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Abstract

Lung cancer is the leading cause of cancer-related death and lung adenocarcinoma is its

most common subtype. Although genetic alterations have been identified as drivers in sub-

sets of lung adenocarcinoma, they do not fully explain tumor development. Epigenetic alter-

ations have been implicated in the pathogenesis of tumors. To identify epigenetic alterations

driving lung adenocarcinoma, we used an improved version of the Tracing Enhancer Net-

works using Epigenetic Traits method (TENET 2.0) in primary normal lung and lung adeno-

carcinoma cells. We found over 32,000 enhancers that appear differentially activated

between normal lung and lung adenocarcinoma. Among the identified transcriptional regula-

tors inactivated in lung adenocarcinoma vs. normal lung, NKX2-1 was linked to a large num-

ber of silenced enhancers. Among the activated transcriptional regulators identified,

CENPA, FOXM1, and MYBL2 were linked to numerous cancer-specific enhancers. High

expression of CENPA, FOXM1, and MYBL2 is particularly observed in a subgroup of lung

adenocarcinomas and is associated with poor patient survival. Notably, CENPA, FOXM1,

and MYBL2 are also key regulators of cancer-specific enhancers in breast adenocarcinoma

of the basal subtype, but they are associated with distinct sets of activated enhancers. We

identified individual lung adenocarcinoma enhancers linked to CENPA, FOXM1, or MYBL2

that were associated with poor patient survival. Knockdown experiments of FOXM1 and

MYBL2 suggest that these factors regulate genes involved in controlling cell cycle progres-

sion and cell division. For example, we found that expression of TK1, a potential target gene

of a MYBL2-linked enhancer, is associated with poor patient survival. Identification and

characterization of key transcriptional regulators and associated enhancers in lung adeno-

carcinoma provides important insights into the deregulation of lung adenocarcinoma epigen-

omes, highlighting novel potential targets for clinical intervention.
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Author summary

Although genetic alterations have been identified as drivers in subsets of lung adenocarci-

noma, they do not fully explain tumor development. Here we investigated epigenetic alter-

ations that might contribute to lung adenocarcinoma progression. We used a

bioinformatics approach called TENET 2.0 to identify key regulators and enhancers

altered in lung adenocarcinoma compared to normal lung. We identified NKX2-1 as a

transcriptional regulator inactivated in lung adenocarcinoma, linked to a large number of

enhancers silenced in cancer. Among the activated transcriptional regulators, CENPA,

MYBL2, and FOXM1 were linked to numerous cancer-specific enhancers and high

expression of these regulators was observed in a subgroup of lung adenocarcinomas show-

ing poor patient survival. Investigating downstream effects of these key regulators, we also

determined individual enhancers associated with survival and their potential target genes,

including TK1. Our findings suggest that abnormal expression of key regulators drives

epigenetic deregulation in lung adenocarcinoma, promoting future development of novel

biomarkers and therapeutic targets.

Introduction

Lung cancer is the second most commonly diagnosed form of cancer and the leading cause of

cancer-related death in both men and women [1]. Lung adenocarcinoma (LUAD) arises in the

alveolar epithelium of the lung and comprises almost 50% of all lung cancer cases in the United

States [2]. Major risk factors for LUAD include tobacco smoking, inherited genetic factors,

diet, alcohol consumption, exposure to sources of ionizing radiation and environmental con-

taminants [3,4]. These risk factors induce molecular and cellular changes in alveolar epithelial

cells, leading these purported cells of origin to form LUAD. A number of somatic genetic alter-

ations such as KRAS, EGFR, NF1, and BRAFmutations, gene fusions involving ALK, EML4,

and ROS1, and copy number variations of the KRAS and EGFR genes have been identified and

utilized in the development of targeted therapies for LUAD [5,6]. However, approximately a

quarter of LUAD cases do not possess any of these genetic alterations [7], suggesting that other

molecular changes likely contribute to lung cancer development.

Epigenomic features do not affect the sequence of DNA, but can affect the transcriptional

output of genes in a cell-type specific manner by altering the activity of regulatory elements

such as promoters (which are located proximal to the transcription start site of genes) and

enhancers (which can be found at a great genomic distance (distal) from their target genes).

Promoters and enhancers play critical roles in ensuring cell type specificity by controlling gene

expression through the binding of transcription factors and recruitment of the transcriptional

machinery [8,9]. Disruption of epigenetic marks and altered activity of regulatory elements

may lead to the development of cancer [10,11]. The epigenetic state at regulatory elements can

be determined by measuring levels of histone 3 lysine 4 trimethylation (H3K4me3, a promoter

mark) or histone 3 lysine 27 acetylation (H3K27ac, an enhancer mark), using chromatin

immunoprecipitation (ChIP)-seq. Epigenetic states can also be assessed by using open chro-

matin assays such as DNase-seq, NOMe-seq (Nucleosome Occupancy and Methylome), or

