified Boyden-Chamber-Assay. (a,b) Effect of IL-13Rα1-
downregulation on cell migration. (a) Representative pictures of C-WT, C-N-2, C-N-3, C-4-1 and
C-4-2 show DAPI-labelled migrated cells within 24 h. 4 pictures were taken from each membrane at
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random positions; (b) Migrated cells per high power field (HPF). Data are shown as mean number of
migrated cells of C-IL-13-Rα1-WT and C-IL-13-Rα1-KD clones within 24 h (±SEM) and are means of
6 independent experiments. IL-13Rα1-downregulation remarkably increased the directed migration
of Capan-1 cells; (c, d) Effect of IL-4 (1nM) and IL-13 (1nM) treatment on directed migration. (c) Rep-
resentative pictures in dependency of exogenous IL-4 and IL-13 treatment; (d) Number of migrated
cells after IL-4 and IL-13 treatment per HPF. Results are shown as baseline-corrected mean numbers
(±SEM) of migrated cells within 24 h after treatment with IL-4 and IL-13. The baseline represents the
cell migration for each cell line untreated. It is displayed as 100% × (A—baseline)/baseline (A repre-
sents the mean number of cells in respective group). Data are means of 4 independent experiments.
Both IL-4 and IL-13 significantly enhanced the directed migration of C-WT and C-N-2 compared to
the untreated controls. Scale bar: 200 µm. (** p < 0.01, *** p < 0.001, **** p < 0.0001).

Similar to above, the influence of exogenous IL-4 and IL-13-treatment was determined.
Again, IL-4, but also IL-13 treatment, significantly increased the directed migration of cells
with normal IL-13Rα1 expression but was without effect on C-KD clones (Figure 6c).

2.2.4. Effect of IL-13Rα1-Downregulation on Epithelial-to-Mesenchymal Transition (EMT)

With altered migratory capacities, the switch from an epithelial to a mesenchymal
phenotype is a common finding. Morphologically, no changes were observed in Giemsa
staining (Figure S2). On a cellular level, E-cadherin and vimentin are critically involved
markers in EMT [28]. The expression of E-cadherin and vimentin was compared in C-WT,
C-N-2 and C-4-1 (Figure 7). Interestingly, we found lower expression of E-cadherin and
higher expression of vimentin in C-4-1 compared to C-WT and C-N-2, suggesting a more
mesenchymal phenotype.

Figure 7. Immunoblot analysis of E-cadherin and vimentin in C-WT, C-N and C-KD clones. WB
was performed to determine the expression of E-cadherin and vimentin in C-WT, C-N-2 and C-4-1
cells. β-actin was used as loading control. Downregulation of IL-13Rα1 leaded to reduced E-cadherin
expression and upregulated the expression of vimentin.
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2.3. Effect of IL-13Rα1-Downregulation on IL-4 and IL-13 Signalling

Changes in the downstream signalling of the IL-4 and IL-13 axis in pancreatic cancer
cells were investigated in Capan-1(Figure 8). Baseline expression of relevant pathway
components of IL-4 and IL-13 signalling (STAT3, STAT6, ERK1/2, Akt, and PI3K) were
examined in Capan-1 WT cells as well as control clone C-N-2 and the IL-13Rα1 knockdown
clone C-4-1. The respective pathway activation was determined by protein phosphorylation
after treatment with IL-4 (0.4 nM for 30 min) and IL-13 (1 nM for 30 min).

