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Effects of limonene, n‑decane and 
n‑decanol on growth and membrane fatty acid 
composition of the microalga Botryococcus 
braunii
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Abstract 

Botryococcus braunii is a promising microalga for the production of biofuels and other chemicals because of its high 
content of internal lipids and external hydrocarbons. However, due to the very thick cell wall of B. braunii, traditional 
chemical/physical downstream processing very often is not as effective as expected and requires high amounts 
of energy. In this cases, the application of two-phase aqueous-organic solvent systems could be an alternative to 
cultivate microalgae allowing for a simultaneous extraction of the valuable compounds without significant nega-
tive effects on cell growth. Two-phase systems have been applied before, however, there are no studies so far on 
the mechanisms used by microalgae to survive in contact with solvents present as a second-phase. In this study, the 
effects of the solvents limonene, n-decane and n-decanol on growth of the microalga B. braunii as well as the adaptive 
cell response in terms of their phospholipid fatty acid contents were analized. A concentration-dependent negative 
effect of all three solvents on cell growth was observed. Effects were accompanied by changes of the membrane fatty 
acid composition of the alga as manifested by a decrease of the unsaturation . In addition, an association was found 
between the solvent hydrophobicity (given as log octanol–water partition coefficient ( PO−W ) values) and their toxic 
effects, whereby n-decanol and n-decane emerged as the most and least toxic solvent respectively. Among the tested 
solvents, the latter promises to be the most suitable for a two-phase extraction system.
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Introduction
Botryococcus braunii is a microalga that can be found 
in fresh, brackish, and saline water all around the world 
(Aaronson et al. 1983). This microalga is considered to be 
a source of lipids and hydrocarbons and can thus possibly 
serve as a base for renewable fuel production (Ashokku-
mar and Rengasamy 2012). It is known that lipid produc-
tivity in B. braunii is higher when it is cultivated under 
nitrogen-depletion or other stress conditions (Cheng 
et al. 2013). However, the total amount of lipids available 
for biotechnological applications depends on the biomass 

productivity, that is normally reduced under stress con-
ditions. Unlike lipids, hydrocarbon production is propor-
tional to cell growth. Accordingly, more hydrocarbons 
are obtained when more biomass is produced (Kojima 
and Zhang 1999).

For extracting biotechnologically valuable products 
from microorganisms generally two different methods 
are used: (i) intensive extraction from harvested biomass 
(Cooney et al. 2009; Kumar et al. 2015) and (ii) continu-
ous extraction in a two-phase aqueous-organic solvent 
system, during ongoing microbial growth (Kleinegris 
et  al. 2011). This second approach has been used to 
extract valuable compounds such as carotenoids, lipids, 
and hydrocarbons from microalgae maintaining, whereby 
cell growth is, at least partially, maintained (Hejazi and 
Wijffels 2004; Sim et al. 2001; Zhang et al. 2011a).
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Two-phase systems may also be advantageous for the 
extraction of hydrocarbons from B. braunii in a bio-
fuel production context as: (i) most hydrocarbons of B. 
braunii are located outside of the cell wall (approx. 95% 
according to Largeau et  al. (1980)), and are therefore 
more easily extractable than internal lipids; (ii) two-phase 
systems potentially allow for both, the ongoing cultiva-
tion of cells and the harvest of external hydrocarbons 
which move from aqueous to solvent phase.

Maintaining microbial growth in a two-phase system 
depends on the tolerance and adaptive properties of 
microorganisms to the conditions and solvents applied. 
Responses of bacteria in contact with solvents have been 
widely studied (Manefield et  al. 2017) and data show 
that solvent effects on cell membrane include alterations 
in order, packing, and interaction of lipids–lipids and 
lipids–proteins, or impairments on membrane functions 
such as the selective permeability and enzymatic activ-
ity (Isken and de Bont 1998; Mattos 2001; Weber and 
de Bont 1996). Adaptive bacterial responses to counter-
act solvent effects include alterations of the content of 
their membrane phospholipid fatty acids, morphological 
changes, active solvent transport out of cell membrane, 
and modification of surface charge and hydrophobicity 
(Guan et al. 2017; Heipieper et al. 2007; Kusumawardhani 
et al. 2018; Segura et al. 2012).