ATAC-seq (assay for transposase-accessible chromatin) [12]. DNA methylation levels can be

used to infer accessibility of open chromatin regions at regulatory elements since active pro-

moters and enhancers tend to be unmethylated [13,14]. Moreover, the binding of activated

transcription factors affects DNA methylation states of targeted regulatory elements [13–17].
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We previously developed the Tracing Enhancer Networks using Epigenetic Traits (TENET)

method which can identify differentially activated enhancers and their associated transcrip-

tional regulators (TRs) using tumor vs. normal tissue samples. TENET incorporates informa-

tion from ChIP-seq and open chromatin assays to determine the location of enhancers in

normal and tumor tissues, and uses the DNA methylation levels of probes in the identified

regions as an indicator of enhancer activity. Then, TENET uses gene expression data from the

same samples to identify transcriptional regulators whose expression levels are highly corre-

lated with the DNA methylation level of each enhancer. Using TENET, biomarkers and poten-

tial oncogenic drivers of breast cancer (e.g. GATA3, ESR1, FOXA1), prostate cancer (e.g.

FOXA1, HOXC6, HOXB13), and kidney cancer (e.g. GLIS1, MAF, RUNX1) have been identi-

fied [14]. These results illustrate the utility of the TENET method to identify key transcrip-

tional regulators associated with tumorigenesis. However, computational time and power

associated with identification of the key transcriptional regulators of the original TENET

method was not optimal. Here, we have significantly improved the method, updating the data-

bases, including new algorithms to identify epigenetic traits associated with mortality, and

greatly decreasing the computational time needed. We then applied the improved version of

the method (TENET 2.0) to numerous epigenome and transcriptome datasets from lung and

lung cancer and identified key transcriptional regulators and enhancers associated with lung

adenocarcinoma, providing novel potential targets for clinical intervention.

Results

Identification of differentially activated enhancers in normal lung versus
lung adenocarcinoma

Each cell type has a distinct transcriptome, which is established by the levels and activities of

transcriptional regulators that bind to regulatory elements and control the expression of

numerous target genes. Among regulatory elements, the activity of enhancers is most closely

linked to cell identity, as they are often bound by cell-type specific transcriptional regulators

[18]. We developed TENET 2.0 to identify key transcriptional regulators whose expression lev-

els are associated with changes in DNA methylation levels at enhancers in normal vs. tumor

tissue samples (Fig 1 and S1 Fig). TENET 2.0 now utilizes human reference genome hg38 and

includes updated databases of human genes (GENCODE v22) [19]. To comprehensively char-

acterize and identify transcriptional regulators altered in tumors, we used the transcription

factor database specified by Lambert et al. [20]. We developed TENET 2.0 to have increased

processing speed, compared to the original version, and have also included new algorithms to

assess the relationship with patient survival, among others.

To study transcriptional enhancer networks in LUAD using TENET 2.0, we first identified

lung-relevant enhancer regions. Alveolar epithelial cells (AECs) are the presumed cells of ori-

gin of LUAD [21]. There are two types of alveolar epithelial cells: cuboidal type 2 cells (AT2),

which are involved in surfactant production and serve as facultative progenitors post-injury,

and large, delicate type 1 cells (AT1), which cover the majority of the alveolar surface and

mediate gas exchange. While AT2 cells are the suspected cells of origin of lung adenocarci-

noma, the possible role of AT1 cells has not been well investigated due to the difficulty in

manipulating these fragile cells. Thus, we incorporated both populations of these cells into our

study. We first purified human AT2 cells and then used an in vitro differentiation protocol

(which mimics aspects of normal lung re-epithelialization) to derive AT1-like cells [22,23]. We

then generated H3K27ac ChIP-seq data from the AT2 cells (day 0), transitional cells (day 4),

and differentiated AT1-like cells (day 6). We also used H3K27ac ChIP-seq data from normal

lung tissue samples and LUAD cells downloaded from the Roadmap Epigenomics Project
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Fig 1. A workflow of TENET 2.0. First, DNA methylation probes marking enhancer regions of interest are identified by overlapping them with both H3K27ac ChIP-

seq datasets and open chromatin regions. Next, enhancer probes are classified based on their DNA methylation level in the tumor vs. normal samples and linked to the

expression of genes to identify key transcriptional regulators (TRs). Using genetic alteration, Hi-C topologically associating domain (TAD), and clinical information,

identified key TRs and TR-enhancer-gene networks are characterized. Additional gene expression and clinical data are used to validate findings of key TRs. Lung-related
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(REMC) [24], the Encyclopedia of DNA Elements Project (ENCODE) [25,26], and the Data-

Base of Transcriptional Start Sites (DBTSS) [27]. Because tumorigenesis might activate

enhancers that are not normally active in the lung, we also included H3K27ac ChIP-seq from

98 different cell types collected from REMC [24] and ENCODE [25,26]. We next delineated

the open chromatin regions where the transcription factors bind within each enhancer, using

ATAC-seq peaks generated in-house from AECs, ATAC-seq peaks from LUAD tissues and

cell lines downloaded from other studies [28–30], DNaseI hypersensitive sites from LUAD cell

lines, and a collected list of DNaseI hypersensitive sites from 125 different tissues and cell lines

from ENCODE [25,26]. A list of datasets we used for this study can be found in S1 Table, and

identified enhancer and open chromatin regions can be found in S2 Table. Finally, DNA

methylation probes from the Illumina Infinium Human Methylation 450K (HM450) array

that are contained within the open chromatin region of each enhancer were selected. As

enhancers are bound by cell-type specific transcription factors and more cell-type and individ-

ual specific than promoters [12], we focused on enhancers for our analyses using only probes

located>1.5 kb from transcription start sites. In all, we identified 76,765 "enhancer probes"

that can be studied using lung tissue samples (S3A Table); on average, one probe was found

per open chromatin region in each enhancer.

