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Abstract

Motivation: RNA folding kinetics plays an important role in the biological functions of RNA molecules. An important
goal in the investigation of the kinetic behavior of RNAs is to find the folding pathway with the lowest energy barrier.
For this purpose, most of the existing methods use heuristics because the number of possible pathways is huge
even if only the shortest (direct) folding pathways are considered.

Results: In this study, we propose a new method using a best-first search strategy to efficiently compute the exact
solution of the minimum barrier energy of direct pathways. Using our method, we can find the exact direct pathways
within a Hamming distance of 20, whereas the previous methods even miss the exact short pathways. Moreover,
our method can be used to improve the pathways found by existing methods for exploring indirect pathways.

Availability and implementation: The source code and datasets created and used in this research are available at
https://github.com/eukaryo/czno.

Contact: asai@k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA folding kinetics is important for the biological function of
many RNA molecules (Gerdes et al., 1997; Espah Borujeni and
Salis, 2016). For example Espah Borujeni and Salis (2016) showed
that the accessibility of Shine-Dalgarno sequences affects translation
efficiency in prokaryotes; the authors also used kinetic features to
design nucleotide sequences of prokaryotic mRNAs. In the hok/sok
E.coli system, the folding kinetics of hok mRNA may have pivotal
roles in R1 plasmid maintenance (Nagel et al., 1999).

RNA folding pathways can be classified based on two aspects.
We briefly introduce some related terms here, with more detailed
descriptions in Section 2. The first aspect consists of direct versus in-
direct folding pathways. For two given RNA structures, a direct
folding pathway is the shortest pathway. In other words, there is no
bypassing or going backwards in inferring a direct folding pathway.
Otherwise, such a pathway is called an indirect folding pathway.
The second aspect consists of optimal versus approximate pathways.
Among all possible (direct or indirect) pathways, the optimal folding
pathway is the one with the lowest barrier energy. A pathway’s bar-
rier energy is the energy of the most thermally unstable structure in
the folding pathway. All other pathways are called approximate (or
simply heuristic or not optimal) pathways.

Finding better RNA folding pathways (i.e. those with lower bar-
rier energy) is important for various reasons. In molecular kinetics,
some quantities such as transition rate, minimum barrier energy and
folding pathway are related to each other. The searches among min-
imum barrier energies and corresponding folding pathways are

inseparable. For a given minimum barrier energy value, one can de-
rive the transition rate with the Arrhenius equation (Wolfinger et al.,
2004). Determining the optimal barrier energy or establishing its
tighter upper bound enables us to more accurately estimate transition
rates. Determining the optimal direct pathway is also helpful for
understanding structure landscapes. With multiple meta-stable struc-
tures given, one can determine the ‘radius’ of each basin that is
bounded at a distance from the structure. The direct barrier energy
value gives a rational upper-bound of that distance.

The timescale of RNA folding kinetics can reach several tens of
minutes (Gerdes et al., 1997). Furthermore, the transition states for
these processes are often complex and diffusive (Chen and Dill,
2000). Hence, a direct analysis by molecular dynamics simulation is
generally difficult. Therefore, we will consider the minimum energy
barrier of RNA secondary structures (Morgan and Higgs, 1998).

In RNA secondary structure folding pathways, the minimum en-
ergy barrier problem is known to be NP-hard for an arbitrary path-
way and energy model (Ma�nuch et al., 2011). For that reason, most
of the existing research has focused on approximation algorithms.
There has been no method for applying Dijkstra’s shortest path al-
gorithm for the exact solution of direct pathways with an arbitrary
energy model.

Because previous studies aimed at determining optimal RNA fold-
ing pathways are extensive, we briefly review the literature below.
More detailed reviews can be found in recent articles (Dotu et al.,
2010; Li and Zhang, 2012). Morgan and Higgs (1998) and Flamm
et al. (2001) reported pioneering research on direct approximate
pathways, using a greedy method and beam-search method
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respectively; Voss et al. (2004) and Dotu et al. (2010) also reported
semi-greedy methods. The work by Morgan and Higgs (1998) also
included important research on indirect approximate pathways using
a greedy method. Recently, RNA2DPATH by Lorenz et al. (2009),
RNATABUPATH (Tabu-Search) by Dotu et al. (2010) and
RNAEAPath (Evolutionary Algorithms) by Li and Zhang (2012)
reported alternative methods for indirect approximate pathways.
Finally, the following studies are notable, but not directly related to
our proposed algorithm. RNAsubopt in ViennaRNA Package
(Lorenz et al., 2011) provides a sampling method (Ding and
Lawrence, 2003). RNAsubopt also enumerates structures with energy
below the user-specified threshold. BARRIERS (Flamm et al., 2002)
utilizes RNAsubopt and calculates the optimal (in)direct minimum
barrier energy considering all (in)direct pathways. Note that
BARRIERS works only when the barrier value is sufficiently close to
the minimum-free-energy (MFE) of the sequence; otherwise,
RNAsubopt must enumerate an intractably large number of struc-
tures. By limiting their method to a simple energy model, Thachuk
et al. (2010) successfully obtained a long direct optimal pathway, al-
though its worst-case complexity was still exponential.

