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Neural correlates of proactive and 
reactive motor response inhibition 
of gambling stimuli in frequent 
gamblers
D. Brevers1,2, Q. He  3, B. Keller1, X. Noël2 & A. Bechara1

We used functional magnetic resonance imaging to examine whether motivational-salient cues could 
exert a differential impact on proactive (the restrain of actions in preparation for stopping) and reactive 
(outright stopping) inhibition. Fourteen high-frequency poker players, and 14 matched non-gambler 
controls, performed a modified version of the stop-signal paradigm, which required participants to 
inhibit categorization of poker or neutral pictures. The probability that a stop-signal occurs (0%, 17%, 
25%, 33%) was manipulated across blocks of trials, as indicated by the color of the computer screen. 
Behavioral analyses revealed that poker players were faster than controls in categorizing pictures 
across all levels of proactive motor response inhibition (go trials). Brain imaging analyses highlighted 
higher dorsal anterior cingulate cortex activation in poker players, as compared to controls, during 
reactive inhibition. These findings suggest that, due to their faster rates of stimulus discrimination, 
poker players might have recruited more cognitive resources than controls when required to stop 
their response (reactive inhibition). Nevertheless, no main effect of stimulus type was found, on either 
proactive or reactive inhibition. Additional studies are, therefore, needed in order to confirm that 
investigating the dynamics between reactive and proactive inhibition offers a discriminative analysis of 
inhibitory control toward motivational-salient cues.

Gambling has never been so easily accessible and readily available. It is possible to bet everywhere, at every 
moment, and simultaneously using different platforms. The high volume of gambling advertising is also there to 
remind you to do so. As a matter of fact, gambling cues are present in newspapers, TV, radio, sports arenas, and 
the Internet1–3. A main consequence of this increased exposure is that it could foster temptation to gamble in 
frequent gamblers4.

Congruent with this view, functional magnetic resonance imaging (fMRI) studies highlighted that problem 
gamblers exhibit increased activation in salience/motivational brain circuitry while viewing gambling pictures 
(refs 5 and 6, but also see ref. 7). Neural activations include areas involved in emotional processing (amygdala8), 
reward anticipation (ventral striatum9), and affective decision-making (ventrolateral prefrontal cortex, VLPFC10). 
Interestingly, gambling cue reactivity was also associated with anterior cingulate cortex (ACC) and dorsolateral 
prefrontal cortex (DLPFC) activations5, 6. Brain activations within these areas overlap with some of the neural 
pathways underlining motor response inhibition, namely the ACC and the DLPFC, which are often involved in 
the anticipation/preparation of response conflicts, and in selecting superordinate sets of action-selection rules11. 
It follows that enhanced resources engaged in the processing of salient stimulus should leave fewer resources 
available for effortful control12–14. Hence, one may advance the notion that motivational salience directed at gam-
bling cues could lower gamblers’ ability to inhibit a motor response toward those stimuli.

Currently, only van Holst and colleagues15 have examined the interaction between stimulus saliency and 
motor response inhibition in gamblers. Consistent with previous work on cue reactivity, this fMRI study high-
lighted the idea that gambling-related stimuli are flagged as more salient by individuals with problem gambling. 
This was reflected by higher DLPFC, ACC and ventral striatal activations, as compared to non-gambler controls. 
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Surprisingly, problem gamblers were also better than controls at inhibiting their motor response toward gambling 
cues, and showed lower activation of the DLPFC and ACC regions. One explanation for this result is that this 
sample of gamblers was recruited from addiction treatment centers, where they received cognitive behavioral 
therapy. This could have lowered their motivational-approach tendencies towards gambling cues, i.e., stimuli that 
are related to their abstinence/moderation goals16–19. Accordingly, enhanced response inhibition toward food 
cues has been evidenced in overweight adults who are high on dietary restrain20–22. By contrast, research has 
shown that motivationally salient stimuli (e.g., erotica, food, alcohol, drugs, tobacco, gambling) could hamper 
motor response inhibition in both frequent and (non-restricting) problem users23, 24. Besides, in van Holst et al.15, 
the type of stimuli was not adapted to gamblers’ preferred type of gambling (e.g. poker vs. blackjack). This could 
have further decreased the motivational-salience attached to gambling cues, and its subsequent (detrimental) 
impact on motor response inhibition. For instance, Pessoa and colleagues25 showed that low-emotional stimuli 
increased motor response inhibition, and the opposite was found for high-emotional cues. Thus, motor response 
inhibition should be decreased in (non-restricting) frequent gamblers who are required to inhibit gambling cues 
that correspond to their daily-life gambling habits.

Another gap of knowledge from the literature is whether salient-motivational cues interfere with both proac-
tive and reactive motor response inhibition, which refer to distinct temporal dynamic modes of motor response 
inhibition26–28. Proactive inhibition can be conceptualized as a form of “early selection” in which goal-relevant 
information is actively maintained to optimally bias attention, perception and action systems in a goal-driven 
manner, and is used to restrain actions in preparation for stopping (e.g. slowing down while driving along a 
school). Reactive inhibition is a “late correction” process, which is triggered by external signals (e.g. to brake 
when a pedestrian suddenly cross the street), and results in the stopping of the ongoing action. Put differently, 
under reactive control, goal representations are only activated at the time in which they are needed26, 28. Proactive 
control, by contrast, relies upon the anticipation and prevention of the stop signal before it occurs26–28. At a neural 
level, it has been demonstrated that proactive and reactive inhibition activate common brain areas, including the 
superior, middle, and inferior frontal gyrus, supplementary motor area, angular gyrus, and the striatum, in both 
right and left hemispheres29–40. This shared neural pathway suggests that proactive and reactive inhibition might 
rely on a common network involved in “braking” motor output when it is weakly activated (proactive inhibition), 
and in “stopping” motor output completely when strongly activated (reactive inhibition)26, 36. Proactive and reac-
tive inhibition might also activate specific neural pathways, with reactive inhibition associated with right DLPFC, 
right VLPFC and anterior supplementary motor area activations, which could reflect stimulus-driven attention, 
and action reprogramming from going to stopping36, 39, 41–43. Proactive motor control has been reported to spe-
cifically activate the right and left superior parietal lobule, which could reflect top-down influence over motor 
control36, 39.

The importance of examining both proactive and reactive components of motor response inhibition has been 
further emphasized by recent fMRI studies undertaken in sub-clinical and clinical samples33, 38. Zandbelt and 
colleagues38 showed that, in comparison to control subjects, proactive inhibition was reduced in schizophrenia 
patients, while reactive inhibition did not differ between the two groups. More specifically, as compared to con-
trols, patients failed to slow down responding as the probability that they may have to stop increased (i.e., reduced 
proactive inhibition). At a brain imaging level, this pattern was associated with a failure to activate the right stria-
tum, the right inferior frontal cortex, and the left and right temporoparietal junction. In another study, van Rooij 
and collaborators33 highlighted that war veterans with posttraumatic stress disorder (PTSD) showed reduced 
reactive inhibition (i.e., slower stop-signal reaction time, SSRT), as compared to non-military controls, along with 
a decreased inhibition of the left pre/postcentral gyrus. The veterans with PTSD also exhibited impaired behav-
ioral proactive inhibition. Furthermore, the PTSD group showed a reduced right inferior frontal gyrus response 
during proactive inhibition, as compared to a group of veterans without PTSD. Taken together, these findings 
confirm that investigating both reactive and proactive inhibition might offer a more nuanced, discriminative and 
fine-grained analysis of inhibitory control.