Having collected the above information, we next assessed the differential activities of all of

the enhancers in normal lung vs. LUAD tumor samples. For this, we collected DNA methyla-

tion data for the enhancer probes (n = 76,765) from 453 LUAD tissue samples and 21 histolog-

ically normal lung tissue samples adjacent to tumors from The Cancer Genome Atlas (TCGA)

[7] (S4 Table). By comparing the DNA methylation level (as a reflection of enhancer activity)

of each probe in the normal vs. tumor samples, we classified the enhancer probes into 4

groups: methylated (“constitutively inactive”), i.e. highly methylated in both normal and

tumor samples; unmethylated (“constitutively active”), i.e. lowly methylated in both normal

and tumor samples; hypermethylated (“normal-specific”; inactivated in LUAD), i.e. showing

low methylation in normal samples but higher methylation in tumor samples; and hypomethy-

lated (“cancer-specific”; activated in LUAD), i.e. showing high methylation in normal samples,

but lower methylation in tumor samples. For example, the unmethylated probe cg05156800,

located in an enhancer region on chr1p36.11 near the 3’UTR of EXTL1, marks an enhancer

that is active in both normal lung and LUAD tumors (Fig 2A, left panel). In contrast, the

hypermethylated probe cg24149590 in an intergenic region on chr14q24.3 is located in an

enhancer, active in normal lung but not in LUAD (Fig 2A, middle panel). Hypomethylated

probe cg04683210, located in an intron ofMACROD1 on chr11q13.1 marks an enhancer that

is active LUAD but not in normal AECs (Fig 2A, right panel). Using this classification scheme,

we identified 4,344 unmethylated, 6,830 methylated, 9,056 hypermethylated, and 23,583 hypo-

methylated enhancer probes. An excess of identified hypomethylated probes suggests that

enhancer activation is a common molecular alteration in LUAD (Fig 2B, S3A and S3B Table).

Identification of key transcriptional regulators dysregulated in lung

adenocarcinoma

Having identified over 32,000 differentially activated enhancer probes between normal lung

and LUAD, we next used matched gene expression data to test the association between the

expression of each known human transcriptional regulator (n = 1,639) and the level of DNA

datasets used for this study are shown at left. The output from this LUAD study is indicated in the middle bottom box. The left bottom box summarizes key TENET 2.0

functions.

https://doi.org/10.1371/journal.pgen.1009023.g001
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methylation (as a measure of accessibility and thus activity) of each enhancer probe, using

TENET 2.0. We identified 1) inactivated transcriptional regulators that showed a correlation

of lower expression with increased DNA methylation of enhancer probes in a subset of LUAD

samples (candidate tumor suppressors), and 2) activated transcriptional regulators that

showed a correlation of higher expression with decreased DNA methylation of enhancer

probes in a subset of LUAD samples (candidate oncogenes) (S1 Fig). Most of the known 1,639

human transcriptional regulators we interrogated were linked to relatively few cell-type spe-

cific enhancer probes (Fig 3A). However, a subset of transcriptional regulators was found to be

linked to many cell-type specific enhancer probes (Fig 3A).

We found that 31 inactivated transcriptional regulators were found to be linked to 10 or

more hypermethylated enhancer probes (S5A Table). For example, NKX2-1 and HNF1B were

linked to 123 and 50 hypermethylated enhancer probes, respectively (Fig 3B and 3C, S5A

Table). NKX2-1, the top transcriptional regulator inactivated in LUAD, linked to the largest

number of enhancers silenced in LUAD, is known to play an important role in lung develop-

ment and maintenance of AEC cell identity [31]. NKX2-1 also acts as an activator of HOP

(Hsp70/Hsp90 Organizing Protein), a potential tumor suppressor gene in lung cancer, inhibit-

ing epithelial to mesenchymal transition [32]. HNF1B is previously reported to act as a tumor

suppressor in several tumors, including renal cancer, ovarian cancer, and prostate cancer [33–

35]. Our finding that lower expression of HNF1B is linked to many inactivated enhancers in

LUAD suggests that it may also act as a tumor suppressor in lung cancer.

On the other hand, we found 101 activated transcriptional regulators linked to 50 or more

hypomethylated probes (S5C Table). The top activated transcriptional regulators were

CENPA, FOXM1, TCF24, and MYBL2, which were linked to 875, 845, 843, and 840 cancer-

specific enhancer probes, respectively (Fig 3B and 3C, S5C Table). These transcriptional regu-

lators likely have the largest influence on the transcriptomes of lung adenocarcinoma tumors

by changing the activities of many enhancers. Therefore, we further investigated the identified

activated transcriptional regulators associated with many cancer-specific activated enhancers.