As Morgan and Higgs noted, the total number of direct path-
ways is OðjHj!Þ for Hamming distance jHj (Morgan and Higgs,
1998). However, the total number of possible intermediate struc-
tures is Oð2jHjÞ, because it can be regarded as a family of subsets of
immediate transitions. Oð2jHjÞ is much smaller than OðjHj!Þ. The
number of immediate transitions from each intermediate structure is
OðjHjÞ. Thus, Dijkstra’s algorithm can be transformed and applied
(Dijkstra, 1959; Mohri, 2002). While the resulting algorithm is still
exponential, it is much faster than the process of enumerating all
pathways (Morgan and Higgs, 1998). Based on this method, we
hypothesized that we could obtain exact solutions for longer direct
pathways and improve solutions for indirect pathways.

2 Materials and methods

2.1 RNA definition
In our method, only Watson–Crick base pairs (A–U, C–G) or
Wobble base pairs (G–U) are considered; no pseudo-knots are
allowed. We consider production or destruction of one base pair to
be an immediate transition, which means that the Hamming dis-
tance changes by one with an immediate transition.

2.2 Notation
We use the following notation scheme according to a previous study
(Dotu et al., 2010). Let X be an RNA sequence and R be a set of all
secondary structures of X. Let us define a structure pair fri;rjg 2 R
as an ‘immediate transition’ when their difference is exactly one
base pair (i.e. their Hamming distance is one). A sequence of struc-
tures (A ¼ r0;r1; . . . ;rn ¼ B) is called a ‘folding pathway from A to
B’ if ri 2 R for 0 � i � n and each pair fri;riþ1g is an immediate
transition. If A and B differ at exactly n base pairs, or equivalently if
the Hamming distance between A and B is n, it is called a ‘direct’
folding pathway; otherwise, it is an ‘indirect’ folding pathway.
Each r 2 R has its free energy EðrjXÞ or simply EðrÞ. The barrier
energy of a folding pathway (r0; r1; . . . ; rn) is defined as
maxðEðr0Þ;Eðr1Þ; . . . ;EðrnÞÞ.

2.3 Preliminary algorithms
Algorithm 1 accepts two base pairs, P and Q. It returns true if and
only if the two base pairs cannot exist in one structure, that is, (i)
they require the same base position or (ii) they are in a ‘pseudo-
knot’ position.Considering all direct pathways from A to B, the
number of possible intermediate structures is ð2jHj � 2Þ, where jHj is
the Hamming distance between structures A and B. Algorithm 2
accepts an index number N 2 ½0; 2jHjÞ and two structures, A and B,
returning an intermediate structure S. An example of the relation be-
tween an integer and intermediate structure is shown in Figure 1. In
this example, there are three different base pairs between the initial

and end structures, and hence, there are 23—2 intermediate struc-
tures between them.

Algorithm 2 resolves the bijective relationship between an inte-
ger (index) and its corresponding structure with respect to the initial
structure and the end structure. For binary integers (N1, N2) and the
corresponding structures (S1, S2), the binary Hamming distance be-
tween N1 and N2 is equal to the Hamming distance between S1 and
S2. For example, in Figure 1b, the binary Hamming distance be-
tween N ¼ 4 and 6 is 1, meaning that there is exactly one base pair
differing between the two structures. Accordingly, Algorithm 2 ena-
bles us to treat a one base-pair manipulation as a single bit manipu-
lation. Each binary integer N retains the information regarding
which base pairs have been added to or deleted from the initial
structure A. For example in Figure 1b, the first bit of N¼1 is 1,
which indicates a base pair H½0� ¼ bp1 has been deleted from the
initial structure A in the intermediate structure corresponding to
N¼1.

2.4 Previous algorithms for obtaining approximate

direct pathways
To clarify the difference between the proposed and the existing
methods, the existing methods are specifically described here. Note
that detailed explanations for the same methods have been previous-
ly described (Dotu et al., 2010).

2.4.1 Morgan and Higgs greedy method

Morgan and Higgs (1998) proposed a greedy method for obtaining
a direct pathway. They considered a simple energy model in which
energy is determined by the number of base pairs. According to their

Algorithm 1 IsExclusive

Input: (BasePair P and Q)

Output: (true or false)

1: ‘:l’ and ‘:r’ represent the left and right positions of a base

pair, respectively.

2: if P:l � Q:l � P:r � Q:r then

3: return true

4: end if

5: if Q:l � P:l � Q:r � P:r then

6: return true

7: end if

8: return false

Algorithm 2 IndexToStructure

Input: (Integer N, Structure A and B)

Output: (Structure S)

1: Ensure A and B are a set of base-pairs.