Figure 8. Basal and phosphorylated expression of STAT3, STAT6, ERK1/2 and Akt, and activation of
PI3K in C-WT, C-N and C-KD clones. WB was performed to determine the expression of relevant
pathway components in C-WT, C-N-2 and C-4-1. The phosphorylation of kinases and transcription
factors was detected in cells treated with recombinant IL-4 (0.4 nM for 30 min) and IL-13 (1 nM for
30 min) in comparison to untreated cells (-). β-actin was used as loading control. Abbreviations: Akt:
protein kinase B; ERK: extracellular signal-regulated kinase; IRS: insulin receptor substrate; PI3K:
phosphoinositide 3-kinase; STAT: signal transducer and activator of transcription.
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Control transfected C-N-2 showed comparable or even increased baseline expression
of the analysed pathway components with C-WT cells. In the loading-control corrected
expression of STAT6, STAT3, ERK and PI3K were comparable to control cells. However,
C-4-1 showed a markedly reduced baseline expression of Akt (Table 1, Figure 8).

Table 1. Baseline expression of IL-13 signalling components in percent of WT expression. Expression
was determined with ImageJ 1.52a and grey-scale values were corrected by loading control.

STAT6 STAT3 ERK Akt PI3K

C-WT 100 100 100 100 100
C-N-2 117.6 110.6 151.8 83.3 114.5
C-4-1 119.6 83.3 97.7 41.2 105.1

Expectedly, exogenous cytokine stimulation resulted in strong pathway activation
downstream of IL-4Rα and IL-13Rα1. The phosphorylation of STAT6 is the most prominent
with very low baseline expression and strong activation after stimulation. Similarly, but
not to the same extent, all other pathways showed increased phosphorylation.

The phosphorylation of STAT6 was markedly reduced after knockdown of IL-13Rα1,
indicating the disrupted signalling through the Type II IL-4-receptor. With reduced baseline
expression, phosphorylation levels of Akt were also reduced. STAT3, ERK and PI3K showed
comparable activation levels after cytokine stimulation irrespective of IL-13Rα1 expression
(Table 2, Figure 8)

Table 2. Pathway activation after exogenous cytokine stimulation. Protein phosphorylation was
determined with ImageJ 1.52a and grey-scale values were corrected by loading control.

p-STAT6 p-STAT3 p-ERK p-Akt PI3K

C-WT-IL4 1479.3 196.9 182.8 251.2 129.4
C-WT-IL13 1769.0 225.3 209.1 275.6 133.4
C-N-2-IL4 778.7 166.2 202.3 215.6 104.4

C-N-2-IL13 837.4 148.9 162.7 211.7 126.5
C-4-1-IL4 435.9 141.2 169.9 168.4 131.9

C-4-1-IL13 348.9 114.4 180.9 140.3 145.4

3. Discussion

IL-4 and IL-13 were initially identified as pleiotropic T helper 2 cytokines with over-
lapping, but distinct functions in multiple immune and inflammatory events [29–31]. Now,
increasing evidence indicates salient activities of IL-4, IL-13 and their specific receptor com-
plex IL-4Rα/IL-13Rα1 in carcinomas including pancreatic cancer [19,23]. The expression
of IL-4 and IL-13, as well as IL-4Rα and IL-13Rα1 receptor chains, was shown in several
cultured pancreatic cancer cell lines by us and by other research groups [24,26,27,32,33].
Exogenous IL-4 and IL-13 enhanced the growth of pancreatic cancer cells [25,26], while
IL-4-/IL-13-neutralizing antibodies counteracted this effect [18].

In human samples, IL-13 was not expressed in the physiological pancreatic compart-
ments (ductal, acinar, islets) but showed immunoreactivity in 43% of PDAC specimen
and the high co-expression of IL-13 and IL-4Rα was associated with an increased risk for
lymph node metastasis [26]. By analysing sequencing data from the International Cancer
Genome Consortium (ICGC) from the study groups PACA-CA and -AU (Pancreatic Cancer
Canadian and Australian), we found mutations in 44 of 659 patients. However, only in two
cases, clinically significant single base substitutions were found, resulting in one missense
mutation and one gained STOP-codon [34]. On the contrary, in differential gene expression
datasets of human PDAC, IL-13Rα1 IL-4Rα and the common γc chain was consistently
upregulated compared to normal controls. Dey and colleagues furthermore showed that
upregulation of IL-13Rα1, IL-4Rα and γc was dependent on KRAS expression and loss
of KRAS was associated with reduced receptor chain expression [35]. While the tumour
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promoting role of IL-4Rα on pancreatic cancer cells in vitro and in vivo has been shown
before, the role and mechanism of action of IL-13Rα in pancreatic cancer is yet unclear.