To determine whether these transcriptional regulators control the activity of distinct enhanc-

ers or cooperate with each other to regulate the same set of enhancers, we generated an interac-

tion map displaying the association of the 3,682 cancer-specific enhancer probes linked to at

least one of the 101 transcriptional regulators (Fig 4A). Interestingly, CENPA, FOXM1, and

Fig 2. Identification of differentially-methylated enhancer probes (A) Integrative Genomics Viewer (IGV) screenshots show 10 kb of the genomic context centered

on example probes, with UCSC gene annotations (GENCODE v22) in the vicinity, the name and location of the probe, and the H3K27ac signal from AEC (normal) as

well as A549 cells (LUAD cell line). The unmethylated probe shows an active enhancer region in both the AEC and A549 cells. The hypermethylated probe shows an

active enhancer region found in only the AEC, indicating an enhancer that is inactive in tumors, while the hypomethylated probe displays marks in only A549 cells,

indicating an enhancer that is activated in tumors. (B) Categorization of the identified enhancer probes by activity.

https://doi.org/10.1371/journal.pgen.1009023.g002

PLOS GENETICS Key transcriptional regulators and enhancers in lung adenocarcinoma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009023 September 14, 2020 6 / 28

https://doi.org/10.1371/journal.pgen.1009023.g002
https://doi.org/10.1371/journal.pgen.1009023


Fig 3. Identification of key dysregulated transcriptional regulators in LUAD (A) The left histogram shows the number of inactivated

(hypermethylated) enhancer probes per inactivated transcriptional regulator (TR), and the right shows the number of activated (hypomethylated)

enhancer probes per activated TR. Most TRs were linked to relatively few enhancer probes. However, 31 inactivated TRs in LUAD were linked to 10 or

more hypermethylated enhancer probes, and 101 activated TRs in LUAD were linked to 50 or more hypomethylated enhancer probes. (B) Number of
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MYBL2 showed considerable overlap in their sets of linked probes; over 75% of each of their

linked probes was also linked to a probe in the set of at least one of the other two transcrip-

tional regulators (Fig 4A—red box, S5E Table). The overlap between these transcriptional reg-

ulators is much higher than with other key transcriptional regulators identified (e.g. TCF24,

SOX2). Examination of the expression levels of each of the 101 top-ranked transcriptional reg-

ulators showed that the expression levels of CENPA, FOXM1, andMYBL2 were highly corre-

lated with each other (r2>0.7) across all profiled LUAD samples (Fig 4B—red brackets, S5F

Table). We validated these results using an additional transcriptomic dataset obtained from

other lung tumor tissue samples from ORIEN (Oncology Research Information Exchange Net-

work) (www.oriencancer.org) (S2 Fig). These results suggest that these 3 transcriptional regu-

lators may work together to activate a common set of cancer-specific enhancers.

Identification of transcriptional regulators whose expression is associated

with poor patient survival

To further investigate the role of key transcriptional regulators activated in LUAD, we more

closely examined gene expression levels in normal vs. tumor tissues. Of the top 12 transcrip-

tional regulators, CENPA, FOXM1, andMYBL2 were among the most highly expressed and

displayed the largest differences in expression between tumor and normal tissues; each was >8

times more highly expressed in LUAD as compared to normal lung (Fig 5A, S3 Fig). Next, we

examined the association of transcriptional regulator expression with patient survival, and we

found that high expression levels of CENPA, FOXM1, andMYBL2 were the most significantly

associated with poor patient survival in the TCGA LUAD cohort (Fig 5B, S4 Fig). We validated

these results for CENPA,MYBL2, and FOXM1 using an additional survival dataset obtained

from other LUAD samples [36] (S5 Fig). Expression of CENPA, FOXM1, andMYBL2 did not

appear to be very strongly associated with age, sex, or cancer stage. However, we found that

history of tobacco exposure was correlated with the gene expression of each of the three tran-

scriptional regulators (S6A Fig, S6 Table). Additionally, we found that high total mutation bur-

den was similarly associated with increased expression of these genes in the LUAD tumor

samples (S6B Fig).

CENPA, FOXM1, and MYBL2 are activated in a subgroup of lung

adenocarcinoma and breast adenocarcinoma

Tumor samples with higher expression of CENPA, FOXM1, andMYBL2 appear to harbor rela-

tively more cancer-specific enhancers, suggesting that tumors highly expressing CENPA,

FOXM1, andMYBL2may have distinct enhancer profiles (S7A Fig). To investigate this, we

generated a DNA methylation heatmap of the enhancer probes linked to these three transcrip-

tional regulators (Fig 6A, S3B Table). We observed a subgroup consisting of LUAD samples

that are broadly hypomethylated across these enhancers, and that possess relatively high

expression of these three transcriptional regulators together (Fig 6A—cluster b, S8A Fig).