A convenient proxy for the adaptation of the mem-
brane of eukaryotic cells (including fungi and algae) is the 
fatty acid unsaturation index (UI) (Heipieper et al. 2000). 
This index is the average number of double bonds present 
in every lipid unit in the sample. In this experiment UI 
is the unsaturation level index of membrane fatty acids. 
Therefore, a decrease in the UI is related to a decrease in 
membrane fluidity and an increase in the rigidity of the 
cell membrane (Weber and de Bont 1996), as a response, 
for instance, to membrane fluidizing solvents.

Previous studies examining the effect of stress on the 
fatty acid profile of microalgae include effects of NaCl, 
irradiation, CO2 , temperature and heavy metals (Chen 
et  al. 2008; Dawaliby et  al. 2016; Kalacheva et  al. 2002; 
McLarnon-Riches et  al. 1998; Rao et  al. 2007; Sushchik 
et  al. 2003; Vazquez and Arredondo 1991; Yoshimura 
et  al. 2013; Zhila et  al. 2011). However, to our knowl-
edge so far no study has addressed the solvent stress on 
changes of the UI of microalgae membrane fatty acids.

Depending on goals, solvent selection should be a bal-
ance among different solvent characteristics (Daugulis 
1988). In this study, on the one hand hydrocarbon extrac-
tion capabilities and biocompatibility are necessary, but 
on the other hand a sustainable solvent production and 
an easy solvent-hydrocarbon separation (low energy cost) 
are desirable from a renewable fuel production perspec-
tive. These last two conditions, are reasons to consider 

limonene and decane candidates. The former is a non-
petroleum derived, renewable solvent (Njoroge et  al. 
2004), whereas the latter is one of the lowest molecu-
lar weight highly biocompatible alkanes (León 2003). 
Decanol, the alcohol derived from decane, is less hydro-
phobic and, therefore, more water soluble, what could 
provide a higher hydrocarbon extraction although a 
lower biocompatibility. In this study, only biocompatibil-
ity will be tested.

Limonene has been used before to extract hydropho-
bic compounds such as oils and carotenoids from diverse 
types of matrices with good results (Chemat-Djenni 
et al. 2010; Mamidipally and Liu 2004; Tanzi et al. 2012; 
Virot et al. 2008a, b). Oil extraction yields, based on dry 
weight, have oscillated between 13.1% (Chemat-Djenni 
et al. 2010) and 48.6% (Virot et al. 2008b), although these 
values depend on oil content in their respective matri-
ces. Limonene used to extract lipids from the microalga 
Chlorella vulgaris recovered 38.4% of its respective total 
lipids (Tanzi et al. 2012). Nevertheless, in our knowledge, 
limonene has never been used as solvent in a two-phase 
system to extract hydrophobic compounds.

Decane has been used as solvent to extract hydro-
phobic compounds from two-phase systems with alive 
microalga. Results have varied in biocompatibility and 
extraction capacity, oscillating from high (León 2003; 
León et al. 2001; Zhang et al. 2011b) to low (Hejazi et al. 
2002; León et al. 2001) biocompatibility and from accept-
able (León 2003; Zhang et  al. 2011b) to poor (Mojaat 
et  al. 2008) compound extraction capabilities. These 
results, however, depend on extraction system conditions 
and microalga species and should therefore be taken with 
caution.

In this study, we tested the effects of both mineral sol-
vents, n-decane and its derived alcohol n-decanol, as well 
as the effects of the renewable solvent limonene, on the 
growth and membrane fatty acid profile of the micro-
alga B. braunii in a two-phase aqueous-organic solvent 
system.