In order to further investigate the role of IL-13Rα1, we screened the protein expression
of IL-13Rα1 and IL-4Rα in 5 PC cells lines. Interestingly, exogenous IL-13 significantly
enhanced the growth of AsPC-1 and Capan-1 cells, with high IL-13Rα1 expression, while
PANC-1 and MIA PaCa-2, with low IL-13Rα1 levels, were less responsive [24,26], indicating
a positive impact of the IL-13-IL-13Rα1 axis on cell survival and growth.

This is contrary to IL-4, where IL-4-enhanced cell proliferation was independent of
IL-4Rα expression, although IL-4-coupled toxin was more efficient in cell lines with high
IL-4Rα expression [24]. Thus, not only the distinct expression levels of respective receptor
chains, but also the ratio between IL-13Rα1 and IL-4Rα expression may be crucial for the
effect of IL-4 and IL-13 on the cancer cell phenotype. This is of special interest as in both
our previous [27] and current results, the expression of the unmodified receptor chain of
the heterodimer complex IL-4Rα/IL-13Rα1 was unaltered by the downregulation of its
partner. However, we were the first to show that the alternative receptor chain, the IL-2
common γ-chain was downregulated in parallel to IL-13Rα1 knockdown (KD).

IL-2 γc expression is gained in pancreatic cancer progression and ranks among the
highest upregulate genes during pancreatic cancer progression [36,37]. The clinical im-
plication of this upregulation is, however, not yet determined, as knockout of γc only
moderately reduced tumour burden in vivo [35,37]. The reduced expression of γc after
IL-13Rα1 knockdown in our study may be associated with a reduced oncogenic potential.
However, its clinical significance warrants further studies.

In line with previous results for IL-4Rα, our data showed an inhibitory effect of IL-
13Rα1-downregulation on cell viability/growth in two different pancreatic cancer cell
lines. This was due to an increase in apoptotic cells, while cell cycle progression was
unimpaired. Previously, our group showed that IL-13-induced growth acceleration of PC
cells was associated with an increased S-phase cell fraction and reduced percentage of cells
in G0/G1 [26]. Combined with our current finding with increased apoptosis after IL-13Rα1
KD, the vital role of IL-13Rα1 for PC cell survival is stressed.

IL-4 and IL-13 are believed to carry out abundant functions in tumour cells through
several pro-oncogenic pathways involving signal factors such as STAT3 [25,27], STAT6 [38],
PI3K/Akt [39], and ERK1/2 [39,40]. In our present study, we can confirm the involvement
of STAT3, STAT6, PI3K, Akt and ERK1/2 in the response to exogenous IL-4 and IL-13.
Furthermore, we demonstrated that downregulation of IL-13Rα1 in Capan-1 cells leads
to a decrease in baseline expression of Akt. Furthermore, responsiveness towards ligand
binding is reduced, displayed as reduced phosphorylation of mainly STAT6, Akt. As those
are key mediators in regulating cell survival and growth [41–43], we propose that the
reduced cell survival through enhanced apoptosis mechanistically is due to the suppression
of STAT6 and Akt. This is in line with previous results demonstrating the activation of
the Type II IL-4 receptor through IL-4 and IL-13 stimulation with phosphorylation of
downstream JAK1 and STAT6 [35].

Thus, one could argue that the reduced apoptosis resistance after IL-13Rα1 KD may
render the cells less cancerous. However, besides sustained proliferation and evasion of cell
death, the ability to invade tissues and form metastasis is considered one of the “hallmarks
on cancer” [44].

