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Abstract

It has recently emerged that glutathione transferase enzymes (GSTs) and other structurally related molecules can be
translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural
features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate
that the a-helical C-terminal domain (GST-C) is responsible for this property. Attempts to further examine the constituent
helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain
structure is necessary for maximal cell translocation capacity. In particular, it was noted that the a-6 helix of GST-C plays a
stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation
efficiency of up to ,2-fold was observed. The structural stability profiles of these protein constructs have been investigated
by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation
efficiency. These experiments suggest that the globular, helical domain in the ‘GST-fold’ structural motif plays a role in
influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell
translocation efficiency.
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Introduction

Glutathione transferases (GSTs) are an important family of

enzymes that participate in detoxification reactions by conjugating

the tripeptide glutathione (GSH) to a wide range of electrophilic

and generally hydrophobic compounds. By doing so, toxic, non-

polar molecules are rendered more water soluble and are

ultimately exported from the cell through ATP-dependent Phase

III transporters such as the multidrug resistance associated

proteins [1]. GSTs can be broadly divided into at least three

categories that include the soluble cytoplasmic GSTs, the

microsomal bound GSTs and a mitochondrial GST. The soluble

cytoplasmic GST family is widespread across all organisms and

consists of a large number of enzymes that can be further

characterised into classes. Despite the relatively low sequence

homology between some GST classes, all cytosolic GSTs share the

same general structure – an N-terminal thioredoxin fold motif and

a strongly helical C-terminal domain as shown in Figure 1. It must

be noted that in addition to the GST family of enzymes, several

other proteins which do not possess GST enzymic activity, are

known to display the same structural fold (GST-fold) [2,3].

In an unexpected finding, it has been reported in independent

studies that the Schistosoma japonicum glutathione transferase

(Sj.GST26) effectively enters cells through an energy-dependent

process involving endocytosis [4,5]. Furthermore, it was found that

this phenomenon extended beyond Sj.GST26 to other classes of

GST proteins as well as to proteins lacking GST enzyme activity

but possessing a GST-fold. It was therefore proposed that the GST

structural fold played some undefined role in cell entry [4]. The

overall aim in the current study is to strategically dissect a typical

human GST enzyme (GSTM2-2) and investigate which structural

elements are responsible for its cell translocation properties. By

targeting specific amino acid residues we aim to test the hypothesis

that the GST-fold is responsible for cell translocation of these

molecules. Our investigation revealed that entry of the C-terminal

domain of GSTM2 (GST-C) into cells is responsible for cell

translocation. Furthermore, by targeting the a6 helix of GST-C by

site-directed mutagenesis we showed that significant gains in cell

entry were obtained by de-stabilising the protein structure.

Results

Proteins possessing a GST-fold structure have previously been

shown to be capable of efficiently transfecting various cell lines and

tissue types [4]. Within this structural protein family the CLIC2

protein was shown to possess the greatest translocation efficiency,

while the GSTM2 protein along with several other GST family

members displayed marginally less but distinct cell translocation

properties. The GSTM2 protein was chosen as a representative

GST due to its stability, ease of expression/purification and for its

ability to accommodate amino acid modifications [6,7]. In this study

we have investigated the structural characteristics of GSTM2 that

govern the efficiency of its translocation into L929 cells.

The C-terminal domain of GSTM2 is responsible for cell
translocation

As seen in Figure 1, GST-fold proteins are comprised of an N-

terminal thioredoxin fold motif and a strongly helical C-terminal

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17864



domain. It was of initial interest to determine whether the cell

translocation properties of GSTM2 could be attributed to one of

these domains. In order to accurately assess the uptake of the

individual N and C-terminal domains of GSTM2, these fragments

were recloned into the pHUE vector [8], expressed and purified.

Unfortunately, the N-terminal thioredoxin fold proved to be

insoluble during expression, however the C-terminal a-helical

domain (GST-C) was efficiently expressed and purified. The

efficiency of cell entry of the Oregon Green labeled GSTM2

protein (GSTM2-OG) and its labeled C-terminal fragment (GST-

C-OG) are compared in Figure 2. Surprisingly, the level of

internalisation of GST-C exceeded that of the full length protein

by a factor of at least four over a three hour period.