The goal of this study was to examine, at both behavioral and neural levels, the impact of gambling cues on 
proactive and reactive motor response inhibition in high-frequent gamblers. Based on the aforementioned argu-
mentation, we recruited one specific “type” of gamblers (17 high-frequent poker gamblers; sample size based on 
van Holst et al.15) to inhibit cues that matched their preferred gambling games (poker pictures). At a behavioral 
level, we predicted that, when compared to a group of non-gambler controls (n = 16), poker players would exhibit 
lower proactive and reactive inhibition while categorizing poker cues. Second, we expected that poker players 
would exhibit lower brain activation than controls during proactive and reactive inhibition. Third, in line with 
previous neuroimaging studies on gambling cue reactivity5, 6, 15, we also hypothesized that poker players, as com-
pared to controls, would show enhanced brain activity during the viewing of poker pictures, especially in the 
salience/motivational brain circuitry (e.g., amygdala, striatum, VLPFC).

Results
Behavioral task validation. The SST was first pretested in a sample of students (N = 16). Those pre-
tests aimed to test whether categorization RT is modulated by the level of stop-signal probability (green < yel-
low < orange < red). In addition, we expected that (i) mean p[respond|signal]) (pooled across the yellow, orange, 
and red contexts) will approximate 0.50, which would confirm the effectiveness of the tracking procedure; and 
(ii) mean failed stop-signal RT should be faster than mean go signal RT (both measures pooled across the yellow, 
orange, and red contexts), which would be used as a criterion of independence between the finish times of the go 
and the stop responses (for further details on data analyses, see Supplementary Materials).

These analyses revealed that: categorization RT (in ms) increased as a function of the level of stop-signal prob-
ability (F(3,15) = 100.51, p < 0.0001, η2 = 0.87; see also Figure S1 in Supplementary Materials); that mean p[re-
spond|signal]) was close to 0.50 for both the neutral (M = 0.49, SD = 0.04) and the poker (M = 0.48, SD = 0.04) 
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stimuli; and that the mean failed stop-signal RT (M = 857, SD = 87) was lower than the mean go_signal RT 
(M = 924, SD = 99; F(1,15) = 14.91, p = 0.002, η2 = 0.50). In addition, we observed that SSRT values were similar to 
those observed in previous studies using a SST (neutral: M = 177, SD = 62; poker: M = 163, SD = 43; refs 44 and 45).  
Also we observed that the mean percentage of stimuli categorization accuracy was high (all means > 96%), and 
the mean percentage of miss acceptable (yellow: M = 0.09, SD = 0.06; orange: M = 0.10, SD = 0.08; red: M = 0.13, 
SD = 0.10). Further details on these data analyses are included in Supplementary Materials.

In scanner behavior. Proactive inhibition. Analyses revealed that categorization RT (in milliseconds) 
increased as a function of the level of stop-signal probability, F(3,26) = 161.38, p < 0.001, η2 = 0.86 (see Fig. 1A; 
see also Supplementary Materials: Table S3 includes descriptive statistics on Go-signal RT, p(miss) and stimuli 
categorization accuracy; Table S4 includes mean RT on go-trials and mean SSD on stop-trials for each consec-
utive block of trials, separately for each stop-signal probability context, and averaged across the whole sample 
of participants, N = 28). Pairwise comparisons showed that there were significant RT increases between each 
context of stop-signal probability (red > orange > yellow > green; all p < 0.001). We observed a main effect of 
group, F(1,26) = 4.30, p = 0.048, η2 = 0.14, indicating that poker players were faster in categorizing neutral and 
poker cues across all levels of stop-signal probability (green, yellow, orange, red). We observed no main effect of 
stimulus type and no significant interaction (all p > 0.09).

Reactive inhibition. First, we observed that the overall sample mean of p[respond|signal]) was close to 
0.50 for both the neutral (M = 0.52, SD = 0.07) and the poker (M = 0.53, SD = 0.06) stimuli, which confirm the 
effectiveness of the tracking procedure for both types of stimuli. We also observed that mean failed stop-signal RT 
was faster than mean go_signal RT, F(1,26) = 17.93, p < 0.0001, η2 = 0.43, which is a criterion for the independ-
ence between the finish times of the go and the stop responses (see Supplementary Materials, which also include 
data analyses on stimuli categorization accuracy, p(miss), and p[respond|signal]). Repeated-measures ANOVA 
revealed that gamblers (neutral pictures: M = 213, SD = 63; poker pictures: M = 200, SD = 70) did not differ form 
controls (neutral pictures: M = 202, SD = 68; poker pictures: M = 172, SD = 66; see also Fig. 1B) on SSRT scores, 
F(1,26) = 0.69, p = 0.41, η2 = 0.03. There was also no main effect of stimulus type or group, and no significant 
interaction effect (all p > 0.23).

Brain activations during proactive inhibition, reactive inhibition, and cue reactivity. Proactive 
inhibition. Figure 2A and Tables S5 (in Supplementary Materials) show brain regions in which activation 
increased as a function of stop-signal probability on go-signal trials when categorizing poker and neutral pic-
tures. This includes the whole sample of participants (N = 28). These contrasts reveal activations in a widespread 
network featuring frontal, paracingulate, insular, striatal, temporal, parietal, and occipital regions. However, 
no significant between-groups difference was observed on whole brain activation for the effect of stop-signal 
probability.

Reactive inhibition. Figure 2B and Tables S6 (in Supplementary Materials) show brain regions in which acti-
vation increased for the “successful stop minus unsuccessful stop” contrast, for the whole sample of participants 
(N = 28). Together, poker players and control subjects activated a network encompassing frontal, paracingulate, 
striatal, parietal and occipital regions. Between-groups analyses revealed that, when inhibiting successfully their 
motor response toward poker cues, poker players showed more activation than controls in the dorsal anterior 

Figure 1. (A) Proactive inhibition: effect of stop-signal probability contexts (0% = green, 17% = yellow, 
25% = orange, 33% = red) on go_signal response time for poker (in red) and neutral (in black) stimuli in the 
control and the poker player groups; (B) Reactive inhibition: stop-signal reaction time (SSRT) for poker (in 
red) and neutral (in black) stimuli in the control and the poker player groups. All errors bars indicate 95% 
confidence intervals.
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cingulate cortex (Brodmann area = 32, cluster voxel size = 279, MNI coordinates: x = 4, y = 12, z = 44; see also 
Fig. 3A). No other between-group differences were observed.