2: H ( an array of base-pairs different between A and B

3: S( A \ B

4: for (i 2 ½0; jHjÞÞ do

5: if ðH½i� 2 AÞ xor (i-th bit of N is 1) then

6: S( S [H½i�
7: end if

8: end for

9: return S

i228 H.Takizawa et al.



method, if the direct pathway from A to B consists only of removing
base pairs, then this can be performed in an arbitrary order. In con-
trast, if the pathway involves transitions of base pairs, for each tran-
sition along the pathway, the number of base pairs that must be
removed for the transition to occur is counted. Then, the transition
with the lowest count is selected, and the selected transition is per-
formed after conducting the necessary base-pair-removing
transitions.

2.4.2 Findpath and the Voss et al. method

Flamm et al. (2001) proposed a semi-greedy method (Findpath) uti-
lizing beam search, which is a well-known versatile pruning method
that has been recently utilized in sequence generation tasks with
neural networks (Graves, 2012). Figure 2a shows how beam-search
works. Voss et al. (2004) later proposed a greedy method equivalent
to Findpath’s method with beam-breadth ¼ 1. Note that the method
by Voss et al. (2004) is a greedy method for arbitrary energy models,
while the Morgan and Higgs (1998) method is a ‘greedy’ method
only with respect to the simple energy model.

2.4.3 Modification of the Voss et al. method by Dotu et al.

Dotu et al. (2010) modified the Voss et al. (2004) method. The method
by Dotu et al. (2010) is similar to that shown in Figure 2a. The differ-
ence is that at each depth, one of the best k candidates is chosen uni-
formly at random and the others are discarded. The methods by Dotu
et al. (2010) and Voss et al. (2004) are equivalent when k¼1.

2.5 Proposed algorithms for obtaining the optimal

direct pathway
In our method, all intermediate structures are connected to integers
(indices) in a bijective way and treated as nodes of a directed graph
from structure A to structure B. Some of the intermediate structures,

however, may have base pairs that cannot coexist. For example, in
Figure 1b, the structures for N ¼ 2 and 6 have base pairs that cannot
coexist. Such invalid structures should be efficiently avoided during
the exploration of the optimal direct pathway. To do this, we make
an integer array b that encodes the information about which base
pairs cannot coexist.

In the proposed method, H is an array of base pairs different be-
tween structure A and structure B, hence jHj is the Hamming dis-
tance between the two structures. For two base pairs, H½i� and H½j�,
if and only if the following two conditions are true, the ith bit of an
integer b½j� is set to 1.

• base pair H½i� and H½j� are contained in A and B, respectively.

Fig. 2. Schematic illustrations of (a) a previous method and (b) the proposed method

for direct pathway search. (a) The uppermost structure is the initial structure (i.e.

depth ¼ 0). First, all possible transitions (arrows) from each considered structure

are enumerated. Second, all destination structures are sorted by barrier energy of

the structure. [In (a), structures are sorted by barrier energy, which is represented by

color.] Next, only the best k structures are stored (green dashed box; here, k¼2),

and the others are discarded (gray structures). Finally, the next depth is searched.

(b) (1) First, the initial and goal structures are converted to base-pair set representa-

tions. (2) Then, the exclusive OR set of the two sets is taken, and a set of base pairs

is obtained. Note that, each direct pathway is in a bijective relationship with the

reordering of the elements of this set. Next, each element of this set (i.e. an immedi-

ate transition) is made to correspond to the number 2i. (3) In the aforementioned

procedure, the initial structure is identified as 0. The goal structure is identified as

2H � 1. Each intermediate structure is identified with a distinct intermediate num-

ber. Each immediate transition is identified as a 1-bit change. Any search algo-

rithms, including Dijkstra’s method, can be efficiently performed with this

representation. Note that, some transitions may be invalid (purple dashed arrows);

they can be efficiently removed using an auxiliary table, as described

Fig. 1. An example of the relation between an integer and intermediate structures. (a)

The initial structure A and end structure B have three and two base pairs, respective-

ly. The structures A and B are represented by sets of base pairs (lower left). H is an

array of base pairs that differ between A and B, and S is the set of the common

base pairs. (b) All intermediate structures are represented by integers between 1 and

2jHj-2, where jHj ¼ 3 in this example. A and B correspond to 0 and 2jHj-1, respect-

ively. Each integer is converted to an intermediate structure represented by a set of

base pairs as follows. For i¼0, 1, 2, a base pair H½i� is included in the intermediate

structure indicated by a particular integer N if H½i� 2 A xor the ith bit of N is 1

Algorithm 3 ConstructAuxilaryData

Input: (Structure A and B)

Output: (Array H and b)

1: Ensure that A and B are base pair sets.

2: H ( a vector of base pairs different between A and B

3: b( an array of length jHj filled with zeros.

4: for i 2 ½0; jHjÞ do

5: for j 2 ½0; jHjÞ do

6: if H½i� 2 A and H½j� 2 B then

7: if IsExclusiveðH½i�;H½j�Þ then

8: /* Set the i-th bit of b½j� to 1. */

9: b½j� ( b½j� þ 2i

10: end if

11: end if

12: end for

13: end for

14: return (H, b)
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• base pair H½i� and H½j� cannot coexist.