To investigate whether the translocation of GST-C utilises the

same mechanism of cell entry as its parent molecule, the uptake of

GST-C-OG was initially compared by confocal laser scanning

microscopy. After a one hour incubation period, images of the

Oregon Green labeled GSTM2 (Panel A) and GST-C (Panel B)

revealed a similar punctate pattern throughout the cytoplasm of

cells (Figure 3a). Control experiments using Oregon Green

labelled BSA revealed no cell uptake (data not shown). Further

investigation of the mechanism of GST-C translocation was

performed by measuring cell uptake after treatment of cells with

the known endocytotic inhibitors chlorpromazine, amiloride and

filipin. Chlorpromazine dissociates the clathrin lattice from coated

pits, amiloride prevents macropinosome membrane ruffling and

filipin restricts lipid raft and caveolae endocytosis [9,10,11].

Figure 3b displays the results of endocytic inhibition of GST-C-OG

uptake alongside that of GSTM2-OG as well as other representative

GST enzymes Sj.GST-OG and GSTZ1-OG. GST-C translocation

clearly follows the same trends as that of the full-length GSTs, with

chlorpromazine and amiloride having a negative effect on the level

of uptake, whilst filipin had a positive effect. However, the degree

of inhibition to GST-C translocation caused by amiloride was

considerably greater than that imposed on the full-length GSTs

suggesting that macropinocytosis may have a more pronounced role

in the translocation of the C-terminus.

Given the accumulating evidence that GST-C is the domain

responsible for cell translocation, the structure of the GSTM2 C-

terminus was further shortened and these constructs examined for

their cell translocation efficiency. A series of constructs were

designed to include different helical segments present in the full-

length GSTM2 crystal structure (PDB-1XW5). Figure 4a shows a

summary of the helical fragments which retained solubility after

recombinant expression and purification, in addition to two

shorter synthesized peptides. Because of the smaller size and fewer

available lysine and arginine residues, the shorter C-terminal

peptides were not amenable to amine-labeling with Oregon

Green, and only the larger, multi-helical peptides, H4–7, H5–8

and H7–8 achieved a satisfactory dye-to-protein ratio. To verify

the translocation of these fragments, flow cytometry was

performed on the fluorescently-labeled forms. The two largest

C-terminal fragments (H4–7 and H5-8) had a lower translocation

rate than GST-C over 3 hrs (Figure 4b) and the translocation

capacity of the H7–8 peptide was diminished still further. The

viability of all fragment-treated cells was not compromised at these

concentrations, as judged by membrane permeability to 7-AAD.

Circular dichroism was employed to ascertain the overall

secondary structure (particularly the helical content) of the C-

terminal domain and its peptide fragments. Figure 4c confirms

that the strong helical component present in the GSTM2 full-

length protein is retained by the GST-C as well as peptides H4–7

and H5–8 – note the varying spectra amplitudes reflect differences

in peptide sizes and not structural content. In contrast, the H7–8

peptide has a very different structure to the other fragments and

appears to be disordered in nature. The CD spectra of synthesized

peptide fragments corresponding to the helix 4 and helix 6

sequences were also found to be unstructured (data not shown)

indicating that the individual helical fragments are not sufficient to

adopt a-helical structures.

Structural stability of GSTM2-2 and GST-C fragments
The data so far suggests that the overall structure of the GST C-

terminus may be important for optimal cell uptake. Visualisation of

a ribbon structure model of GST-C (based on the x-ray

crystallography structure of the whole protein) reveals that the a-6

helix forms the hydrophobic core of this domain and is surrounded

by helices 4, 5, 7 and 8, and connected through a series of ionic and

hydrophobic interactions (Figure 5). This overall helical configura-

tion is also strikingly evident in structural models of the other GST-

fold superfamily proteins, including CLIC2 which has been noted to

display comparable structural features to a pore-forming toxin

proteins [12]. This configuration seems to suggest that H6 could

play a central role in the translocation of this class of molecule.