In order to further emphasize the directionality of the between-group difference in dACC activity, two 
additional contrasts were created: successful stop minus baseline and unsuccessful stop minus baseline. 
Non-parametric permutation analyses (with 10,000 random permutations of the data, using TFCE thresholding 
with p < 0.05 corrected for multiple comparisons across the whole brain), were ran on these two contrasts. For the 
successful stop contrast, we observed that poker players exhibited higher brain activation than controls, including 
cluster of activation encompassing the dACC (see also Fig. 3B, and Table S7 in Supplementary Materials). No 
significant between-group difference was observed for the unsuccessful stop contrast.

Additional analyses were also undertaken in order to examine the relationship between dACC activity and 
stop-signal task performance. Specifically, we first extracted parameter estimates, for each participant, for the 
successful stop minus unsuccessful stop. The parameter estimates values were extracted from the dACC clus-
ter obtained from non-parametric permutation analyses (TFCE thresholding with p < 0.05 corrected for multi-
ple comparisons across the whole brain). We then ran Spearman Rho correlation analyses (N = 28; adjusted for 
multiple comparisons with Bonferroni correction) between parameter estimates and behavioral index of proac-
tive and reactive inhibition. For proactive inhibition, we used the stop-signal probability slope38, defined as the 
change in go-signal response time per stop-signal probability unit increase. For reactive inhibition, we used (i) 
SSRT values, and (ii) the probability of responding on stop-signal, p(responding), averaged across all stop-signal 
probability contexts (i.e., yellow, orange, red). These analyses revealed a significant negative correlation between 
dACC parameter estimates, and the stop-signal probability slope, rho(28) = −0.47, p = 0.03. Thus, the lower the 
proactive adjustment is (i.e., faster stimuli categorization in stop-signal related contexts), the higher the dACC 
activity during the subsequent successful reactive inhibition. No significant correlation was observed between 
dACC parameter estimates with either SSRT, rho(28) = 0.11, p = 0.62, or p(responding), rho(28) = 0.36, p = 0.14. 
Noteworthy, there was also no correlation between SSRT and p(responding), rho(28) = 0.30, p = 0.15, which 
might be due to the fact that the SSRT (especially when estimated with the “integration method”; ref. 46) controls 
for variations in go-response reaction time, as well as in the proportion of incorrect inhibition.

Cue reactivity. During proactive inhibition, participants (N = 28) exhibited higher activation within the pre- and 
post-central gyrus. During successful reactive inhibition poker players and controls exhibited higher activation 
within the occipital pole. During unsuccessful reactive inhibition, participants (N = 28) exhibited higher activa-
tion within the pre- and post-central gyrus and the occipital pole. These activations are detailed in Tables S8 in 
Supplementary Materials. No significant between-groups activation was observed for all cue-reactivity contrasts.

Figure 2. Whole-brain activation within the whole sample of control and poker player (N = 28) during (A) 
proactive motor response inhibition and (B) reactive motor response inhibition. All contrast maps were 
thresholded using cluster detection statistics, with a height threshold of z > 3.1 and a cluster probability of 
p < 0.05, family-wise error corrected for multiple comparisons.
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Discussion
In this study, we used fMRI to examine proactive (the restrain of actions in preparation for stopping) and reac-
tive (a “late correction” process that results in the stopping of the ongoing action) motor response inhibition in 
a sample of highly frequent poker players and matched non-gambler controls. We used a modified version of the 
stop-signal paradigm that requested participants to inhibit categorizing poker and neutral pictures, and in which 
the probability that a stop-signal occurs was manipulated according to the color of the computer back screen.

At a behavioral level, we observed that poker players and non-gamblers exhibited comparable behavior of pro-
active (i.e., RT increase in function of the probability of stop-signal) and reactive (i.e., SSRT) motor response inhi-
bition. However, poker players were faster than controls in categorizing poker and neutral cues during “go” trials 
(RT pooled across the green, yellow, orange and red contexts). This result is congruent with previous research, 
which showed that frequent gamblers (ranging from non-problem to high problem gambling) are faster in detect-
ing gambling-related cues during rapid serial visual presentation tasks47. They also exhibit attentional bias toward 
gambling pictures at both early (attentional encoding and engagement; ref. 48) and late (maintenance and dis-
engagement of attention; refs 48–54) levels of attentional processes. Interestingly, the faster pattern of stimulus 
categorization also encompassed neutral cues. One explanation for this finding is that, due to their expertise in 
discriminating poker cues on a daily-life basis, it might have been “easier” for high-frequent poker players to flag 
neutral pictures as “non-poker” cues (rather than neutral cues per se) during the go-trials of the stop-signal task. 
Another complementary explanation is that perceiving poker cues might have enhanced poker player involve-
ment in the task, which might have impacted the speed accuracy on go-signal trials, e.g. ref. 55. In this context, 
because stimuli categorization is relative rather than absolute during the stop-signal task (i.e., right key pressing 
opposed to left key pressing), future studies should use a stop-signal task, with blocks of trials that include only 
neutral (e.g., discriminating between a table with or without chairs) or poker pictures (e.g., with money bills vs. 
without money bills). This procedure would allow disentanglement of (proactive and reactive) motor response 
inhibition of neutral and salient-motivational cues.

At a brain imaging level, within-group analyses revealed that contrasts for proactive and reactive motor 
response inhibition activated a widespread network that is very similar to that reported by previous brain imag-
ing studies29–40. This includes frontal, insular, striatal, temporal, parietal, and occipital regions. In addition, both 
proactive and reactive inhibition activated the superior, middle, inferior, orbital frontal gyri, cingulate gyrus, 
superior parietal lobule, putamen and caudate. This neural pathway was activated in both the right and left hem-
ispheres. These findings further confirm those from previous neuroimaging studies on proactive and reactive 
inhibition in showing that these two modes of response control share a common brain network36. This com-
mon neural network might be involved in “braking” motor output when it is weakly activated (proactive inhibi-
tion), and in “stopping” motor output completely when strongly activated (reactive inhibition)26, 36. Importantly, 
between-group analyses showed that poker players exhibited higher brain activation than controls during reactive 
inhibition (i.e., the “successful minus unsuccessful stop” contrast). This pattern of activation was revealed within 
the dACC. This region plays a key role in cognitive control by monitoring the occurrence of response conflict56–58, 
such as when simultaneous incompatible response tendencies are triggered during reactive inhibition on the 

Figure 3. (A) Higher dorsal anterior cingulate activation (MNI coordinates: x = 4, y = 12, z = 44) during 
reactive inhibition (i.e., successful minus unsuccessful stop) in poker players, as compared to controls. (B) 
Higher brain activation in poker players, as compared to controls, for the successful stop minus baseline 
contrast. These contrast maps were thresholded using TFCE with p < 0.05, corrected for multiple comparisons 
across the whole brain.
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stop-signal task (i.e., a “go” process triggered by the go stimulus that races against a stop process triggered by 
the “stop signal”; refs 46, 59, 60). This differential pattern of activation might be explained by the poker players’ 
faster stimuli categorization speed (as compared to non-gambler control participants), which was observed at the 
behavioral level of analyses. Specifically, due to quicker go responses, poker players might have needed more cog-
nitive resources (as evidenced with higher dACC activation) than controls when required to cancel their motor 
response on stop trials, i.e., during successful reactive motor response inhibition. This assumption is in line with 
correlation analyses, which showed that dACC parameter estimates from the reactive inhibition contrast (i.e., 
successful minus unsuccessful stop) was significantly associated with behavioral measures of proactive control 
(i.e., the stop-signal probability slope, which is estimated with go-trial RTs), but not with reactive control (either 
p[responding] or SSRT). In other words, the lower the proactive adjustment is (i.e., faster stimuli categorization 
in stop-signal related contexts), the higher the cognitive resources needed during subsequent reactive inhibition.