The procedure for obtaining b is shown in Algorithm 3. When
H½i� in A cannot coexist with H½j� in B, we must delete a base pair
H½i� before adding H½j�. In other words, until the transition of delet-
ing a base pair H½i� is conducted, the transition of base pair H½j� is
invalid. Array b enables us to efficiently determine whether each im-
mediate transition is valid.Algorithm 4 is based on Dijkstra’s algo-
rithm (Dijkstra, 1959; Mohri, 2002). While Dotu et al. (2010) used
the same algorithm for implementing a previous method (Morgan
and Higgs, 1998), we describe it in detail because the concept of
Dijkstra with respect to min–max algebraic structure is not trivial
and its combination with Bit-DP is complicated. In contrast,
Findpath’s beam-search method can find the equivalent optimal re-
sult when beam-breadth is infinity. The novelty of our method

includes its (i) consideration of all possible intermediate structures
as a family of subsets of immediate transitions and (ii) execution of
a best-first search using what is called a bit-DP (dynamic program-
ming) technique for maintaining simplicity and efficiency.

Edges represent all possible immediate transitions. The weight of
an edge is the maximum free energy of the two connected nodes. We
used pairing heap (std::priority_queue of Cþþ and GCC 5.5.0), and
the worst-case time complexity is OðEþ V log VÞ, where E is the
number of edges and V is the number of nodes. Because E is
Oðh2jHjÞ and V is Oð2jHjÞ, the overall complexity is OðjHj2jHjÞ,
where jHj is the Hamming distance between the two input
structures.In Algorithm 4, variable t has an effect associated with
nodes of the same weight extracted in a Last In, First Out (LIFO)
manner. With LIFO, the search manner becomes depth-first after
identifying the true barrier energy structure. This is equivalent to an
A-star search (Hart et al., 1968) that considers the distance from the
goal. Using the variable t, this concept has been implemented sim-
ply. The overall algorithm is described as Algorithm 5. This algo-
rithm calls the TraceBack function detailed in Supplementary
Algorithm S1.

2.6 Another algorithm with light-weight threading
The calculation time of Algorithm 4 depends heavily on which of
the two endpoints is selected as the initial structure. Specifically,
when the true barrier structure is very close to the goal structure,
then almost all structures are explored. In this case, the solution
can be obtained quickly by starting the search from the opposite
end point. However, the barrier structure is not known in advance.
It is therefore expected that an average speedup can be achieved by
simultaneously searching from the two end points. This concept is
implemented in Supplementary Algorithms S2 and S3 (in
Supplementary Material). Note that, there are variants of this con-
cept that depend on the granularity of context switching: (i) evalu-
ating energy or searching a node at every time point (‘coarse
grained’) or (ii) only searching a node at every time point (‘fine
grained’). These approaches are quite complicated because they
use (i) capture by reference of a lambda expression and (ii) context
switching for light-weight threading. Supplementary Algorithm S3
can switch the behavior through the use of the argument
IsFineGrained. Although this concurrent strategy can expand to a
parallel (two-threaded) approach with an appropriate mutex and
other considerations, this is outside of the scope of the present re-
search. Because parallelization is beneficial only when the energy
evaluation is computationally intensive, we are interested in an ar-
bitrary energy model. Moreover, if the parallelization is completely
effective, then an exponential time algorithm would only be at
most twice as fast.

2.7 A proposed algorithm for improving approximate

pathways
Algorithm 6 accepts a possibly indirect pathway. For all subsequen-
ces of length MaxLen or less, if the subsequence has a barrier struc-
ture, our proposed algorithm is used to try to improve the barrier
energy. If this succeeds, the subsequence is replaced and recursively
computed again.

Algorithm 4 ShortestPath (Unidirectional)

Input: (Vector<BasePair> H, Vector<Int> b,

Sequence X, Structure A, Structure B)

Output: (Vector<Real> Result, Vector<Real> Energy,

Vector<bool> Searched)

1: Result( an array of length 2jHj filled with infs.

2: Energy( an array of length 2jHj filled with infs.

3: Searched( an array of length 2jHj filled with falses.

4: d( an empty priority queue of ascending order.