To test this possibility, we aimed to disrupt key contacts between

the a-6 helix and surrounding helices, and monitor changes in cell

uptake efficiency. By analysing the X-ray crystallography structure

of the entire GSTM2 protein (RCSB-1XW5), four residues within

the a-6 helix were initially identified as being in close proximity

(,5 Å) to partner amino acid residues located in helices 5, 7 and 8,

Figure 1. Structural GST-fold. Ribbon diagram demonstrating the
GST-fold structure of GSTM2 complexed to 2,4-dinitrophenyl glutathi-
one (not shown in figure). Note the N-terminal thioredoxin fold and
C-terminal a-helices. The figure was generated by use of the DS
modelling 1.1 program (Accelrys) from the accession bank file RCSB-
1XW5. The arrow denotes the cleavage site (residue 88) that separates
the two domains.
doi:10.1371/journal.pone.0017864.g001

Cell Entry of GSTM2-2
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thereby potentially participating in hydrogen-bond, electrostatic or

hydrophobic interactions. Four modified GST-C proteins were

produced by mutating each of the selected residues (Y160; F157;

L163; D156) to an alanine residue with the specific aim of

disrupting these contacts. Figure 5 displays the ribbon structure of

the C-terminal domain with the position of all mutated residues

highlighted. The D156A mutant could not be recombinantly

expressed, and the L163A mutant expressed only in low quantities

and was highly unstable in solution, suggesting that the

conformation of the a-6 helix is a key element in the folding

and hence the stability of the C-terminal domain. The contact

residues for the D156 side chain are F147 and Thr153 (amide

backbone) while for L163 hydrophobic contacts are made with the

side chains of F103 and F183. However, the Y160A and F157A

were successfully purified to levels that enabled fluorescence

labeling. To monitor the effect of these structural mutations on the

translocation of the GSTM2 C-terminus, Oregon Green labeled

variants and wildtype GST-C were incubated with L-929 cells,

and the amount of protein internalised after two hours measured

by flow cytometry. The translocation efficiency of each variant

relative to that of the wildtype GST-C is shown in Figure 6. The

two destabilising mutations, F157A and Y160A, resulted in greater

uptake of the C-terminus by approximately 45 and 85%,

respectively, indicating that these structural contacts to the a-6

helix are significant for GST translocation. To explore whether

the mutations made to the C-terminus protein sequence produced

a change in secondary structure, circular dichroism was performed

on all C-terminal variants (data not shown). At room temperature

no discernable change in secondary structure was observed

between the F157A, Y160A variants and wildtype GST-C.

Even though there were no substantial secondary structure

differences observed between GSTM2, the GST-C or the mutated

GST-C molecules, this does not necessarily signify that the

mutations/truncations made to GSTM2 are structurally inert.

Given that the mutants were engineered to abolish key protein

intra-molecular interaction, it is highly probable that the modi-

fications could lead to changes in the structural stability of these

GST-C variants. To test this possibility we performed denaturing

experiments using circular dichroism (CD) and differential

scanning fluorimetry (DSF) techniques. For CD experiments, the

secondary structure profiles of GST-C and its mutants were

monitored in the presence of varying concentrations (0–5 M) of

the denaturant guanidine HCl. In this case, the molar elipticity at

222 nm (an indicator of a-helical structure) was measured as a

function of guanidine concentration and presented in Figure 7a. It

has been previously noted that for some dimeric proteins

(including GSTs) that an intermediate unfolding state is detectable

when a three-state unfolding model is applied [13,14,15]. It is not

clear whether this is the case for GST-C or its mutants since fitting

of the data using a three-state unfolding model or a two-state

model were of similar quality. Using the two state-model eqn 1

[16] (experimental) the transition state parameters of the three

GST-C variants were obtained (Table 1). The free energy of

unfolding was greatest for the GST-C wild-type construct followed

F157A and Y160A.

The stability of these proteins was also assessed by DSF by

comparing the melting temperatures of the GST-C and the Y60A,

F157A mutants. These mutants have a negative effect upon

stability with the Y160A mutant showing the lowest meting

temperature at 35.7uC followed by the F157A mutant at 38.0uC.

The GST-C protein shows a melting temperature of 46.3uC while

the control protein, hen egg white lysozyme (which contains four

intramolecular disulphide bridges) has the highest Tm at 63.4uC.