One major implication of this finding is that, because reactive motor response inhibition is a high-demanding 
process26, 29, 30, 61, 62, and that poker gamblers might rely on more effortful-reactive inhibitory control, they should 
be less able to undertake repeated and extended inhibitory effort during poker cues exposure. This “backfiring” 
pattern could relate to a mechanism of ego depletion, which has been reported to occur when an extended inhib-
itory effort in one domain causes subsequent inhibitory impairment in a second domain63. For instance, Muraven 
and colleagues64 found that an episode of affective inhibition resulted in a subsequent reduction in the ability 
to exercise motor control, and that prolonged cognitive inhibition resulted in a deficit in inhibiting emotional 
stimuli.

Contrary to our hypotheses, we observed no significant impact on the type of stimuli during either proactive 
or reactive motor response inhibition. Specifically, at a behavioral level, poker cues did not impact poker players 
proactive RT slowing and SSRT. At a neural level, cue reactivity contrast revealed that poker stimuli activated 
mainly the primary motor cortex, i.e., the brain network involved in overt motor action during go trials (i.e., 
the pressing of the response key). One explanation for this negative finding is that the action of poker gambling 
was not perceived as “available” or “expected” by poker gamblers throughout the experiment. In other words, 
in the current study, the stop-signal task was not followed by the action of poker playing. Hence, the viewing 
of poker pictures might not have triggered strong motivational-approach in poker players because the stimulus 
“complex” was not complete. Consistent with this account, perceived availability has been shown to increase 
craving in smokers65, 66 and social drinkers67, and could lead the individual to respond more forcefully to salient 
stimuli19, 68. At a brain-imaging level, it has been shown that stimulus availability and expectancy increases neural 
cue reactivity (for a review, see ref. 69). For instance, Blechert and colleagues70 showed that viewing available, 
compared to unavailable, food cues elicited stronger neural activation in structures implicated in reward and 
appetitive motivation (amygdala, caudate nucleus), as well as cognitive control (anterior cingulate cortex, orbitof-
rontal cortex, medial prefrontal cortex). Thus, one option to expose the effect of stimulus type on (proactive and 
reactive) motor response inhibition would be to manipulate perceived availability attached to the action of poker 
(e.g., to make participant believing that he will have the opportunity to participate in a poker gambling session 
directly after having performed the stop-signal task). Alternatively, future studies should focus on the impact of 
addiction-related cues in quitting-motivated addicts. Indeed, it has been shown that response inhibition toward 
food cues is enhanced in overweight adults who are attempting dietary restrain22, 71, 72. Similar findings have 
been reported in treatment-seeking addicted individuals, who exhibited intact73, or enhanced15 motor response 
inhibition towards drug or gambling addition related-cues, when compared to non-addicted controls. This can 
be accounted for, if one assumed that abstaining or restraining gamblers, in contrast to the current frequent 
gamblers, develop an active avoidance strategy toward cues to support their abstinence/moderation goals18, 69. 
Another important point is that our modified version of the stop-signal task involved explicit manipulation of 
stop-signal probability (i.e., the present task is cognitively more complex than the standard stop-signal task). 
Hence, despite the validation indices that were obtained for reactive inhibition (i.e., p[respond|signal]) close to 
0.50; mean failed stop-signal RT faster than mean go_signal RT; mean SSRT values similar than in studies using 
a standard stop-signal task) and proactive inhibition (linear increases in RT slowing in function of stop-signal 
probability), the complexity of the present design might have decreased the influence of motivational cues on 
response inhibition. In addition, the use of a high value for the initial SSD (i.e., 800 ms) might have “forced” 
participants to wait for stop-signal (e.g., the picture categorization reaction time in the 33% condition is almost 
twice longer than in the 0% condition). This might have influenced the optimal assessment of motor response 
inhibition in the current stop-signal task, which is a paradigm that requires participants to respond fast, and not 
to wait for stop-signals. Hence, future studies should examine proactive and reactive inhibition using shortened 
initial SSD value and/or assess whether these two components of inhibition are significantly modulated (at both 
behavioral and neural levels) when different initial SSD values are used.

Finally, because the sample sizes of our groups were modest, non-significant behavioral and neuroimaging 
results must be interpreted with caution. Nevertheless, our final sample is comparable to that in van Holst et al. 
study15, i.e., another neuroimaging study that examined the impact of gambling cues on motor response inhibi-
tion in gamblers. Furthermore, our sample was selected using stringent selection criteria, resulting in a homoge-
neous cohort of gamblers in terms of gambling game preferences (i.e., poker).

In summary, the present findings indicate that, compared to non-gambler controls, highly frequent poker 
players show more activation of the dorsal anterior cingulate cortex during reactive response inhibition of neutral 
and poker pictures. This pattern might be due to poker players’ faster rates of stimulus discrimination exhibited 
across varying levels of proactive motor response inhibition. The present results confirm that investigating both 
reactive and proactive inhibition might offer a discriminative and fine-grained analysis of inhibitory control, and 
that fMRI is a good approach for studying the dynamics underlining these two processes. To a broader extent, 
these findings suggest that humans need to trigger additional cognitive resources, when required to stop their 
motor response, while being embedded in an environment featuring salient-motivational stimuli. Examining the 
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dynamics between proactive and reactive control could, therefore, advance our knowledge of humans’ ability to 
control hedonic habits, and further inform the development of novel intervention strategies aimed at strength-
ening self-control.

Methods
Participants. Seventeen frequent poker gamblers (11 males and 6 females, age 28.91 years, education level 
14.02 years) and 16 non-gambler controls participated in this study (10 females and 6 males, age 26.87 years, 
education level 16.58 years). All participants gave written informed consent to the experimental procedure, which 
was approved by the University of Southern California Institutional Review Board and this study was performed 
strictly in accordance with the approved guidelines.