5: t 0

6: Energy½0� ( EðAÞ
7: d:pushððEnergy½0�; t;0ÞÞ
8: while d 6¼1 do

9: t( t � 1

10: x( d:topðÞ
11: d:popðÞ
12: i( x½2�
13: if searched½i� ¼ true then

14: continue

15: end if

16: searched½i� ( true

17: if i ¼ 2jHj � 1 then

18: break

19: end if

20: for j 2 ½0; jHjÞ do

21: if j-th bit of i is 1 then

22: continue

23: end if

24: if ði bitwiseand b½j�Þ 6¼ b½j� then

25: continue

26: end if

27: i0 ( iþ 2j

28: if Energy½i0� ¼ inf then

29: Energy½i0� ( EðIndexToStructureði0;A;BÞÞ
30: end if

31: r( maxðResult½i�;Energy½i0�Þ
32: if r � Result½i0� then

33: continue

34: end if

35: Result½i0� ( r

36: d:pushððEnergy½i0�; t; i0ÞÞ
37: end for

38: end while

39: return (Result, Energy, Searched)

Algorithm 5 DirectOptimalPath

Input: (Sequence X, Structure A, Structure B)

Output: (Vector<Structure> Path, Real MaxEnergy)

1: ðH;bÞ ¼ PreparationðX;A;BÞ
2: ðR;E; SÞ ¼ ShortestPathðH; b;X;A;BÞ
3: return TraceBackðH; b;X;A;B;R;E; SÞ
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2.8 Experimental procedure
For the evaluations, we generated a random RNA dataset. For a
given RNA of length N and Hamming distance jHj, the following
procedure was conducted to sample one data point. At first, we
sampled a uniformly random RNA sequence X of length N.
Second, we sampled two secondary structures r1;r2 for RNA X
using RNAsubopt in Vienna-RNA 2.4.3 (Lorenz et al., 2011).
Then, if the Hamming distance of the two structures is jHj, we
added the triplet ðX;r1; r2Þ to the dataset. The source code and
datasets created and used are available at https://github.com/
eukaryo/czno.

In the proposed algorithm, RNAeval in Vienna-RNA (Lorenz
et al., 2011) 2.4.3 was used to obtain the free energy of each second-
ary structure. RNAeval uses an additive loop model, and it takes
O(N) time to evaluate each structure, where N is the length of the
RNA. Note that one can reduce this time-complexity to O(1) with
our algorithm by differential evaluation, as implemented by KFOLD
(Dykeman, 2015). Nevertheless, this energy-model-specific improve-
ment was beyond the scope of the present study because we aimed
to construct algorithms for an arbitrary energy model. We imple-
mented the proposed algorithms in Cþþ14. We also re-
implemented previous algorithms in Cþþ14. All source code is
available at the GitHub repository.

2.8.1 Heuristic indirect algorithm with RNA2DFOLD

Lorenz et al. (2009) described a method (RNA2DFOLD) to de-
compose the distribution of secondary structures into two-
dimensional space and to calculate local MFEs of each position
in decomposed space. They also proposed an algorithm to cal-
culate indirect low-barrier folding pathways by connecting local
MFEs with the Findpath method. RNA2DFOLD requires OðN7Þ
computation, but sophisticated algorithmic techniques enabled
them to calculate up to 400 nucleotides within a realistic time-
frame. Additionally, they proposed a stochastic algorithm to ob-
tain indirect approximate pathways. In this study, we
introduced a deterministic algorithm for the same purpose
(Algorithm 7).

Algorithm 7 can be described as shown. Without a loss of gener-
ality, we can assume that the goal structure has the same or less

energy than the initial structure, because otherwise the two struc-
tures must be swapped. In Algorithm 7, we first confirm this condi-
tion. Next, we execute RNA2DFOLD and obtain local MFE
structures. Then, we consider a graph G, whose nodes are all local
MFEs and whose edges are (i) nearby nodes in the coordinates of
RNA2DFOLD and (ii) from all other nodes to the goal structure.
The cost of each edge is the approximate barrier energy obtained by
Findpath, because in the coordinates of RNA2DFOLD, even two
adjacent local MFEs can have a Hamming distance of two or more.
We do not use the proposed optimal method here, because the dis-
tance may be very large and the Algorithm 6 can be applied later.
Finally, we compute Dijkstra’s algorithm on G with min–max
algebra.

3 Results and discussion

3.1 Performance comparison across the detailed

settings of the proposed method
First, we compared the performance of the various proposed algo-
rithms. The results are shown in Figure 3a–e. For the concurrent
searches, Figure 3a and b shows that the fine-grained version per-
formed slightly better. In the unidirectional searches, Figure 3c
shows that choosing an unstable structure of two endpoints as a
start gives better results. Figure 3d and e shows that unidirectional
search with a starting unstable structure often gives better results
than a concurrent search. On the other hand, concurrent search was
more robust. In most cases, it required twice as much computation
time as either unidirectional search. Hence, we used fine-grained
concurrent search in the subsequent analyses.