These samples did not appear to be associated with age, sex, cancer stage, purity, or cancer

stage, but they were slightly associated with smoking history in the TCGA dataset, especially

current smoking, as well as total mutational burden (S8A–S8C Fig). We saw no apparent asso-

ciation between genetic alterations to KRAS, EGFR,NF1, or BRAF and activation of specifically

CENPA, FOXM1, andMYBL2-linked enhancers (S8A Fig). It has been previously shown that

enhancer links for top 12 transcriptional regulators. Inactivated TRs are shown at left, while activated TRs are shown at right. (C) Circos plots show the

link between the top inactivated TR (left, NKX2-1) and activated TR (CENPA, right) and their associated enhancers throughout the genome.

https://doi.org/10.1371/journal.pgen.1009023.g003
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activation of KRAS signaling increases expression of FOXM1 [37], and thatMYBL2 can be reg-

ulated by EGFR [38]. We therefore examined the total number of cancer-specific enhancer

links in samples with and without KRAS or EGFR genetic alterations and in the highest quar-

tile and remaining quartiles of expression of FOXM1 andMYBL2, respectively. Samples with

the highest quartile of FOXM1 andMYBL2 expression possessed a significantly greater num-

ber of cancer-specific enhancer links, however, KRAS or EGFR genetic alteration status was

not associated with a significant difference in the number of these links regardless of the

FOXM1 andMYBL2 expression level (S7B Fig). We also observed that a subgroup of LUAD

Fig 4. Interaction of key transcriptional regulators activated in LUAD (A) Interaction map of the top 101 transcriptional regulators and the 3,682 total

unique hypomethylated probes linked to those genes. CENPA, FOXM1, and MYBL2 show strong overlap in linked probes (red box). (B) Heatmap of pairwise

expression correlation values between each of the top 101 transcriptional regulators. FOXM1, CENPA, and MYBL2 show a high degree of correlation with each

other (r2>0.7), but TCF24 (one of the top 4 most highly linked TRs; Fig 3B) does not (r2<0.1).

https://doi.org/10.1371/journal.pgen.1009023.g004

Fig 5. CENPA, FOXM1 and MYBL2 are highly expressed in tumors and associated with poor patient survival. (A) Boxplots of expression of CENPA, FOXM1 and

MYBL2 in 453 TCGA LUAD and 21 adjacent normal samples. All three genes were significantly upregulated in LUAD. (B) Kaplan-Meier survival plots comparing

differences in survival between samples with the highest and lowest quartiles of CENPA, FOXM1 andMYBL2 expression. Survival was compared using TCGA LUAD

samples.

https://doi.org/10.1371/journal.pgen.1009023.g005
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samples, representing those in the top 10% by number of links to CENPA, FOXM1, and

MYBL2 showed poorer survival outcomes than samples which did not possess a link (S8D

Fig).

Fig 6. LUAD and BRCA subgroups with activated CENPA, FOXM1 and MYBL2-linked enhancers. (A) DNA methylation heatmap showing CENPA, FOXM1, and

MYBL2 expression-linked LUAD-specific enhancer probes for normal and LUAD tissue samples. Clusters represent the largest two divisions in LUAD tumor samples

as determined by unsupervised clustering. LUAD tumor samples in cluster b display generally higher expression of the 3 transcriptional regulators and broad

hypomethylation of CENPA/FOXM1/MYBL2-linked probes. (B) DNA methylation heatmap showing CENPA, FOXM1, and MYBL2-linked breast cancer-specific

enhancer probes for normal and BRCA tissue samples. BRCA PAM50 (Prediction Analysis of Microarray 50) subtypes are indicated in the middle bar. Of note is the

cluster of samples on the right, comprised predominantly of BRCA tumor samples of the basal subtype, with relatively high expression of the three transcriptional

regulators and broad hypomethylation of CENPA/FOXM1/MYBL2-linked probes, similar to what is seen in the subgroup of LUAD samples.

https://doi.org/10.1371/journal.pgen.1009023.g006
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In previous analyses, we found that FOXM1 and MYBL2 were activated in breast adenocar-

cinoma (BRCA) [14]. Having now identified these as key regulators in LUAD, we sought to

determine if different enhancers are linked to FOXM1 and MYBL2 in the two cancer types.

We reanalyzed the BRCA data using TENET 2.0 (S3C and S3D Table, S4 Table), and found

that CENPA, FOXM1, and MYBL2 were among the top transcriptional regulators in BRCA

when ranked by number of linked probes (S9A Fig). However, only a subset of TENET-identi-

fied CENPA, FOXM1, and MYBL2-linked enhancer probes were shared between both datasets

(S9B Fig). This suggests that although some cancer-specific enhancers are common to LUAD

and BRCA (S9C Fig, S7 Table), the enhancers regulated by CENPA, FOXM1, and MYBL2 are

largely different between tumor types. To further characterize the BRCA enhancers linked to

CENPA, MYBL2, and FOXM1, we generated heatmaps of DNA methylation for enhancer

probes linked to any of the three transcriptional regulators in BRCA. Interestingly, we found

that BRCA tumor samples that belong to the basal subtype have higher expression of these

three transcriptional regulators as well as a larger number of hypomethylated CENPA,

FOXM1, and MYBL2-linked enhancers than other BRCA subtypes (i.e. luminal A, luminal B,

Her2, normal-like) (Fig 6B).