Poker players were recruited on the Internet through advertisements displayed on online forums for poker 
players based in Los Angeles. The ads asked for participants who “played poker frequently in casino” to participate 
in a one-day study to explore factors associated with attentional processing in poker gambling. Controls were 
recruited by word of mouth from the community. For both gamblers and controls, a screening interview was 
conducted (online or through the phone) in order to examine gambling frequency, problem gambling severity, 
history of therapeutic intervention focused on gambling behavior, substance use (alcohol drinks per day), and 
medical history (included in the MRI screening form). Problem Gambling severity was assessed with the South 
Oaks Gambling Screen (SOGS). Current sample of gamblers ranged from non-problem to high-problem gam-
bling. Poker players’ SOGS scores and information on their frequency of poker playing (per week) is depicted in 
Supplementary Materials, Table S1. None of the gambler participants reported a history of therapeutic treatment 
focused on gambling behavior. Controls were excluded if they gambled frequently (i.e., more than 2 times per 
month) or if they scored 2 or higher on the SOGS. Participants were also excluded if they reported excessive sub-
stance use (e.g., an average of three drinks or more per day over the last year). All subjects were judged to be physi-
cally healthy on the basis of their answers on the MRI screening form. Participants were advised to avoid alcoholic 
drinks in the 24 h prior to testing. All subjects were right handed and had normal or corrected-to-normal vision.

The Stop-Signal Task. Participants performed a modified stop-signal task (SST; see Fig. 1), a paradigm 
adapted from previous stop-signal tasks37, 38, 74. In this task, participants had to discriminate, as fast as they can, 
between neutral and poker-related pictures. Subjects were asked to stop their response when they heard a tone 
(stop-signal). During the experiment, stop-signal delay (SSD; the interval between trial onset and the presenta-
tion of the stop-signal) was continuously adjusted (initial value = 800 ms), separately for neutral and gambling 
cues (across stop-signal probability contexts; i.e., yellow, orange, red), according to a tracking procedure to obtain 
a probability of stopping of 0.5046, 59, 60 if stopping was successful, then stopping was made more difficult on the 
next stop-trial by increasing SSD by 25 ms. The process was reversed when stopping failed.

The probability that a stop-signal occurs was manipulated across trials and was indicated by the color of the 
computer back screen: 0% (green), 17% (yellow), 25% (orange), and 33% (red). Trials were divided into blocks 
of 9, 18 or 27 trials in a same context. Block length was randomized with the restriction that there were no con-
text repetitions (e.g., 2 × green context trials, or 2 × 9 green context trials) and that blocks of 9, 18 and 27 trials 
occurred with equal probability.

Each trial started with the presentation of the context cue for 750ms (Fig. 4A). Each picture then appeared 
during 1250 ms (Fig. 4B), regardless of participants’ categorization reaction time. Each context change was sep-
arated by a 2000ms grey screen (Fig. 4D). In total, 350 go-signal trials (0%, n_neutral = 64, n_poker = 64; 17%, 
n_neutral = 45, n_poker = 45; 25%, n_neutral = 40, n_poker = 40; 33%, n_neutral = 36, n_poker = 36) and 82 
stop-signal trials (17%, n_neutral = 9, n_poker = 9; 25%, n_neutral = 14, n_poker = 14; 33%, n_neutral = 18, n_
poker = 18) were presented in a single run in pseudorandom order. Poker pictures were taken from casino scenes 
and were matched on visual complexity with the neutral pictures (for an illustration, see Fig. 4). We used 18 poker 
and 18 matched neutral pictures. Each picture was repeated for 12 times, which was randomly distributed across 
the green, yellow, orange and red contexts.

MRI Procedure and Data Acquisition. Participants were instructed to categorize pictures as soon as pos-
sible, unless they heard a “beep” sound while the picture appears on the screen. They were informed that the Go 
task and Stop task were equally important and that it would not always be possible to suppress a response when 
a stop-signal occurred. We informed participants that stop-signals would never appear on trials with a green cue 
and that stop-signals could occur on trials with non-green cues. Participants were told that stop-signals were 
least likely in the context of a yellow cue and most likely in the context of a red cue, with the orange cues coding 
intermediate stop-signal probabilities. This instruction procedure was based on previous work by Zandbelt and 
colleagues37, 38.

Before entering the MRI scanner, participants were first trained on the SST in order to familiarize them with 
the task. One experimenter remained alongside the participants during the training in order to ensure that the 
task was properly understood. The training consisted of 9 trials for each of the four background color contexts 
(total of 36 trials). During the MRI scanning session, participants lay supine on the scanner bed, and viewed 
visual stimuli back-projected onto a screen through a mirror attached onto the head coil. Foam pads were used to 
minimize head motion. Stimulus presentation and timing of all stimuli and response events were achieved using 
Matlab 7.14 (Mathworks Inc., Natick, MA, USA) and Psychtoolbox 3.0.12 (www.psychtoolbox.org) on an IBM 
compatible PC. Participants’ responses were collected online using an MRI-compatible button box.

fMRI imaging was conducted in a 3 T Siemens MAGNETOM Prisma scanner in the Dana and David Dornsife 
Cognitive Neuroscience Imaging Center at the University of Southern California. Functional scanning used a 
z-shim gradient echo EPI sequence with PACE (prospective acquisition correction). This specific sequence is ded-
icated to reduce signal loss in the prefrontal and orbitofrontal areas. The PACE option can help reduce the impact 

http://S1
http://www.psychtoolbox.org
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of head motion during data acquisition. The parameters are: TR = 2000 ms; TE = 25 ms; flip angle = 90°; 64 × 64 
matrix size with resolution 3 × 3 mm2. Thirty-one 3.5 mm axial slices were used to cover the whole cerebral cortex 
and most of the cerebellum with no gap. The slices were tilted about 30 degree clockwise along the AC-PC plane 
to obtain better signals in the orbitofrontal cortex. The anatomical T1-weighted structural scan was done using an 
MPRAGE sequence (TI = 800 ms; TR = 2530 ms; TE = 3.1 ms; flip angle 10°; 208 sagittal slices; 256 × 256 matrix 
size with spatial resolution as 1 × 1 × 1 mm3).

Image Preprocessing. Image preprocessing was carried out using FEAT (FMRI Expert Analysis Tool) ver-
sion 6.00, part of the FSL package (FMRIB software library, version 5.0.9, www.fmrib.ox.ac.uk/fsl). The first three 
volumes, before performance of the task, were automatically discarded by the scanner to allow for T1 equilibrium. 
The remaining images were then realigned to compensate for small residual head movements that were not cap-
tured by the PACE sequence75. Translational movement parameters never exceeded 1 voxel in any direction for 
any subject or session. Data were spatially smoothed using a 5-mm full-width-half-maximum (FWHM) Gaussian 
kernel. The data were filtered in the temporal domain using a non-linear high pass filter with a 100-s cut-off. A 
three-step registration procedure was used whereby EPI images were first registered to the matched-bandwidth 
high-resolution scan, then to the MPRAGE structural image, and finally into standard (MNI) space, using aff-
ine transformations75. Registration from MPRAGE structural image to standard space was further refined using 
FNIRT nonlinear registration76, 77. Statistical analyses were performed in the native image space, with the statisti-
cal maps normalized to the standard space prior to higher-level analysis.