Materials and methods
Preculture conditions
A 6 L preculture was established to supply biomass in 
an exponential growth phase for two-phase cultures. 
The microalga strain used in this experiment was Bot-
ryococcus braunii race A (UTEX LB572) provided by 
the Universidad de Antofagasta, Chile. The preculture 
was carried out in a 10 L glass bottle (Cat.No.11 602 00, 
Duran Group) using the medium described by Bazaes 
et al. (2012), but replacing HPO3 for NaH2PO4 . The pH 
was set at 6.5 using HCl (5 M) and the medium was auto-
claved at 121 °C for 21 min. The microalga grew under 
continuous (24:0 h light:dark cycle) cool fluorescent 
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illumination at ca. 1500 lx , and 25 ±  1  °C with neither 
aeration nor CO2 source. To prevent microalga precipita-
tion the flasks were shaken twice a day manually.

Two‑phase cultures
The experiment was set up as a two-factor factorial 
design, with solvent and solvent concentration as fac-
tors. When the biomass in precultures reached the expo-
nential growth phase, 48 parts of the culture were taken 
(100 mL volume) and either limonene, n-decane and 
n-decanol were added in the necessary amount to obtain 
the following solvent concentrations (mM): (1) limonene: 
123.3, 12.3, 1.2, 0.6, 0.3; (2) n-decane: 513.0, 282.2, 51.3, 
28.2, 5.1; (3) n-decanol: 157.3, 15.7, 1.6, 0.8, 0.4. Concen-
trations were determined based upon literature (Frenz 
et  al. 1989b; Liu and Mamidipally 2005; Mojaat et  al. 
2008; Zhang et  al. 2011b) and toxicity assays (OECD 
1984). According to the authors reports and pilot stud-
ies this range of concentrations produce quick cell death 
(higher rates among higher concentrations) but also fully 
functional cells to observe changes in membrane fatty 
acid composition. Three replicates, placed in 240 mL 
flasks with rubber caps, were used for each treatment, 
totalling 48 runs including three control samples (cul-
tures without solvents). After 24 h, two aliquots were 
taken from every flask, one to measure biomass concen-
tration changes (growth) and the other one to determine 
membrane fatty acid profile.

All conditions for two-phase cultures were the same as 
in preculture, including culture media and continuous 
illumination.

Cell growth measurement
Cell growth in culture and preculture was determined 
using a Coulter counter device (isoton II solution as dilu-
ent, 100 μm electrode, 1:500 dilution) (Neumann et  al. 
2005a; Nguyen et al. 2013; Ríos et al. 2012). Samples were 
taken in the morning, and after that two-phase cultures 
were shaken manually twice a day (12.00 and 20.00 h), to 
avoid that solvent droplets in samples modify microalga 
cell concentrations.

Solvent concentration in cell membrane
According to Sikkema et al. (1994) there is a direct cor-
relation between the hydrophobicity given as log P values 
of a solvent and their partitioning in biological mem-
branes. The following empirical relation was estimated: 
log(PM−W ) = 0.97 ∗ log(PO−W )− 0.64 , where PM−W  
and PO−W  are membrane/water and octanol/water par-
tition coefficients, respectively. This equation allows to 
calculate solvent concentration in a membrane for a rest-
ing-system case, which will be helpful for result interpre-
tation (Neumann et al. 2005b).

Characterization of membrane fatty acid profile
Membrane fatty acid profile was characterized for the 
control samples and biomass in contact with solvents 
24 h after the first solvent-microalga contact. Mem-
brane lipids were extracted according to Bligh and Dyer 
(1959) and transformed into fatty acid methyl ester 
(FAME) as described by Morrison and Smith (1964). 
FAME identification was performed using a GC-FID 
Agilent 6890N, equipped with a capillary chromato-
graphic column (CP-Sil 88 capillary column, Chrom-
pack, ID: 0.25 mm, longitude: 50 m, film: 0.2 μm). A 
proxy for the relevant presence of double bonds in the 
membrane fatty acid profile was calculated as follows:

where UI is the unsaturation index (Heipieper et al. 2000; 
Kaszycki et al. 2013).

Data processing
The experiment was set as a two-factor factorial 
design, with solvent and solvent concentration as fac-
tors. All experiments were carried out in triplicates. 
The obtained data were analyzed using analysis of 
variance (ANOVA) to detect significant differences 
between solvents or solvent concentration effects. The 
probability of α (type I error) was set at 5%. All data 
processing and plots were made using the statistical 
computing software R (version 3.3.3) (R Core Team 
2017).