Identification of CENPA/FOXM1/MYBL2-linked enhancers associated

with poor patient survival and their potential target genes

We next wondered whether high expression of CENPA, FOXM1, and MYBL2 and the pres-

ence of more activated enhancers was clinically relevant. Therefore, we examined the subgroup

of LUAD samples, which had high expression of the three transcriptional regulators as well as

many enhancer links (over 290 cancer-specific CENPA, FOXM1, or MYBL2 enhancer links),

called “highly linked” samples for correlations to overall patient survival (S8A Fig). These

"highly linked" samples showed significantly poorer survival outcomes than lowly linked sam-

ples (S8D Fig). To further investigate whether any particular cancer-specific enhancers were

linked to patient outcome, we performed survival analyses using cancer-specific enhancer

probes linked to CENPA, FOXM1, or MYBL2. We found 101 enhancer probes for which

lower levels of DNA methylation were associated with poor patient survival (Log-rank

p<0.05) (S3B Table). Examples of enhancer probes linked to patient survial included

cg03535253, located on chr14q32.12 in the 3’UTR of the BTBD7 gene, cg06956006, located on

chr17q21.2 in an intron of the ACLY gene, and cg04016113 in an intron of the SFXN5 gene on

chr2p13.2. Each is located in the vicinity of an active enhancer region in LUAD cells not pres-

ent in normal AEC, and patients with low levels of methylation of each of these probes (indi-

cating the activation of the enhancer regions) showed significantly poorer survival outcomes

(Fig 7).

We next aimed to identify genes and signaling pathways potentially regulated by CENPA,

FOXM1, and MYBL2. To this end, we first identified genes within 1 Mb of each of the

enhancer probes since most enhancer-promoter interactions occur within a topologically asso-

ciating domain (TAD) that is less than 1Mb in size [39]. From these, we selected the genes that

were significantly upregulated in tumor relative to normal as potential targets of these enhanc-

ers. For example, we found that the SPR gene was a potential target of the enhancer probe

cg0416113 (Fig 7). SPR (sepiapterin reductase) is located ~177kb upstream of the enhancer

probe. A recent study showed that SPR depletion inhibited liver cancer cell proliferation and

promoted cancer cell apoptosis in vivo [40], suggesting its role as an oncogene. Gene ontology

(GO) analyses revealed that target genes potentially regulated by CENPA, FOXM1, and

MYBL2 are involved in cell cycle, cellular response to DNA damage stimulus, chromosome

organization, and DNA repair (S8A and S8B Table).
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To identify genes and signaling pathways regulated by FOXM1 and MYBL2, known tran-

scription factors, we performed knockdown experiments for FOXM1 and MYBL2 in A549

Fig 7. Examples of CENPA/FOXM1/MYBL2-linked enhancer probes associated with survival rate. (A) Shown are three examples of lung cancer-specific enhancers

linked to CENPA, FOXM1, or MYBL2 in LUAD. IGV screenshots show 10 kb of the genomic context centered on example probes, with GENCODE v22-annotated

UCSC genes in the vicinity, the name and location of the probe, and the H3K27ac signal from normal AEC as well as lung tumor A549 cells. These hypomethylated

probes show H3K27ac marks in A549 cells, indicating enhancers active in LUAD but not normal lung tissue. (B) Kaplan-Meier survival plots comparing differences in

survival between samples with the highest and lowest quartiles of methylation of the enhancer probe.

https://doi.org/10.1371/journal.pgen.1009023.g007
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Fig 8. Identification of genes regulated by FOXM1 and MYLB2. Volcano plots showing gene expression changes after knocking down (A) FOXM1 or (B) MYBL2 or

(C) Double (both FOXM1 and MYBL2). The knocked down genes (FOXM1 or MYBL2) are highlighted by a green or purple box, respectively. (D) Heatmap displaying

fold change expression of significantly downregulated genes in the vicinity of cancer-specific enhancers associated with poor patient survival after FOXM1 (light blue) or

MYBL2 (orange) or double (green) knockdown; log2(fold change) were plotted from dark blue to dark red (see S9 Table). Genes shown represent potential target genes

within 1 Mb of CENPA/FOXM1/MYBL2-linked enhancers whose activation is significantly associated with poor patient survival. Expression of the gene TK1 is

highlighted by the red arrow. (E) Diagram of A549 H3K27ac mark overlapping the MYBL2-linked probe cg09580922 and its potential target gene TK1 (see S10 Fig). (F)

Kaplan-Meier survival plot comparing differences in survival between LUAD tumor samples with the highest and lowest quartiles of cg09580922 methylation. (G)

Kaplan-Meier survival plot comparing differences in survival between LUAD tumor samples with the highest and lowest quartiles of TK1 expression.

https://doi.org/10.1371/journal.pgen.1009023.g008
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cells, a LUAD cell line. More than a thousand genes were differentially expressed upon knock-

down of either FOXM1 or MYBL2 or both (Fig 8A–8C, S9A–S9C Table). GO analyses of the

genes downregulated after knocking down FOXM1 or MYBL2 or both indicated that these

genes are involved in cell cycle and cell division, supporting the gene predictions made from

degerulated genes near the activated enhancers (S8C–S8E Table). We determined which of the

significantly downregulated genes from the siRNA knockdowns were located within 1 Mb of

the enhancer probes we had previously linked to these transcriptional regulators (Fig 8D, S9D

Table). These genes likely represent the direct target genes of the enhancers.