Wound healing and migration were significantly increased after IL-13Rα KD. This
is paralleled by an increase in EMT markers with increased expression of Vimentin and
reduced E-cadherin expression, although cellular morphology was unaltered.

Convincing evidence suggests that EMT is involved in promoting invasion and metas-
tasis in pancreatic cancer [28]. In other visceral malignancies, IL-13 stimulation was as-
sociated with increased EMT [45,46]. Similarly, in our results, the exogenous stimulation
resulted in increased cell migration. This was especially obvious in the difference between
the non-directed migration in the wound healing assay and the directed migration in the
Boyden chamber assay. IL-13 stimulation consistently increased migration in the Boyden



Int. J. Mol. Sci. 2022, 23, 3659 12 of 17

chamber assay in both WT and control cells, while this effect was far less pronounced in
the wound healing assay.

However, we are the first to report that the loss of IL-13Rα1 also promotes an EMT
phenotype. This is a highly interesting new finding as the results of exogenous cytokine
stimulation needs to be re-evaluated. Possibly, the promoted EMT phenotype through
IL-4/-13 stimulation is due to cellular signalling mainly through the IL-4Rα receptor
and the relative loss of IL-13Rα1 further promotes this phenotype. However, the precise
mechanisms underlaying these observations require further experiments.

Up to date, IL-13-focussed treatments were studied in clinical trials, which utilized the
Pseudomonas Exotoxin coupled IL-13. These trials, such as the PRECISE Trial (randomized
controlled Phase III clinical trial), were conducted in Glioblastoma multiforme patients and
achieved prolonged time to progression in treated patients [47]. In pancreatic cancer, IL-13
or IL-4 is not studied in clinical trials currently. However, the RECAP Trial (NCT01423604)
utilizes ruxolitinib, a JAK1/JAK2-Inhibitor, targeting the downstream pathways of IL-13
and IL-4. In metastatic PDAC, ruxolitinib was able to prolong overall and progression
free survival [48].

Overall, we can conclude that IL-13Rα1 is vital for cell survival and apoptosis re-
sistance. However, its loss induces an EMT phenotype and consistently promotes cell
migration. The more detailed knowledge in IL-4/-13 signalling we have received from this
study helps in designing more promising clinical studies, as the multiple functions and
cross-play of ligands and receptor chains need to be taken into account.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

Human pancreatic cancer cell lines A818-6, AsPC-1, Capan-1 and were cultured in
RPMI (Roswell Park Memorial Institute medium). MIA PaCa-2 and PANC-1 were cultured
in DMEM (Dulbecco’s Modified Eagle’s Medium). All media were supplemented with
10% foetal calf serum (FCS), 1% Penicillin (10,000 U/mL)/Streptomycin (10,000 µg/mL).
The maintenance media for transfected clones containing a neomycin resistance gene were
supplemented with 550 and 1100 µg/mL geneticin (G418) sulphate, respectively. Cells
were cultured in 100 mm cell culture dishes and maintained in monolayer culture at 37 ◦C
in humidified air with 5% CO2. All cells were tested as mycoplasma-free.