Results
Cell growth
The effect of three solvents of different log PO−W  on 
B. braunii growth was measured (Fig.  1). n-decanol 
(log PO−W  = 3.97) was found to be the most toxic 
solvent tested, resulting in a lower cell concentration 
compared to n-decane and limonene at quasi identi-
cal solvent concentrations (p-value < 0.01). In the case 
of limonene (log PO−W  = 4.23), cultures with concen-
trations lower to 1.2 mM showed higher growth than 
control samples (p-value = 0.03), i.e., values greater 
than 100% as illustrated in Fig.  1. Cultures using 
n-decane as second-phase (log PO−W = 5.01 ) grew 
similarly to the control samples up to 51.3 mM of sol-
vent concentration (p-value = 0.89), and then slowly 
started to decrease to 70% of control sample growth. 
As expected, the general trend for all the solvents was 
a lower relative growth when solvent concentration 
increased and when log PO−W  decreased (see Fig. 1).

(1)UI =
(%C16 : 1+ %C18 : 1)+ (%C18 : 2 ∗ 2)+ (%C18 : 3 ∗ 3)

100
,
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Characterization of fatty acid profile from cells in contact 
with solvents
The fatty acid profile of cells from control samples, 
revealed that cell membranes of B. braunii contain 
mainly oleic acid (C18:1cis9, 28.0%) and palmitic acid 
(C16:0, 25.9%). The main effects of solvents on mem-
brane fatty acid profile were observed on C16:0 and 
C18:1, and to a minor degree on C16:1. C18:2 and C18:3 
showed no significant changes (Fig. 2). On the one hand, 
cells in contact with n-decanol and n-decane synthesized 
higher amounts of C16:0 (p-value < 0.01) on average, fol-
lowed by a decrease in the content of C18:1, especially 
in decane (p-value < 0.01). On the other hand, limonene 
presents a monotonic ascending trend for C16:0 and the 
opposite for C18:1, for increasing solvent concentrations. 
These changes in fatty acid profile were reflected by dif-
ferent UIs, showing differences in response to both the 
solvent type and solvent concentration, suggesting pre-
dominance of saturated fatty acids and those fatty acids 
with one double bond.

Addition of n-decane resulted in a decreased UI 
remaining at UI ≈ 0.82 , regardless of the solvent con-
centration. The presence of limonene and n-decanol 
at the three lowest concentrations levels likewise low-
ered the UI to the following range: UI ≈ 0.90–0.96. For 
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Fig. 1  Effect of different concentrations of limonene (square), 
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Fig. 2  Effect of n-decanol, n-decane and limonene on membrane fatty acid profile of Botryococcus braunii UTEX LB572 after 24 h biomass-solvent 
contact for 5 different concentrations (1 to 5) and control samples (0). The number 1 correspond to the lowest concentration for every solvent, 
meanwhile number 5 correspond to the highest one. All data represent the average and standard error of the mean of three independent samples
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these solvents, two higher concentrations did not result 
in important changes on the UI compared to the control 
samples (Fig. 3).

Discussion
The aim of this study was to test the effects of n-decane, 
n-decanol, and limonene on growth and membrane 
fatty acid composition, in particular the UI of B. brau-
nii UTEX LB572 cells. Addition of solvents to B. brau-
nii led to differing extents of growth inhibition. At quasi 
equimolar concentration n-decanol was found to be the 
most toxic solvent followed by limonene and n-decane, 
which showed the least inhibitory effects (Fig.  1). Such 

data provide valuable information for a better evaluation 
of the relative physiological status of the cells and associ-
ated changes of their fatty acid profile and UIs as will be 
discussed below.