Of particular interest is the gene TK1, which showed a ~40% reduction in expression after

MYBL2 knock down (adjusted p = 2.506x10-7) (S9B and S9C Table). TK1, encoding a protein

that plays an important role in thymidine metabolism, is located ~188 kb from the MYBL2-

linked enhancer probe cg09580922 on chr17q25.3 (Fig 8E). Low methylation of cg09580922 is

strongly associated with poor patient survival (Fig 8F), as is high expression of TK1 (Fig 8G).

The promoter of TK1 and cg09580922 are both located in the same TAD according to Hi-C

maps from both A549 as well as GM12878, another cell line for which a high resolution Hi-C

dataset is available (S10 Fig). This suggests that a cancer-specific enhancer potentially regulated

by MYBL2 may increase the expression of TK1. A complete list of enhancers and their poten-

tial target genes confirmed by knockdown experiments and located in the same TAD can be

found in S9D Table.

Discussion

We have developed TENET 2.0, a method to characterize enhancer networks controlled by

transcriptional regulators that are potential tumor suppressors or oncogenic drivers. Using

H3K27ac ChIP-seq and open chromatin datasets, we identified enhancers active in lung cells.

Then, using DNA methylation levels at the identified enhancers in hundreds of normal vs.
LUAD tissue samples [7], we identified over 32,000 differentially activated enhancers. By inte-

grating DNA methylation and gene expression data, we identified key transcriptional regula-

tors (e.g. NKX2-1, CENPA, FOXM1, and MYBL2) that are linked to many cell-type specific

enhancers. We further found that high expression of CENPA, FOXM1, andMYBL2 is associ-

ated with poor survival in patients with LUAD and with broad enhancer activation in a distinct

group of LUAD tumors. We found a subgroup of BRCA tumor samples which also showed

activation of BRCA enhancers linked to these three transcriptional regulators, and basal-sub-

type tumors were particularly enriched in that subgroup. We then identified LUAD-specific

enhancers that are linked to the three transcriptional regulators and whose increased activities

are correlated with poor survival. For example, the enhancer marked by probe cg09580922

appears to regulate the TK1 gene, whose high expression is associated with poor patient

survival.

TENET 2.0, which now has updated databases, including new algorithms to identify epige-

netic traits associated with mortality with greatly decreased computational time, allowed us to

identify dysregulated transcriptional regulators and enhancers in LUAD. Key inactivated tran-

scriptional regulators, which are potential tumor suppressors, include NKX2-1 (Fig 3). Low

expression of NKX2-1 was observed in a subgroup of LUAD samples (S8A Fig) and was linked

to over a hundred inactivated enhancers. NKX2-1, also known as thyroid transcription factor

1 (TTF1), regulates transcription of genes specific for the thyroid and lung. NKX2-1 is

reported to be involved in lung development, and it inhibits epithelial to mesenchymal transi-

tion, supporting its role as a tumor suppressor [41,42]. Besides NKX2-1, we identified that

HNF1B, a previously reported tumor suppressor found in other cancer types [33–35], STAT6,
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and SP100 were inactivated and linked to many silenced enhancers in a subgroup of LUAD

(Fig 3, S5A Table).

Of the transcriptional regulators activated in LUAD, CENPA, FOXM1, and MYBL2 were

linked to the activation of hundreds of cancer-specific enhancers. These transcriptional regula-

tors are therefore potential cancer driver oncogenes. CENPA, which has a histone-binding

domain, directs the assembly of active kinetochores together with centromere-specific-DNA-

binding factors. A recent study in cervical and colorectal cancer cells reported that CEPNA

can also bind to DNaseI hypersensitive sites [43]. MYBL2 (a.k.a. B-MYB), a member of the

MYB family, regulates cell cycle genes by binding to regulatory elements [44]. FOXM1, a

member of the Forkhead family of pioneer transcription factors [45], is involved in the proper

development of several different organ systems, including the lungs [37]. It has been demon-

strated to bind to enhancers in breast cancer cells [46]. Here we showed that CENPA, FOXM1,

and MYBL2 are upregulated together, potentially leading to the activation of many cancer-spe-

cific enhancers in a subgroup of LUAD. The subgroup of LUAD with both high expression of

CENPA, FOXM1, andMYBL2 and broad enhancer activation had worse patient survival out-

comes. This subgroup also appears to have a higher proportion of smokers, which may be

related to the observed epigenomic changes, and higher tumor mutational burden [47]. It has

been previously suggested that FOXM1 may act as a regulator for genes involved in DNA dam-

age response and repair [48]. Besides these 3 transcriptional regulators, we identified other key

transcriptional regulators, such as TCF24, SOX2, and ZNF695, each linked to over 500

enhancers activated in LUAD (Fig 3), providing many further avenues of investigation.