4.2. Immunoblotting

Western blotting was performed as previously described [27]. Cultured cells at around
80% confluence were washed twice with ice-cold DPBS (Dulbecco’s Phosphate Buffered
Saline) and were incubated with lysis buffer for 30 min on ice. Protein concentration was
measured using the Pierce® BCA Protein Assay kit (Thermo Fisher Scientific, Waltham,
MA, USA). Rabbit anti-IL-13Rα1 antibody (ab79277, 1:500, Abcam, Berlin, Germany),
mouse anti-IL-4Rα antibody (sc-28361, 1:100), anti-STAT6 antibody (sc-271213, 1:100), anti-
Akt1/2/3 (sc-81434, 1:200), anti-p-ERK (sc-7383, 1:200), anti-PI3K (sc-1637,1:200), rabbit anti-
ERK2 (sc-154, 1:200) and anti-p-Akt1/2/3(sc-7985-R, 1:200) from Santa Cruz Biotechnology
(Dallas, Texas, USA), goat anti-human common γ chain (AF284, 0.1 µg/mL, R&D Systems,
Minneapolis, MN, USA), rabbit anti-STAT3 antibody (#4904, 1:2000), anti-phospho-STAT3
antibody (#9131, 1:1000), anti-phospho-STAT6 (#9361, 1:1000), anti-Vimentin (#5741, 1:1000)
and anti-E-Cadherin (#3195, 1:1000) from Cell Signalling Technology (Frankfurt am Main,
Hesse, Germany) were used as primary antibodies. To ensure equal loading, β-actin (A5441,
1:5000, Sigma-Aldrich, Taufkirchen, Bavaria, Germany) was used as the internal control.
Images were acquired by the imaging system (FUSION FX, Vilber Lourmat Deutschland
GmbH, Weinheim, Baden-Württemberg, Germany) and analysed by ImageJ 1.52a (National
Institutes of Health, Bethesda, MD, USA).
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4.3. Transfection

Stable transfection was performed using Capan-1 and MIA PaCa-2 cells, 4 differ-
ent plasmids, each containing one shRNA construct directed against human IL-13Rα1,
1 negative control plasmid (SureSilencing shRNA Plasmid for Human IL-13Rα1, QIA-
GEN, Hilden, North Rhine-Westphalia, Germany), and the Effectene Transfection Reagent
Kit (QIAGEN, Hilden, North Rhine-Westphalia, Germany) and using the conditions de-
scribed by the supplier. Each plasmid contains a neomycin resistance gene. After trans-
fection, cells were cultured with the appropriate selection medium (RPMI for Capan-1
and DMEM for MIA PaCa-2 supplemented with 10% FCS, penicillin G (100 U/mL), strep-
tomycin (100 µg/mL) and additional G418 (Capan-1: 1100 µg/mL, MIAPaCa-2: 2200
µg/mL)), until single cell colonies formed. Single cell clones were isolated and checked for
IL-13Rα1-KD separately.

4.4. Cell Growth Assay

The basal anchorage-dependent growth of cultured cells was determined by the MTT
colorimetric assay as described before [27]. Briefly, 10,000 cells/well were seeded and viable
cells were detected after incubation with the MTT reagent at the absorbance of 570 nm after
24, 48, 72, and 96 h.

Colony formation assay was performed to assess the basal anchorage-independent
growth of cancer cells. For the base layer, 2 mL of 0.9% agar solution was gently added
into each well of a prewarmed 6-well plate. When the base agar solution was solidified,
4000 vital cells were gently resuspended in 0.35% agar solution and added onto the base
layer. After the top agar solution solidified, plates were maintained at 37 ◦C in 5% CO2
atmosphere. After 21 days, 9 photos were taken per well, as shown in Figure S4. Afterwards,
the mean number of colonies and mean colony size were measured by ImageJ 1.52a.

4.5. Cell Migration Assay

Cell movement was studied in the scratch assay. Confluent cells in a monolayer were
scratched to make equidistant wounds by yellow tips, as shown in Figure S5. Distances of
the wounds were recorded in quadruplicate by taking pictures at defined positions. Gap
distances were quantitatively evaluated by ImageJ 1.52a. The wound healing rate was
determined as (A − B)/A × 100%, where A was the primary wound width and B was the
wound width after 24 or 48 h.

The modified Boyden Chamber assay was performed to investigate cell migration
as mentioned before [27]. Then, 5 × 104 cells suspended in 100 µL of medium containing
1% FCS were seeded into each insert, which was placed in the 24-well plate, as shown in
Figure S6. Non-migratory cells were scraped off with wet cotton swabs after 24 h, while
migratory cells on the underside of the membrane were rinsed by dH2O, fixed with 4%
paraformaldehyde and stained with DAPI for 5 min. Afterwards, fluorescence photographs
were taken at 6 random positions at 10x magnification. Migratory cells were counted using
ImageJ 1.52a.