In 1994, Sikkema et al. (1994) hypothesized that solvent 
toxicity is primarily governed by the amount of solvent 
dissolved into the membrane rather than its chemical 
structure. Thus, the accumulation of molecules in the 
cell membrane of microorganisms would be the cause of 
negative effects on bilayer stability, packing of acyl chains 
and ion leakage problems, resulting in stress, arrest of 
growth, or even cell death in the extreme case (Weber 
and de Bont 1996). This hypothesis was supported by 
results of Heipieper et al. (1995), who, working with dif-
ferent types of solvents on Pseudomonas putida S12, 
found that the concentration in membrane that produces 
a 50% loss in growth is similar for all of them: between 
60 and 200 mM (solvents used were: methanol, ethanol, 
1-butanol, phenol, 1-hexanol, p-cresol, 4-chlorophenol, 
toluene, 1-octanol, and 2,4-dichlorophenol).

In this study, the membrane solvent concentration was 
calculated for the maximum water solubility for every 
solvent, according to the works by Sikkema et al. (1994) 
and Neumann et  al. (2005b). Results in Table  1 show 
that, in a resting system, n-decane reached a maximum 
membrane concentration (MMC) around 6 mM. A low 
value compared with the range 60–200 mM. In contrast, 
MMC for limonene and n-decanol were higher than two 
hundred mM, 294 and 374 mM respectively, suggesting 
that this is the reason for the low toxicity of n-decane 
and high toxic effects of n-decanol on the microalga B. 
braunii. Although this is an approximate estimation of 
the actual solvent concentration in the cell membrane, it 
was consistent with results of the growth curves in Fig. 1. 
These curves show that, on average, solvents with higher 
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Table 1  Physico-chemical properties of solvents used in the two-phase aqueous-organic system

Log PM−W and [M]/[Mdec ] were included as references
a   Logarithm of octanol-water partition coefficient
b   Logarithm of water-membrane partition coefficient
c   Calculated according to Sikkema et al. (1994)
d   MMC: maximum membrane concentration of solvent. Calculated according to Neumann et al. (2005b)
e   Solvent concentration in membrane (M) divided by n-decane concentration in membrane ( Mdec)
f   Data from Mojaat et al. (2008)
g   Data from Filipsson et al. (1998)
h   Data from Frenz et al. (1989b)

Solvents Molar mass (g/
mol)

Maximum water 
solubility (mM)

Log PO−W
a Log log PM−W

b,c MMCd [M]/[Mdec]
e

Decane 142.29 0.000366 5.01f 4.22 6 1

Limonene 136.23 0.101299 4.23g 3.46 294 ≈ 49

n-decanol 158.28 0.230000 3.97h 3.21 374 ≈ 62
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log PO−W  are more biocompatible. This finding is in line 
with previous research on B. braunii and other microal-
gae (Frenz et al. 1989a, b; León et al. 2001; Zhang et al. 
2011a).

Notably, for some concentrations of limonene and 
n-decane, growth reached values greater than 100%. A 
possible explanation is that within a certain range of con-
centration, solvents produced cell membrane instability, 
which in turn favours mass transfer between cells and 
culture medium. Consequently, nutrients and oxygen 
permeate more easily through cell membrane, accelerat-
ing growth (León et al. 2001). This high growth associated 
with limonene and n-decane is also in agreement with 
previous studies on Aerobacter aerogenes and Saccharo-
myces cerevisae (Jia et  al. 1997; Rols et  al. 1990), which 
reported that oxygen dissolves more easily in organic 
solvents compared with water, working as improved oxy-
gen-vectors, thus incrementing the oxygen transfer rate 
and growth in B. braunii cultures. Another reason for the 
high growth could be that solvents are actually working, 
simultaneously, as carbon sources (de Carvalho and da 
Fonseca 2004; de Carvalho et al. 2005), which is possible 
as B. braunii has been reported as a mixotrophic micro-
alga (Tanoi et al. 2010; Zhang et al. 2011b).