Behavioral Data Analysis. Behavioral data were analyzed using custom written software in Matlab 7.14 
(Mathworks Inc., Natick, MA, USA) and SPSS 24 (SPSS, Inc., Chicago, IL, USA). Response times (for Go trials) and 
accuracy were calculated for each stop-signal probability level separately. In keeping with previous studies36, 38–40, 46,  
proactive inhibition was measured as the effect of stop-signal probability on go-signal response time. Typically, 
subjects tend to slow down responding as the probability that they may have to stop increases. Reactive inhibition 
was estimated in terms of stop-signal reaction time (SSRT), which is a measure of the latency of the inhibition 
process. The SSRT was estimated through the integration method46 and pooled across stop-signal probability 
levels38, 39. The integration method involves to subtract the mean SSD from nth RT (with n equal to the number 
of RTs in the RT distribution; missed responses were included and set to 1250 ms, that is, the response deadline) 
multiplied by the overall p [respond|signal]). The SSRT was estimated separately for neutral and gambling pic-
tures. Go trials with response times of more than 1.5 times the interquartile range away from the 25th and 75th 
percentiles of the response time distribution of each stop-signal probability level were defined as outliers.

Due to poor task performance, data from three gamblers and one control were excluded. These participants 
exhibited more than 70% of go response during stop-signal trials (i.e., due to the tracking procedure, percent-
age of incorrectly executed go responses should be close to 50%, regardless of the latencies of the go and stop 
processes). Another control participant was excluded due to a technical issue (no stop-signal « beep » sound 

Figure 4. An example of a succession between a neutral and a poker pictures in the green, yellow, orange and 
red contexts of the stop-signal task. (A) Each trial started with the presentation of the context cue for 750 ms. 
(B) A picture then appeared during 1250 ms, regardless of participants’ categorization reaction time. (C) Trials 
were divided into runs of 9, 18 or 27 trials in a same context. (D) A context change was indicated by a 2000 ms 
grey screen.

http://www.fmrib.ox.ac.uk/fsl
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during the second half of the task) yielding 14 gamblers and 14 controls for behavioral and fMRI analyses. 
Statistical analysis of proactive inhibition consisted of a repeated-measures analysis of variance (ANOVA) on 
mean go-signal response times in each stop-signal probability context (green, yellow, orange, red), stimulus type 
(neutral versus poker), and group (control vs. poker players) as factors. Statistical analysis of reactive inhibition 
involved repeated-measures ANOVA on SSRT, with stimulus type (neutral versus poker), and group (control vs. 
poker players) as factors.

Brain Imaging Analyses. The brain imaging data were modeled at the first level using a general linear 
model within FSL’s FILM module using FEAT. First-level statistical analysis included the following conditions 
as regressors: successful stop-signal trials, unsuccessful stop-signal trials, go-signal trials stop-signal probability 
levels (green, yellow, orange, red), for both poker and neutral pictures (i.e., 6 × 2 = 12 conditions of interest in 
total). The event onsets were convolved with canonical hemodynamic response function (HRF, double-gamma) 
to generate regressors used in the GLM. Temporal derivatives and missed go responses for go-signal trials were 
included as covariates of no interest to improve statistical sensitivity. Null events were not explicitly modeled, and 
therefore constituted an implicit baseline.

For each participant, we computed the following contrast images: (i) To assess reactive inhibition: activation 
during successful stop-signal trials minus unsuccessful stop-signal trials; (ii) To assess proactive inhibition: a 
parametric contrast on go trials with the four stop-signal probability contexts (green, yellow, orange, red) coded 
as mean-centered probabilities; iii) to assess poker cue reactivity during proactive inhibition: parametric mod-
ulation by probability during poker cue go trials minus parametric modulation by probability during neutral 
cue (go trials); iv) to assess poker cue reactivity during reactive inhibition: successful stop during poker cue 
(stop-signal trials) minus successful stop during neutral cue (stop-signal trials), and unsuccessful stop during 
poker cue (stop-signal trials) minus unsuccessful stop during neutral cue (stop-signal trials). On each set of con-
trast images, we performed two group analyses. First, whole-brain activations were visualized for the whole sam-
ple (N = 28), using one-sample t-tests. Maps resulting from these group analyses were tested with random-effect 
model for group analysis using FLAME 178–80 and thresholded using cluster detection statistics, with a height 
threshold of z > 3.1 and a cluster probability of p < 0.05, family-wise error corrected for multiple comparisons. 
Second, between-groups differences in whole-brain activation were tested using non-parametric permutation 
methods for inference on statistic maps (Randomise v2.1 in FSL; see http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/ran-
domise/index.html) with 10,000 random permutations of the data. Maps resulting from between-groups analyses 
were thresholded using Threshold-free cluster enhancement (TFCE) with p < 0.05 corrected for multiple com-
parisons across the whole brain.

References
 1. Griffiths, M. Does gambling advertising contribute to problem gambling? International J Mental Health Addiction 3, 15–25 (2005).
 2. Lee, H. S., Lemanski, J. L. & Jun, J. W. Role of gambling media exposure in influencing trajectories among college students. J Gambl 

Stud. 24, 25–37 (2008).
 3. Thomas, S. L., Lewis, S., McLeod, C. & Haycock, J. They are working every angle. A qualitative study of Australian adults’ attitudes 

towards, and interactions with, gambling industry marketing strategies. Int Gambl Stud. 12, 111–127 (2012).
 4. Hanss, D., Mentzoni, R. A., Griffiths, M. D. & Pallesen, S. The impact of gambling advertising: Problem gamblers report stronger 

impacts on involvement, knowledge, and awareness than recreational gamblers. Psychol Addict Behav. 29, 483–49 (2015).
 5. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J. & el-Guebaly, N. Cue-induced brain activity in pathological gamblers. Biol. 

Psychiatry 58, 787–795 (2005).
 6. Goudriaan, A. E., de Ruiter, M. B., van den Brink, W., Oosterlaan, J. & Veltman, D. J. Brain activation patterns associated with cue 

reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol 15, 491–50 
(2010).

 7. Potenza, M. N. et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch. Gen. Psychiatry 
60, 828–836 (2003).

 8. Bechara, A. & Damasio, A. R. The somatic marker hypothesis: A neural theory of economic decision. Games Econ Behav. 52, 
336–372 (2005).

 9. Haruno, M. & Kawato, M. Different neural correlates of reward expectation and reward expectation error in the putamen and 
caudate nucleus during stimulus-action-reward association learning. J. Neurophysiol. 95, 948–959 (2006).

 10. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 
275, 1293–1294 (1997).

 11. Rushworth, M. F. S., Walton, M. E., Kennerley, S. W. & Bannerman, D. M. Action sets and decisions in the medial frontal cortex. 
Trends Cogn. Sci. 8, 410–417 (2004).