Combined with the CD denaturation data we can conclude that

Figure 2. Cellular uptake of GSTM2-2 full length protein compared with its C-terminal domain (GST-C). L-929 cells were incubated with
200 nM GSTM2-OG (¤) or 200 nM GST-C-OG (&) for the indicated time periods and intracellular fluorescence measured by flow cytometry. The
mean cell fluorescence of each sample was normalised for the degree of fluorescence labeling of that protein. The data represent the mean 6 SD of
three independent experiments.
doi:10.1371/journal.pone.0017864.g002
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Figure 3. GST-C and GSTM2 proteins show comparable localisation and endocytosis inhibition profiles in L-929 cells. (a) L-929 cells
were incubated for 1 hr with 200 nM GSTM2-OG (A) and 200 nM GST-C-OG (B), washed and then observed by confocal microscopy. The fluorescence
from both GSTM2 and GST-C is in a punctate pattern in the cytoplasm, whilst minimal cell fluorescence is observed from BSA. (b) Impact of pathway-
specific endocytosis inhibitors on GST-C uptake. L-929 cells were incubated for 2 hrs with 200 nM GST-C alongside GSTM2-OG, GSTZ1-OG and Sj.GST-
OG after inhibition of endocytosis pathways by 8 mg/mL chlorpromazine (white), 5 mM amiloride (light grey), or 10 mg/mL filipin (dark grey). The
impact of inhibitors on GST internalisation was measured quantitatively by flow cytometry. Data is presented as the percentage intracellular
fluorescence in treated cells compared to intracellular fluorescence in the absence of inhibitors (dashed line represents uninhibited control). Error
bars represent the SD of three independent experiments.
doi:10.1371/journal.pone.0017864.g003
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F157 and Y160 participate in stabilising the C-terminal domain of

GSTM2. Notably, the degree of protein stability is inversely

proportional to the capacity of the GST-C protein to enter cells.

Discussion

The C-terminus of GSTM2-2 drives cell translocation
It is apparent from these studies that the driving force for GST

cell translocation resides with the a-helical C-terminal domain

rather than the entire GST-fold structure itself. This conclusion is

borne out of the domain studies where the C-terminal domain of

GSTM2 (GST-C) was found to be approximately four fold more

efficiently translocated in L929 cells compared to the full protein.

Although we were unable to express and test the thioredoxin

domain separately, an investigation by Namiki et al [5] found that

E.coli thioredoxin was not translocated into cells, suggesting that

the thioredoxin domain of Sj.GST26 and by inference the

thioredoxin domain of GST-fold proteins in general may not be

responsible for cell translocation [5]. Unlike protein transduction

domains whose core translocating properties can often be ascribed

to short ‘cell-penetrating’ peptides [17,18,19], the most efficient

translocation module of GST proteins appears to be the C-

terminal domain in its entirety. Attempts to minimize the size of

the GST-C to smaller fragments that are still capable of equivalent

rates of cell uptake revealed a reduced capacity for cell

translocation. Therefore in the case of GST-C, it seems that all

the helices of the C-terminus act in a concerted manner to

promote cell translocation. The mechanism of cell translocation

remains unclear but does involve endocytosis [4] and is likely to

take place through an interaction with a cell-surface receptor and/

or by insertion into the cell lipid bilayer. By removal of the

thioredoxin domain from GSTM2, it is possible that recognition of

a cell surface receptor is enhanced, or equally, the structural

changes within the C-terminal helices may facilitate more effective

membrane insertion.

An important finding arising from this study is that the core

structure of the GST C-terminal domain is essential for cell

translocation, with the hydrophobic helix a-6 playing a structur-

ally central role. The topology of the GST-C domain belongs to

the well-known globin family and the specific orientation of the a-

helices forms a particular subset within this family where the two

layers of helices sit almost orthogonal to each other [20] (see

Figure 5). Alpha pore-forming toxins such as endotoxins, colicins,

and diphtheria toxin [21,22,23] are members of this family and it

has been proposed that the membrane-penetrating domains of

these proteins contains a buried, hydrophobic helical hairpin

structure which inserts into the lipid bilayer of cell membranes (or

endosomal membrane in the case of diphtheria toxin) and

facilitates pore formation [24,25]. Such a structure is also present

within some members of the Bcl family of apoptosis-regulating

proteins, although whether membrane insertion correlates with

their pro-apoptopic function is not currently clear [26,27,28]. It

has been noted that the low pH environment associated with the

membrane surface may play a role in promoting cell insertion of

the colicins, diptheria toxin and Bcl-XL [26].