3.2 Comparison with Findpath, with infinite beam-

breadth
As noted above, Findpath (Flamm et al., 2001) can obtain the
optimal direct pathway when beam-breadth parameter k ¼ inf.
For that reason, we compared our Algorithm 5 and Findpath

Algorithm 6 ImprovePathway

Input: (Sequence X, Vector<Structure> Path, int MaxLen)

Output: (Vector<Structure> NewPath)

1: N ¼ lenðPathÞ
2: Barrier ¼ maxðEðPathÞÞ
3: for i 2 ½0;N � 2� do

4: for j 2 ½iþ 2;minðiþMaxLen;NÞ� do

5: M( maxðEðPath½i�Þ; . . . ;maxðEðPath½j�ÞÞÞ
6: if M ¼ Barrier then

7: A ¼ Path½i�
8: B ¼ Path½j�
9: ðP;MÞ ¼ DirectOptimalPathðX;A;BÞ
10: if M < Barrier then

11: Q ¼ ðPath½0�; . . . ;Path½i� 1�Þ
12: Q:AppendðPÞ
13: Q:AppendðPath½jþ 1�; . . . ;Path½N�Þ
14: return ImprovePathwayðX;Q;MaxLenÞ
15: end if

16: end if

17: end for

18: end for

19: return Path

Algorithm 7 RNA2DFOLDIndirect

Input: (Sequence X, Structure A, Structure B, int K¼5)

Output: (Vector<BasePair> H, Vector<Int> b)

1: if EðAÞ < EðBÞ then

2: return Reverse(RNA2DFOLDIndirect(X, B, A, K))

3: end if

4: F( compute RNA2DFOLD with A and B as references.

5: G( a graph with local MFEs of F as nodes and with no

edges.

6: for i; j 2 F do

7: d( Manhattan distance between i and j in the space F

8: if d � K or B 2 fi; jg then

9: W ( Compute an approximate barrier energy from i

to j using Findpath. The obtained pathway is kept

and used during traceback.

10: Add an undirected edge (i, j) to G. The cost of the

edge is W.

11: end if

12: end for

13: Compute Dijkstra’s algorithm on G with min-max

algebra.

14: Compute the traceback and obtain the lowest barrier

pathway H and barrier energy b.

15: return (H, b)
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Flamm et al. (2001) with that setting. The results are demonstrated
in Figure 3f. Our method can obtain an optimal pathway with far
shorter energy evaluation times.

Figure 4 shows a comparison of real-time demand. Our re-
implementation of Findpath (Flamm et al., 2001) is not necessarily
optimized for execution speed. However, Figure 4 suggests that our
proposed method is also faster in real time.

3.3 Computation time
Figure 5a shows the computation time for a random RNA sequence
(length ¼ 100) and random secondary structures. The result roughly
follows the theoretical worst-case time complexity OðjHj2jHjÞ. For
some data points, computation finished within a very short time. As
we utilized Dijkstra’s algorithm, the computation may be completed
quickly depending on the specific shape of the energy landscape.
Figure 5b indicates that sequence length hardly affects computation
time.

We expected that the energy evaluation would account for most
of the total computation time. Otherwise, our attempt to reduce the
number of energy evaluations would be pointless. Figure 5c was
consistent with our expectation, showing that the total computation
time is roughly proportional to the number of times the algorithm
has evaluated the energy.

3.4 Comparison with a previous method for

approximate direct pathways
It is guaranteed that the proposed method returns an exact solu-
tion. However, the previous approximate methods possibly also

Fig. 3. Evaluation of the frequency of energy calculation and its computation time in our method using concurrent/unidirectional searches and fine/coarse grained versions. A

total of 1600 data points comprising random RNA sequences and structures (100 for each, with Hamming distances ranging from 5 to 20) were evaluated. (a) and (b)

Comparison between fine-grained and coarse-grained versions under the concurrent search methods. The definitions of ‘fine grained’ and ‘coarse grained’ are provided in

Section 2. (c) Evaluation of two types of starting structures (unstable and stable) for the unidirectional search method. (d) and (e) Comparison between concurrent (fine-

grained) and unidirectional searches (stable/unstable starting structures). (f) Comparison between the proposed method (concurrent, fine-grained) and previous method (beam-

search, k ¼ infinity)

Fig. 4. The same data summarized in Figure 5a are used here. A total of 1600 data

points were evaluated. The x-axis shows the computation times for the search with the

proposed algorithm. The y-axis shows the computation times with the Findpath

(Flamm et al., 2001) algorithm for beam-breadth ¼ infinity. Note that the two algo-

rithms output the same barrier value; the main difference is the type of search performed
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give an exact solution. Accordingly, we experimented with com-
paring the solution barrier values obtained using the previous
methods and the proposed method. According to Figure 6a, in
computing direct pathways, the prior approximate methods often
return solutions worse than the optimal one, even at short distan-
ces of jHj � 20. This result indicates that the proposed method
has a substantial advantage.