The adaptive response of B. braunii to solvent con-
tact was similar for all solvents tested in our studies. 
The greatest changes in fatty acid profile were produced 
by n-decane, where C16:0 abundance was remarkably 
increased while C18:1 decreased. A reduction of C16:1 
also occurred (Fig. 2). As a result of these changes, an UI 
drop from 1.02 (control samples) to around 0.82 for all 
n-decane concentrations was produced (Fig. 3). As Fig. 1 
illustrates, cells in contact with n-decane seem to have a 
growth comparable to control samples for all concentra-
tions. These outcomes suggest that n-decane, dissolved in 
culture media and cell membrane, was enough to stimu-
late cells to produce de novo synthesis of saturated and/
or less unsaturated lipids to counteract increased fluidity, 
but not enough to stop cell growth (Figs. 1 and 3).

According to Piper (1995), solvent accumulation in cell 
membrane produce changes in membrane fatty acids 
similar to those produced by an increase in temperature, 
due to both stressors induce an increment in fluidity and 
loss of selective permeability. B. braunii exposed to ris-
ing temperatures showed a reduction in its UI (Kalacheva 
et al. 2002; Sushchik et al. 2003), as was also found in this 
study. Sushchik et al. (2003) observed that an increment 
from 30 °C up to 40 °C increased C16:0 from 56.3 up to 
73.0% of total fatty acids, while simultaneously C18:2 and 
C18:3 were reduced from 14.9 to 8.8% and from 19.4 to 
10.3%, respectively. In this study, however, there were 
no significant changes in linoleic (C18:2) or linolenic 
(C18:3) acid abundance, probably because the increase in 

membrane rigidity due to the reduction from 3 to 2, or 
2 to 1 double bond is not as large as when the change is 
from 1 to 0 double bond, since the structure of a satu-
rated fatty acid is linear. The underlying logic in a reduc-
tion of membrane fatty acid unsaturation is that saturated 
fatty acids counteract increasing membrane fluidity and 
permeability, due to rising temperature or solvent con-
tact with cells, as they can be packed more tightly due 
to their straightness (Sikkema et al. 1995). Other micro-
algae exposed to a rise in temperature, such as Nanno-
chloropsis sp. (Hu and Gao 2016) and Chlorella vulgaris 
(Sushchik et  al. 2003) also showed a similar behaviour, 
reducing unsaturation. Meanwhile a reduction in tem-
peratures, produce the opposite effect, i.e., increased 
fatty acid unsaturation to maintain membrane fluidity 
(Chen et al. 2008; McLarnon-Riches et al. 1998; Mikami 
and Murata 2003; Thompson et al. 1992).

Microalgae can also change fatty acid unsaturation 
levels to regulate membrane fluidity altered by modifi-
cations in environmental or anthropogenic factors such 
as light, heavy metals, CO2 or NaCl. However, the direc-
tion of changes are not always clear (Hu and Gao 2016; 
McLarnon-Riches et  al. 1998; Tsuzuki et  al. 1990; Zhila 
et  al. 2011) since eukaryotes use others complementary 
mechanisms to regulate membrane stability, such as pro-
duction of sterols or synthesis of metabolites to counter-
act osmotic pressure produced by salts (Rao et al. 2007; 
Vazquez and Arredondo 1991).

With regard to limonene and n-decanol an UI reduc-
tion was found (compared to control samples) at the 
three lower solvent concentrations, meaning cells were 
still able to perform changes at fatty acids synthesis level, 
despite of the stress produced by solvents. At the two 
higher solvent concentrations the UI remained compara-
ble to the control samples for both solvents. Coincidently, 
higher concentrations of limonene and n-decanol pro-
duced lower growth rates compared to control samples 
suggesting that stress reduces synthesis of fatty acids, 
which is a requisite for a change in the saturated/unsatu-
rated ratio (Segura et al. 2004).

In conclusion, this study confirms for B. braunii, 
what has been known for bacteria: B. braunii performs 
changes in lipid profile and unsaturation of membrane 
lipids in contact with solvents as a strategy to maintain 
membrane fluidity, tolerate stress and keep its growth. 
Additionally, as predicted by log PO−W , n-decanol was 
identified as the most aggressive solvent as second-phase; 
limonene had an intermediate effect, whereas n-decane 
seems to be able to maintain high growth rates even at 
high concentrations, being the most suitable solvent to 
extract valuable lipophilic compounds like hydrocarbons 
in a two-phase culture, under conditions used in this 
study.
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