 12. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–158 (2008).
 13. Schimmack, U. & Derryberry, D. Attentional interference effects of emotional pictures: threat, negativity, or arousal? Emotion 5, 

55–66 (2005).
 14. Volkow, N. D., Fowler, J. S. & Wang, G. J. The addicted human brain: insights from imaging studies. J. Clin. Invest. 111, 1444–1451 

(2003).
 15. van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. Response inhibition during cue reactivity in 

problem gamblers: an fMRI study. PLoS ONE 7, e30909 (2012).
 16. Spruyt, A. et al. On the predictive validity of automatically activated approach/avoidance tendencies in abstaining alcohol-

dependent patients. Drug Alc Dep 127, 81–86 (2013).
 17. Townshend, J. M. & Duka, T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol. Clin. Exp. Res. 31, 

1349–1357 (2007).
 18. Vollstädt-Klein, S., Loeber, S., von der Goltz, C., Mann, K. & Kiefer, F. Avoidance of alcohol-related stimuli increases during the early 

stage of abstinence in alcohol-dependent patients. Alcohol Alcohol. 44, 458–463 (2009).
 19. Wertz, J. M. & Sayette, M. A. A review of the effects of perceived drug use opportunity of self-reported urge. Exp Clin 

Psychopharmacol 9, 3–13 (2001).
 20. Meule, A., Lukito, S., Vögele, C. & Kübler, A. Enhanced behavioral inhibition in restrained eaters. Eating Behaviors 12, 152–155 

(2011).

http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/randomise/index.html
http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/randomise/index.html


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 7394  | DOI:10.1038/s41598-017-07786-5

 21. Price, M., Lee, M. & Higgs, S. (2016). Food-specific response inhibition, dietary restraint and snack intake in lean and overweight/
obese adults: a moderated-mediation model. Int J Obesity 40, 877–882 (2005).

 22. Lawrence, N. S. et al. Training response inhibition to food is associated with weight loss and reduced energy intake. Appetite 95, 
17–28 (2015).

 23. Jones, A., Christiansen, P., Nederkoorn, C., Houben, K. & Field, M. Fluctuating disinhibition: implications for the understanding 
and treatment of alcohol and other substance use disorders. Frontiers Psychiatry 4, 140 (2013).

 24. Morris, L. S. & Voon, V. Dimensionality of Cognitions in Behavioral Addiction. Curr Behav Neurosci Rep. 3, 49–57 (2016).
 25. Pessoa, L., Padmala, S., Kenzer, A. & Bauer, A. Interactions between cognition and emotion during response inhibition. Emotion 12, 

192–197 (2012).
 26. Aron, A. R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol. 

Psychiatry 69, e55–e68 (2011).
 27. Braver, T. S., Paxton, J. L., Locke, H. S. & Barch, D. M. Flexible neural mechanisms of cognitive control within human prefrontal 

cortex. Proc. Natl. Acad. Sci. 106, 7351–7356 (2009).
 28. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).
 29. Chikazoe, J. et al. Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J. 

Neurosci. 29, 15870–15877 (2009).
 30. Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F. & Aron, A. R. Responding with restraint: what are the neurocognitive 

mechanisms? J Cogn Neurosci 22, 1479–1492 (2010).
 31. Swann, N. C. et al. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: 

electrophysiological responses and functional and structural connectivity. Neuroimage 59, 2860–2870 (2012).
 32. Swann, N. C., Tandon, N., Pieters, T. A. & Aron, A. R. Intracranial electroencephalography reveals different temporal profiles for 

dorsal- and ventro-lateral prefrontal cortex in preparing to stop action. Cereb. Cortex 23, 2479–2488 (2013).
 33. Van Rooij, S. J. H. et al. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during 

response inhibition. J Psychiatry Neurosci. 39, 330–338 (2014).
 34. Vink, M. et al. Function of striatum beyond inhibition and execution of motor responses. Hum Brain Mapp. 25, 336–344 (2005).
 35. Vink, M. et al. Frontostriatal activity and connectivity increase during proactive inhibition across adolescence and early adulthood. 

Hum Brain Mapp 35, 4415–4427 (2014).
 36. Van Belle, J., Vink, M., Durston, S. & Zandbelt, B. B. Common and unique neural networks for proactive and reactive response 

inhibition revealed by independent component analysis of functional MRI data. Neuroimage 103, 65–74 (2014).
 37. Zandbelt, B. B. & Vink, M. On the role of the striatum in response inhibition. PLoS ONE 5, e13848 (2010).
 38. Zandbelt, B. B., van Buuren, M., Kahn, R. S. & Vink, M. Reduced proactive inhibition in schizophrenia is related to corticostriatal 

dysfunction and poor working memory. Biol. Psychiatry 70, 1151–1158 (2011).
 39. Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S. & Vink, M. Transcranial magnetic stimulation and functional MRI 

reveal cortical and subcortical interactions during stop-signal response inhibition. J Cogn Neurosci 25, 157–174 (2013).
 40. Zandbelt, B. B., Bloemendaal, M., Neggers, S. F. W., Kahn, R. S. & Vink, M. Expectations and violations: delineating the neural 

network of proactive inhibitory control. Hum Brain Mapp. 34, 2015–2024 (2013).
 41. Chambers, C. D., Garavan, H. & Bellgrove, M. A. Insights into the neural basis of response inhibition from cognitive and clinical 

neuroscience. Neurosci Biobehav Rev 33, 631–646 (2009).
 42. Chen, C. Y., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L. & Juan, C. H. Control of prepotent responses by the superior medial 

frontal cortex. Neuroimage 44, 537–545 (2009).
 43. Verbruggen, F., Aron, A. R., Stevens, M. A. & Chambers, C. D. Theta burst stimulation dissociates attention and action updating in 

human inferior frontal cortex. Proc. Natl. Acad. Sci. 107, 13966–13971 (2010).
 44. Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: A theory of an act of control. Psychol Rev 91, 295–327 

(1984).
 45. Logan, G. D., Van Zandt, T., Verbruggen, F. & Wagenmakers, E. J. On the ability to inhibit thought and action: general and special 

theories of an act of control. Psychol Rev 121, 66–95 (2014).
 46. Verbruggen, F. & Logan, G. D. Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 

33, 647–661 (2009).
 47. Brevers, D. et al. Reduced attentional blink for gambling-related stimuli in problem gamblers. J Behav Ther Exp Psychiatry 42, 

265–269 (2011).
 48. Brevers, D. et al. Time course of attentional bias for gambling information in problem gambling. Psychol Addict Behav. 25, 675–682 

(2011).
 49. Grant, L. D. & Bowling, A. C. Gambling Attitudes and Beliefs Predict Attentional Bias in Non-problem Gamblers. J Gambl Stud. 31, 

1487–1503 (2015).
 50. Brevers, D. & Noël, X. Pathological gambling and the loss of willpower: a neurocognitive perspective. Socioaffect Neurosci Psychol. 