3.5 Improvement of a previous method for indirect

pathways
The proposed Algorithm 6 accepts an (in)direct pathway and tries to
improve it. To evaluate this method, we obtained the outcomes of
three previous algorithms and input them into Algorithm 6.
Figure 6b shows the results. Our algorithm improved the majority
of outcomes of MH1998Indirect (Morgan and Higgs, 1998) and
RNATABUPATH (Dotu et al., 2010). In contrast, we were mostly
unable to improve upon the results of RNAEAPath (Li and Zhang,
2012) and RNA2DFOLD (Lorenz et al., 2009). As shown in
Table 1, for almost all data points, RNA2DFOLD (specifically, the
RNA2DFOLD-based Algorithm 7) obtained the best result. The

other methods can often obtain an equivalent result, but they seldom
obtain a better result than RNA2DFOLD, with the exception of
only six cases.

effectiveness of the RNA2DFOLD-based Algorithm 7 can be
explained more fully. In the Morgan and Higgs’s indirect ap-
proximate method (specifically, the variant presented by Dotu
et al., 2010), ‘anchor structures’ are first sampled from a
Boltzmann distribution and then connected them using the direct
approximate method; finally, Dijkstra’s algorithm is performed
on the generated graph. Thus, Algorithm 7 can be interpreted as
using RNA2DFOLD’s local MFE structures instead of sampled
ones. In that sense, it is a natural improvement upon the original
design.

3.6 Real data experiment
To demonstrate our improvement to the algorithm, we analyzed the
empirical dataset published by Dotu et al. (2010). The results are
summarized in Table 2, which shows that our proposed algorithm
did not improve upon the RNA2DFOLD-based method for indirect
approximate pathways. Nevertheless, for one case, the original

Fig. 5. Evaluation of the effect of the Hamming distance and sequence length on computation time for the proposed method. (a) Effect of Hamming distances ranging from 5

to 20 between the initial and the goal structures under a fixed length of RNA sequence (¼ 100). A total of 1600 data points were evaluated. (b) Effect of sequence length rang-

ing from 50 to 150 under the fixed-Hamming distance (¼ 18) between the initial and the goal structure. A total of 1100 data points were evaluated. (c) Evaluation of a rela-

tionship between the frequency of energy calculation and its computation time. A total of 2700 data points, comprising data used in (a) and (b), are plotted

Fig. 6. Evaluation of barrier energy improvement (difference in barrier energy between an existing algorithm and our optimal algorithm). The same data used in the previous

experiment (Fig. 3) are used here. (a) Barrier energy improvement for existing direct approximate algorithms: MH is the direct greedy method by Morgan and Higgs (1998).

Voss is a semi-greedy method developed by Voss et al. (2004) and Dotu et al. (2010); semi-greedy parameter k¼10. Voss1k summarizes the results of the ‘Voss’ algorithm con-

ducted 1000 times, with the best structure selected. Findpath is a beam-search method developed by Flamm et al. (2001); beam-breadth parameter k¼10. (b) Barrier energy

improvement for existing indirect algorithms: RNAEAPath (Li and Zhang, 2012), MH1998Indirect (Morgan and Higgs, 1998), RNATABUPATH (Dotu et al., 2010). The

unit is kcal/mol, which is the RNAeval default
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method could not finish the calculations due to its computational in-
tensity. In such cases, combining another method and the proposed
improved method is useful.

3.7 Exact direct barrier position versus RNA2DFOLD’s

decomposition
When we have r1 and r2 as representative structures of two meta-
stable regions, there are two ways to determine the radius of each re-
gion. One way is to use RNA2DFOLD. When one uses
RNA2DFOLD’s decomposition into two dimensions with r1 and r2

as references, the direct pathways between r1 and r2 are associated
with the shortest straight line in the decomposed space.

RNA2DFOLD calculates local MFEs for each position; thus, we can
divide the region at the position where the local MFE has the max-
imal energy. Another approach is to divide the region at the exact
direct barrier position.

According to Supplementary Table S1, the two approaches
above often yield different results. This result demonstrates that the
former approach with local MFE cannot be substituted for the exact
direct barrier approach.

4 Conclusion

RNAs often have complex structure landscapes, and analysis of their
kinetics is difficult. When there are multiple sub-optimal secondary
structures, the minimum barrier energy and corresponding folding
pathway of the two structures must be calculated.

In this study, we proposed a method for computing direct
optimal barrier energy and its corresponding pathway. This is
an exponential algorithm that works efficiently only for
Hamming distance less than or equal to 20. However, it is far
more efficient than the existing factorial algorithm examined in
previous research (Morgan and Higgs, 1998). The proposed
method expands the range in which the exact solution can be
calculated. Furthermore, we assessed the previous approximation
methods within the same range and found examples that do not
agree with the exact solution. Additionally, we proposed a
method for improving existing possibly indirect pathways. We
applied our method to indirect pathways computed by previous
methods and found that the effects of our improvement vary.
For indirect pathways, the RNA2DFOLD-based method mostly
achieved the best results, but our method improved upon its
results in some cases.

When defining the boundaries between meta-stable regions, we
found that RNA2DFOLD’s local MFEs-based decision and direct
optimal barrier pathway-based decision possibly generate different
results. The exact solution enabled us to discover this phenomenon.
While our synthetic dataset is based on random sampling, is not ne-
cessarily bi-stable, and does not necessarily contain meta-stable
regions, our results demonstrate that the proposed methods are
powerful tools to compute better folding pathways. We hope future
work will apply this research to actual RNA kinetic analysis.