It has been previously suggested by Cromer et al [12] that one

potential mechanism of cell association by CLIC proteins -

proteins that possess a GST-fold - involves the insertion of

hydrophobic helix-6 into the cell membrane as part of a pore-

forming process. All GST-fold proteins contain at least one

hydrophobic helix surrounded by a bundle of other helices in their

C-terminal domain. This single helix may be sufficient to interact

with cell membranes and thereby directly enhance the rate of

endocytosis of these proteins, or alternatively enable greater access

to a membrane receptor capable of promoting endocytosis. It is

also possible that this hydrophobic helix forms a hairpin structure

in conjunction with a neighbouring helix (a-5 or a-7 in the case of

GST-C), creating a structural feature common to the aforemen-

tioned toxins.

Decreased stability within GST-C enhances cell
translocation

By modifying the structural elements within GSTM2 we have

demonstrated a capacity to affect the level of cell translocation.

This is evident on a number of fronts. It was previously noted that

substitution of key catalytic amino acids in GSTM2 (Y7F),

GSTA1(Y9F) and GSTO1 (C32A) resulted in significant increases

Figure 5. Ribbon structure model of the C-terminal domain of
GSTM2, taken from the crystal structure of the full-length
protein – PDB file 1XW5. The a-6 helix is highlighted in bold and is
surrounded by other a-helical elements of GST-C. Residues mutated to
probe the role of the a-6 helix in cell translocation are displayed and
labeled.
doi:10.1371/journal.pone.0017864.g005

Figure 4. Structural and cell translocation analysis for a-helical fragments derived from GST-C. (a) Schematic diagram outlining a-helical
fragment constructs of GSTM2. Peptides H6 and H7–8 were synthesized. The peptides in bold denote fragments that have been tested. (b)
Comparative cellular uptake of GSTM2 C-terminal peptides. L-929 cells were incubated with 200 nM OG-labelled peptides, GSTM2 protein (X), GST-C
(¤) and H4–7 (&), H7–8 (N), H5–8 (m) fragments of GST-C for the indicated time periods and intracellular fluorescence measured by flow cytometry.
The mean cell fluorescence of each sample was normalised for the degree of fluorescent labeling of that protein. Data represents the average of
triplicate measurements from three independent experiments 6 SEM. (c) Circular dichroism spectra for the full-length GSTM2 protein (dark blue)
versus GST-C (green) and H4–7 (cyan), H7–8 (orange), H5–8 (pink) fragments of GST-C. All proteins/peptides were measured at 4–5 mM concentration
in 10 mM sodium phosphate buffer pH 7.2.
doi:10.1371/journal.pone.0017864.g004
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(up to four fold) in cell translocation efficiency [4]. These mutations,

which are located in the thioredoxin domain of the enzymes, not

only served to inactivate these enzymes but we suggest also initiate

structural and dynamic changes that are transmitted across to the

enzyme C-terminal domain. This idea is supported by crystallo-

graphic evidence where apo and holo (GSH) GSTA1-1 structures

show large structural and dynamic differences in the a-helical C-

terminal domain, despite the fact that GSH binds primarily through

the thioredoxin domain [29]. We propose that the removal of the

thioredoxin domain of GSTM2 also has structural and dynamic

effects upon the C-terminal domain of GSTM2 which is reflected in

a ,four fold increase in cell translocation efficiency.

A set of experiments designed to test the idea that structural

instability affects the translocation efficiency of GST-C was per-

formed by mutating two residues in helix a-6 in GST-C (F157A and

Y160A). By altering these key, targeted residues within GST-C we

were able to demonstrate a considerable increase in cell

translocation efficiency. Moreover, for this set of three proteins,

we were able to correlate the efficiency of cell translocation with

protein stability as judged by CD denaturing and differential

scanning fluorimetry experiments.

In conclusion we have demonstrated that the structural element

responsible for GSTM2 cell translocation is the C-terminal globin-

like domain and that gains in cell translocation efficiency may be

achieved by altering the conformational stability of this domain.

We have shown that the conserved globular fold of this domain

which is found in all GST-fold proteins displays a remarkable

structural similarity to the a pore-forming toxin domains. What

remains to be resolved is whether the mechanism of cell entry of

these two functionally unrelated protein classes are alike, an issue

that will be pursued in future studies.

Methods

Materials
All cellular inhibitors were purchased from Sigma. Oregon

Green 488 carboxylic acid succinimidyl ester ‘5-isomer’ was from

Molecular Probes and 7-amino-actinomycin D (7-AAD) was from

BD PharMingen.