4.6. Giemsa Staining Assay

Exponentially growing cells in 100 mm dishes were rinsed by 10 mL of DPBS, fixed in
5 mL of methanol for 15 min, and then stained in Giemsa staining solution (Giemsa Stain,
Sigma-Aldrich, Taufkirchen, Bavaria, Germany, diluted with dH2O in the ratio of 1:20) for
15 min. Cell morphology was observed and recorded by taking photos under an inverted
light microscope.

4.7. Cell Cycle and Apoptosis Analysis

Cell cycle analysis was performed using Propidium Iodide staining (Sigma-Aldrich,
Taufkirchen, Bavaria, Germany) and flow cytometry analysis. Data were acquired us-
ing MACSQuant® X Flow Cytometer (Miltenyi Biotec, Bergisch Gladbach, North Rhine-
Westphalia, Germany) and analysed by FlowJo_v10.6.1 (FlowJo LLC, Ashland, OR, USA).
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Annexin V-FITC Kit (Miltenyi Biotec, Bergisch Gladbach, North Rhine-Westphalia,
Germany) was used to detect apoptotic cells. Experiments were performed according to the
protocol supplied by the manufacturer. Apoptotic cells are stained positively for Annexin
V-FITC but are negative for staining with PI.

4.8. Statistics

Statistical analysis was performed using GraphPad Prism 8.0.1 (GraphPad Software,
San Diego, California, USA). Paired t test, ratio paired t test, Tukey’s multiple com-
parisons test and uncorrected Fisher’s LSD were used for evaluating group differences.
p values <0.05 were taken as level of significance. p values are shown as follows: ns p > 0.05,
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

5. Conclusions

Overall, IL-13Rα1 plays a critical and diverse role in the survival and migration of cul-
tured pancreatic cancer cells. The findings of this study may help to better understand the
different functions and mechanisms involving IL-13Rα1 in pancreatic cancer progression.
As cytokines such as IL-4 and IL-13 play a vital role in the interaction of tumour cells and
components of the TME, their understanding is crucial in order to design better therapies
for pancreatic cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Abbreviations

Akt Protein kinase B
C-KD Capan-1-IL-13Rα1-knockdown clone
C-N Capan-1 sham-transfected cells
C-WT Capan-1 wild type
DMEM Dulbecco’s Modified Eagle’s Medium
DPBS Dulbecco’s Phosphate Buffered Saline
EMT Epithelial–mesenchymal transition
ERK Extracellular signal-regulated kinase
FCS Fetal calf serum
γc common gamma chain
GSDMD Gasdermin D
HPF High power field
IL Interleukin
IL-4Rα IL-4-receptor alpha
IL-13Rα IL-13-receptor alpha
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IRS Insulin receptor substrate
KD knockdown
kDa kilodalton
MAPK Mitogen-activated protein kinase
MMPs Matrix metalloproteinases
M-KD MIA PaCa-2-IL-13Rα1-knockdown clone
M-N MIA PaCa-2 sham-transfected cells
M-WT MIA PaCa-2 wild type
mTOR The mechanistic target of rapamycin
p-MLKL phospho-mixed lineage kinase domain-like protein
PCR Polymerase chain reaction
PC Pancreatic cancer
PI3K phosphoinositide 3-kinase
qPCR real-time quantitative polymerase chain reaction
RNA Ribonucleic acid
RPMI Roswell Park Memorial Institute medium
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
ShRNA Short haipin ribonucleic acid
STAT Signal transducer and activator of transcription
TAMs Tumor-associated macrophages
TME Tumor microenvironment
WB Western blot
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