3, 21592 (2013).
 51. Ciccarelli, M., Nigro, G., Griffiths, M. D., Cosenza, M. & D’Olimpio, F. Attentional bias in non-problem gamblers, problem gamblers, 

and abstinent pathological gamblers: An experimental study. J Affect Disord. 206, 9–16 (2016).
 52. Vizcaino, E. J. et al. Maintenance of attention and pathological gambling. Psychol Addict Behav. 2, 861–7 (2013).
 53. Hønsi, A., Mentzoni, R. A., Molde, H. & Pallesen, S. Attentional bias in problem gambling: a systematic review. J Gambl Stud. 29, 

359–375 (2013).
 54. van Holst, R. J., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. Why gamblers fail to win: a review of cognitive and 

neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 34, 87–107 (2010).
 55. Leotti, L. A. & Wager, T. D. Motivational influences on response inhibition measures. J Exp Psychol Hum Percept Perform 36, 

430–446 (2010).
 56. Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 108, 44–79 

(2013).
 57. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of 

frequency, inhibition and errors. Cereb Cortex. 1, 825–36 (2001).
 58. Criaud, M. & Boulinguez, P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with 

fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev. 37, 11–23 (2013).
 59. Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action - A theory of an act of control. Psychol Rev. 91, 295–327 

(1984).
 60. Verbruggen, F. & Logan, G. D. Response inhibition in the stop-signal paradigm. Trends Cogn Sci. 12, 418–24 (2008).
 61. Fujita, K. On conceptualizing self-control as more than the effortful inhibition of impulses. Pers Soc Psychol Rev 15, 352–366 (2011).
 62. Galla, B. M. & Duckworth, A. L. More than resisting temptation: Beneficial habits mediate the relationship between self-control and 

positive life outcomes. J Pers Soc Psychol 109, 508–525 (2015).
 63. Baumeister, R. F., Bratslavsky, E., Muraven, M. & Tice, D. M. Ego depletion: is the active self a limited resource? J Pers Soc Psychol 74, 

1252–1265 (1998).
 64. Muraven, M., Tice, D. M. & Baumeister, R. F. Self-control as limited resource: regulatory depletion patterns. J Pers Soc Psychol 74, 

774–789 (1998).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 7394  | DOI:10.1038/s41598-017-07786-5

 65. Droungas, A., Ehrman, R. N., Childress, A. R. & O’Brien, C. P. Effect of smoking cues and cigarette availability on craving and 
smoking behavior. Addict Behav 20, 657–673 (1995).

 66. Juliano, L. M. & Brandon, T. H. Reactivity to instructed smoking availability and environmental cues: evidence with urge and 
reaction time. Exp Clin Psychopharmacol 6, 45–53 (1998).

 67. Papachristou, H., Nederkoorn, C., Corstjens, J. & Jansen, A. The role of impulsivity and perceived availability on cue-elicited craving 
for alcohol in social drinkers. Psychopharmacology 224, 145–153 (2012).

 68. Field, M. & Cox, W. M. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol 
Depend 97, 1–20 (2008).

 69. Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J. & Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: a 
survey of human neuroimaging studies. Neurosci Biobehav Rev 38, 1–16 (2014).

 70. Blechert, J., Klackl, J., Miedl, S. F. & Wilhelm, F. H. To eat or not to eat: Effects of food availability on reward system activity during 
food picture viewing. Appetite 99, 254–61 (2016).

 71. Meule, A., Lukito, S., Vögele, C. & Kübler, A. Enhanced behavioral inhibition in restrained eaters. Eating Behav 12, 152–155 (2011).
 72. Price, M., Lee, M. & Higgs, S. Food-specific response inhibition, dietary restraint and snack intake in lean and overweight/obese 

adults: a moderated-mediation model. Int J Obesity 40, 877–882 (2016).
 73. Morie, K. P. et al. Intact inhibitory control processes in abstinent drug abusers (II): a high density electrical mapping study in former 

cocaine and heroin addicts. Neuropharmacology 82, 151–160 (2014).
 74. Verbruggen, F. & Logan, G. D. Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept 

Perform 35, 835–854 (2009).
 75. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med Image Anal 5, 143–156 

(2001).
 76. Andersson, J., Jenkinson, M. & Smith, S. Non-linear optimisation. FMRIB technical report TR07JA1 www.fmrib.ox.ac.uk/analysis/

techrep (2007).
 77. Andersson, J., Jenkinson, M. & Smith, S. Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2 www.

fmrib.ox.ac.uk/analysis/techrep (2007).
 78. Beckmann, C. F., Jenkinson, M. & Smith, S. M. General multilevel linear modeling for group analysis in FMRI. NeuroImage 20, 

1052–1063 (2003).
 79. Woolrich, M. Robust group analysis using outlier inference. Neuroimage 41, 286–301 (2008).
 80. Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M. & Smith, S. M. Multilevel linear modelling for FMRI group 

analysis using Bayesian inference. NeuroImage 21, 1732–1747 (2004).

Acknowledgements
Funding for this study was provided by the National Center for Responsible Gaming (NCRG; Early Stage 
Investigator Grant). NCRG had no role in the study design, collection, analysis or interpretation of the data, 
writing the manuscript, or the decision to submit the paper for publication. The authors thank Alex Hollihan and 
Ify Anene for their help in recruiting participants, and Frederick Verbruggen for his advices on data analyses.

Author Contributions
Damien Brevers, Xavier Noël, Qinghua He, Brenton Keller, and Antoine Bechara designed the study and wrote 
the protocol. Damien Brevers conducted literature searches and provided summaries of previous research studies. 
Damien Brevers, Qinghua He, and Brenton Kellerprogrammed the task and undertaken the pilot study. Damien 
Brevers recruited the participants and collected the data of the neuroimaging study. Damien Brevers and Qinghua 
He conducted the statistical analysis. Damien Brevers wrote the first draft of the manuscript and all authors 
contributed to and have approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-07786-5
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.fmrib.ox.ac.uk/analysis/techrep
http://www.fmrib.ox.ac.uk/analysis/techrep
http://www.fmrib.ox.ac.uk/analysis/techrep
http://www.fmrib.ox.ac.uk/analysis/techrep
http://dx.doi.org/10.1038/s41598-017-07786-5
http://creativecommons.org/licenses/by/4.0/

	Neural correlates of proactive and reactive motor response inhibition of gambling stimuli in frequent gamblers
	Results
	Behavioral task validation. 
	In scanner behavior. 
	Proactive inhibition. 

	Reactive inhibition. 
	Brain activations during proactive inhibition, reactive inhibition, and cue reactivity. 
	Proactive inhibition. 

	Reactive inhibition. 
	Cue reactivity. 


	Discussion
	Methods
	Participants. 
	The Stop-Signal Task. 
	MRI Procedure and Data Acquisition. 
	Image Preprocessing. 
	Behavioral Data Analysis. 
	Brain Imaging Analyses. 

	Acknowledgements
	Figure 1 (A) Proactive inhibition: effect of stop-signal probability contexts (0% = green, 17% = yellow, 25% = orange, 33% = red) on go_signal response time for poker (in red) and neutral (in black) stimuli in the control and the poker player groups (B) R
	Figure 2 Whole-brain activation within the whole sample of control and poker player (N = 28) during (A) proactive motor response inhibition and (B) reactive motor response inhibition.
	Figure 3 (A) Higher dorsal anterior cingulate activation (MNI coordinates: x = 4, y = 12, z = 44) during reactive inhibition (i.
	Figure 4 An example of a succession between a neutral and a poker pictures in the green, yellow, orange and red contexts of the stop-signal task.