Expression and Labeling of Recombinant Proteins
GSTM2-2 was expressed in E. coli and purified by GSH affinity

chromatography as previously described [6]. The cDNA encoding

the fragments of GSTM2-2 were amplified by PCR and cloned in-

frame downstream of a poly-histidine-tagged ubiquitin sequence in

the plasmid pHUE. Protein was purified and the ubiquitin tag

cleaved as previously described [8]. In the accepted nomenclature

[30] GSTM2-2 refers to the dimer of this protein. However in the

interest of simplicity, the enzyme will be referred to as GSTM2

hereafter.

Purified proteins were dialysed into PBS prior to fluorescent

labeling of primary amines with Oregon Green succinimidyl ester

according to manufacturer’s instruction. Labeled proteins were

passed through size-exclusion sephadex columns then dialysed

for 48 hours against PBS at 4uC to ensure efficient removal

of free dye. Protein concentration and dye to protein ratios

were calculated from protein absorbance at 280 nm and 496 nm

according to the manufacturer’s labeling protocol. All Oregon

Green-labeled proteins were aliquoted and stored at 220uC.

Synthesized peptides were resuspended in PBS and labeled

following the same procedure. To distinguish labeled pro-

teins the suffix –OG has been added to the nomenclature i.e.

GSTM2-OG.

Figure 6. Effect of substitution mutations within the GSTM2 a-6 helix upon cellular translocation of the C-terminal domain (GST-C).
L-929 cells were treated for 2 hours with 200 nM Oregon Green-labelled GST-C variants and GST-C wildtype. The mean cellular fluorescence of each
sample was normalised for the degree of fluorescent labeling of that protein. Data represents the average of four to six independent experiments 6
SEM. Significantly changed translocation efficiency (as determined by student’s paired t-Test; one-tailed) is indicated by an asterisk (* = P,0.05;
** = P,0.01).
doi:10.1371/journal.pone.0017864.g006
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Figure 7. Stability studies of GSTM2-2 and GST-C variants measured by circular dichroism (CD) and differential scanning
fluorimetry. (a) Normalised molecular ellipticity at 222 nm as a function of guanidine HCl concentration (0–5 M) as measured by CD experiments,
GST-C (&), Y160A (.) and F157A (m). (b) Differential scanning fluorimetry profiles of GST-C wildtype (black), GST-C/Y160A (red), GST-C/F157A (green)
and hen egg-white lysozyme control (blue). Melting temperatures (Tm) are denoted by vertical broken lines.
doi:10.1371/journal.pone.0017864.g007

Cell Entry of GSTM2-2
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Cell Culture
L-929 mouse fibroblast cell line was obtained from ATCC and

routinely maintained in RPMI 1640 medium, supplemented with

10% fetal bovine serum (FBS) (v/v), 2 mM glutamine and 2 g/L

NaHCO3 at 5% CO2 and 37uC. Cultures were passaged using

PBS containing 0.05% trypsin and 0.02% EDTA (v/v). All cell

culture reagents were purchased from Gibco.

Flow Cytometry
To quantitatively investigate the cellular uptake of GSTM2 and

its fragments, as well as the effect of endocytosis inhibitors upon cell

uptake, L-929 cells were seeded at a density of 86104 per well in 12-

well plates (Nunclon) in 10% FBS/RPMI 1640 medium. After

24 hrs the cells were rinsed with serum-free RPMI 1640 medium

before addition of inhibitors or fluorescently-labelled proteins in

serum-free medium. Following protein incubation, cells were

washed several times with PBS and detached by trypsinization for

10 minutes at 37uC. Cells were centrifuged at 4uC, washed in cold

PBS containing 2% FBS (v/v) then resuspended in 2% FBS/PBS

containing 0.5 ng/mL 7-amino-actinomycin D (7-AAD) in order to

label nuclei of membrane-damaged cells. Cells were incubated at

room temperature in the dark for 10 minutes prior to fluorescence-

activated cell sorting of 104 counts on a FACScan flow cytometer

(Becton Dickinson). Cells with 7-AAD fluorescence were considered

nonviable and excluded from histogram acquisition, and the

geometric mean fluorescence of the viable population was used

for standardization. To compare cellular uptake of different

proteins, geometric mean fluorescence values were divided by the

dye to protein ratio to give a normalised value independent of the

efficiency of individual protein fluorescence labeling (calculated

according to labeling protocol – see method above).