Table 1. Based on the results summarized in Figure 6b, improved

pathways were obtained for 1600 data points

Method name EAPath MH TABU 2DFOLD

Number 1 2 3 4

Best method only 1 only 2 only 3 only 4

Number of data points 4 1 1 633

Best methods 1 and 2 2 and 3 3 and 4 4 and 1

Number of data points 0 0 39 203

Best methods 1 and 3 2 and 4 1, 2 and 3 2, 3 and 4

Number of data points 0 61 0 39

Best methods 3, 4 and 1 4, 1 and 2 everyone total

Number of data points 179 110 330 1600

Note: This table shows the number of data points for which the algorithm

assigned the best (i.e. the lowest barrier energy) pathway. Of the two sub-

tables, the first one simply shows the correspondence between method names

and numbers. The second one indicate the number of data points in the data-

set for which specific method(s) has (or have) produced the best result(s). For

example in 61 of the 1600 data points, Methods 2 and 4 reported the best

improved pathways (i.e. the barrier energies of the pathways reported by

Methods 2 and 4 were the same, which was lower than those based on

Methods 1 and 3). Note that whether the best improved pathway is optimal is

unknown.

Table 2. Evaluation of barrier energy improvement using the real RNA dataset published by Dotu et al. (2010)

N Gene name Length E (start) E (end) TABU EA MH Findpath RNA2DFOLD

0 rb1 148 �47.8 �27.0 �14.8!�27.0 �26.5!�26.9 �24.3!�25.8 �19.3!�19.3 �27.0!�27.0

1 rb2 113 �23.6 �19.8 �4.07!�14.5 �12.1!�13.6 �13.4!�14.0 �9.5!�9.9 �15.8!�15.8

2 rb3 141 �43.5 �31.3 �19.4!�25.5 �22.8!�22.8 �25.2!�28.2 �28.4!�31.3 �31.3!�31.3a

3 rb4 146 �43.8 �28.4 �28.4!�28.4 �28.4!�28.4 �28.4!�28.4 �28.4!�28.4 �28.4!�28.4

4 rb5 202 �47.8 �27.0 �14.8!�27.0 �21.8!�23.1 �23.5!�25.7 �19.3!�19.3 �27.0!�27.0

5 hok 395 �163.1 �138.6 �105.4!�120.0 �109.1!�113.3 �125.1!�125.1 �128.4!�132.0 b

6 SplicedLeaderAB 56 �8.6 �9.2 6.5! 2.4 2.5! 2.5 8.3! 6.3 2.4! 2.4 2.4! 2.4

7 attenuator 73 �21.9 �16.1 �7.0!�13.7 �13.7!�13.7 �9.5!�12.8 �11.4!�11.4 �13.7!�13.7

8 s15 74 �18.1 �9.9 �9.7!�9.9 �9.9!�9.9 �8.1!�9.9 �9.9!�9.9 �9.9!�9.9

9 sbox_leader 247 �83.9 �80.8 �75.3!�79.6 �79.5!�79.5 �75.5!�78.9 �79.5!�79.5 �79.6!�79.6

10 thiM_leader 165 �42.3 �41.0 �23.0!�33.2 �30.3!�31.4 �27.6!�29.3 �30.3!�32.9 �36.0!�36.0a

11 ms2 73 �27.3 �27.4 �24.4!�25.8 �25.8!�25.8 �25.3!�25.8 �25.8!�25.8 �25.8!�25.8

12 HDV 153 �65.7 �67.2 �41.0!�50.6 �44.1!�47.0 �42.3!�42.5 �44.2!�44.2 �52.1!�52.1

13 dsrA 85 �31.9 �30.6 �19.7!�22.3 �22.3!�22.3 �16.2!�21.7 �22.3!�22.3 �23.7!�23.7

14 ribD_leader 304 �93.2 �90.2 �77.6!�85.8 �82.1!�83.1 �79.2!�84.4 �81.4!�81.9 �85.3!�85.3

15 amv 146 �50.3 �45.8 �38.5!�44.0 �44.0!�44.0 �37.3!�40.7 �43.2!�43.2 �45.1!�45.1

16 alpha_operon 130 �35.5 �33.7 �30.6!�31.8 �31.8!�31.8 �28.8!�31.8 �31.8!�31.8 �31.8!�31.8

17 HIV-1_leader 280 �95.7 �94.1 �79.9!�89.4 �88.9!�89.5 �86.1!�86.1 �87.2!�87.2 �92.3!�92.3

aAlgorithm 10 was executed with the parameter K¼ 4. For the other cases, Algorithm 10 was executed with the default parameter, K¼ 5.
bRNA2DFOLD could not handle the sequence.

Note: ‘E(start)’ and ‘E(end)’ indicate the energies of the starting and ending RNA secondary structures. ‘!’ indicates that our improvement method was

applied. Bold numbers are the best score for each data point. Whether the improved value is optimal is unknown in general; however, if the improved value is

equal to the higher energy value between the start and goal structure, it is always the optimal value.
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