Quantification of GST uptake
To compare the rate of uptake of GSTM2, GST-C and various

GST-C fragments, the Oregon Green-labeled proteins were added

to cells at 200 nM concentration and cells incubated at 37uC/5%

CO2 for up to 3 hrs. Untreated cells were used for the initial zero

time point. Samples were harvested and prepared for flow

cytometry at different time points as described above. Mean

fluorescence for each GST time point was standardised to the

fluorophore to protein ratio for that particular GST, after

subtraction of the untreated cell control fluorescence.

Confocal Laser Scanning Microscopy
Cells were seeded onto no. 1 glass coverslips (Lomb Scientific) in

12-well plates in 10% FBS/RPMI 1640 medium the day before

experimentation. Live L-929 cells were used in microscopy

experiments to avoid the possibility of artificial localisation. All

incubations were performed in serum-free RPMI 1640 medium.

Coverslips were rinsed in PBS and viewed in PBS in a heated

chamber. Confocal images were obtained with 6061.4 N.A. or 1006
1.4 N.A. oil immersion lenses of a Nikon Eclipse TE300 microscope

equipped with Biorad Radiance 2000 Laser Scanning system.

Excitation was with an argon laser using 515/30 bp emission filters.

Data was recorded and analysed using LaserSharp2000 software.

Circular Dichroism (CD) equilibrium unfolding
experiments

GST-C protein fragments were diluted to 4–5 mM (0.1 mg/ml) for

CD measurements, and the pH values and solution conditions adjusted

to pH 7.2 and 10 mM PO4
22, respectively. Spectra were recorded on

an Applied Photophysics Chirascan spectrometer at 20uC. A cell with a

0.10 cm path length was used for spectra recorded between 190 to

250 nm. The following parameters were employed: spectral band-

width 1 nm, step size 0.5 nm and time-per-point 0.5 s. Each spectrum

was obtained by averaging several scans and the protein CD spectra

were corrected for buffer contributions. The temperature was

controlled by a Melcor peltier temperature controller. For GST-C

denaturing experiments, the molecular ellipticity at 222 nm was

recorded at a guanidine HCl concentration range of 0 to 5 M.

Guanidine unfolding curves were fitted to a two-state (N2«2 U)

unfolding model (1) [16] using Graphpad Prism and the quality of

the fits were assessed by considering the R2 value which typically

were .0.99.

Yobs~(YNzSN½X�z(YuzSU½X�)exp(m(½X�-½X�half )=RT))

(1zexp(m½X�-½X�half )=(RT))
ð1Þ

where Yobs is given by the observed ratios mentioned above, and

YN, SN, YU, SU are intercepts and slopes of the pre-transition and

post-transition baselines, [X] is the guanidine concentration,

[X]half is the guanidine concentration at the midpoint of transition

state, m is the free energy dependence on guanidine concentration

and R is the gas constant (1.98761023). The free energy change

from a folded to an unfolded state can be expressed as

DGN?U~m X½ �half

Differential Scanning Fluorimetry
The thermal stability of GST-C wildtype versus the Y160A and

F157A mutants was investigated by thermal denaturation in the

presence of SYPRO orange (Invitrogen) [31]. Proteins diluted to

1 mg/ml in pH 7.5 Hepes buffer were mixed 9:1 v/v with freshly

diluted (1:50, v/v) SYPRO orange. Each protein sample was run

in triplicate on an Applied Biosystems 7900HT quantitative real-

time PCR instrument using SYBR green settings. Fluorescence

was monitored over a temperature gradient of 10–90uC with a 1%

ramp rate. Hen egg-white lysozyme (Sigma) was used as a positive

control and showed thermal denaturation at 63.4uC, which is

comparable to literature values [32].
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Table 1. Thermodynamic parameters characterising the
guanidine-induced unfolding transition of GST-C and the
mutants F157A and Y160A.

GSTM2-2 Variant DG(kcal/M) m(kcal/M) [X]half(M)

GST-C 5.2060.88 2.5060.39 2.0860.04

Y160A 4.8760.72 2.6860.35 1.8260.03

F157A 4.9560.59 2.3160.24 2.1560.03

Measurements were performed by monitoring the molar ellipticity at 222 nm
(CD) using guanidine HCl (0–5 M) as a denaturant.
doi:10.1371/journal.pone.0017864.t001
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