When we compared our LUAD data with that of a similar analysis of BRCA, CENPA,

FOXM1, andMYBL2 were also found to be activated, particularly in basal-subtype tumors,

supporting the idea that these factors work together in certain cancer subtypes. Previously, we

showed that estrogen receptor and FOXA1, which are known to be activated in estrogen recep-

tor-positive breast cancer subtypes (e.g. luminal A, luminal B), are not expressed in the basal

subtype, but FOX and MYB motifs are enriched at enhancers in basal-like breast cancer cells

[49]. FOXM1 and MYBL2 motifs were enriched at CENPA, FOXM1, and MYBL2-linked

enhancers we found in lung cancer cells (91.8% for a FOXM1 motif, 60.3% for an MYBL2

motif) (S10 Table). Interestingly, CENPA, FOXM1, and MYBL2 appear to target different

enhancers in BRCA and LUAD, potentially working with different co-factors [50]. In spite of

this difference, GO analysis of potential target genes for these enhancers revealed that both sets

regulate similar cellular processes, including cell cycle control and DNA repair (S8A and S8B

Table). Further studies to elucidate the function of these transcriptional regulators in tumor

subgroups are needed to better understand their role in epigenetic deregulation of cancer cells.

Previous studies had implicated FOXM1 and MYBL2 in lung cancer [51–53], but our analy-

sis documents their profound effects on gene deregulation, potentially affecting hundreds of

enhancers. As acquisition of cancer-specific enhancers can drive tumorigenesis [54], identify-

ing key activated enhancers in cancer is highly relevant. Here, we identified 101 LUAD-specific

enhancers linked to CENPA, FOXM1, and MYBL2 that show correlations with worse survival

(Fig 7, S3B Table). For example, we found that the enhancer probe cg04161113, whose activa-

tion (low DNA methylation) is associated with poor survival, is potentially regulating the SPR
gene, which was recently reported as an oncogene in liver cancer [40].

Using knockdown experiments, we further identified potential target genes of these

enhancers, which included genes involved in cell division and cell cycle control. These poten-

tial target genes included not only known oncogenes such asMYC, FBXL16, PHF5A, and

KIF14 [55–58] but also genes (e.g. BRI3BP, RAB11FIP5) which are not yet reported to be

involved in lung carcinogenesis (S9 Table). Of the downregulated genes after siRNA treatment,

TK1 was the most significantly associated with survival rates (log-rank p = 1.194x10-4). High
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expression of TK1 and low methylation of the nearby MYBL2-linked enhancer probe

cg09580922 were associated with poor patient survival (Fig 8F and 8G), and both appear to be

located in the same TAD (S10 Fig). TK1 has been investigated as a diagnostic and prognostic

biomarker for several types of cancer, including LUAD [59]. Loss of TK1 has been shown to

inhibit the growth and metastatic capabilities of LUAD in vitro as well as in mice through a

reduction in expression of GDF15 [59].

We have used TENET 2.0 to integrate epigenomic and transcriptomic profiles from hun-

dreds of samples and have identified key transcriptional regulators and enhancers altered in

LUAD. The lists of these enhancers, transcriptional regulators, and their potential target genes

will be a useful resource for researchers aiming to better understand the molecular mecha-

nisms driving carcinogenesis in different LUAD subgroups. Moreover, our findings may lead

to new biomarkers as well as therapies that might target distinct LUAD subgroups associated

with poor survival; small molecule inhibitors for MYB family members [60] as well as FOXM1

have been developed but have not yet been tested in lung cancer [61,62]. Importantly, TENET

2.0 can be used to investigate molecular mechanisms underlying any cancer type for which

gene expression and epigenetic data are available (http://github.com/suhnrhie/TENET_2.0).

Materials and methods

Ethics statement

Remnant human transplant lungs were obtained in compliance with USC Institutional Review

Board protocol, approved for the use of human source material in research (HS-07-00660). As

donors were deceased and de-identified, no patient consent was obtained or necessary.

Cell culture

Human lung adenocarcinoma A549 cells (Cat # CRL-185, ATCC, Gaithersburg, MD) were

grown at 37˚C with 5% CO2 in RPMI 1640 (Cat #10-040-CV, Corning, NY, USA) supple-

mented with 10% fetal bovine serum (FBS) (Cat # FBS-500, X&Y Cell Culture, MI, USA) and

100 units/ml of penicillin/streptomycin (formulated by Norris Comprehensive Cancer Center

Media Core, CA, USA). Human AT2 cells were isolated from remnant transplant lung from

deceased de-identified non-smoking donors in compliance with USC Institutional Review

Board protocol for the use of human source material in research (HS-07-00660). As donors

were deceased and de-identified, no patient consent was obtained or necessary. Lungs were

processed as previously described [23]. The three donors were 25, 62, and 67-year-old males

who died of non-lung related causes. AT2 cells were isolated from the samples, plated in 50%

DMEM/F12 (Cat #D64421, Sigma, MO, USA), 50% DMEM high glucose (Cat #21063,

GIBCO, MA, USA), supplemented with 10% FBS, penicillin/streptomycin, 50 ug/ml gentamy-

cin (Cat #G1272, Sigma, MO, USA) and 2.5ug/ml amphotericin (Cat #A2411, Sigma, MO,

USA), to allow differentiation to AT1-like cells, and isolated at three different time points (D0,

D4, D6) as previously noted [22,23] (S1 Table).

siRNA knockdown and RNA-seq

A549 cells were transfected in quadruplicate with 100nM of ON-TARGETplus siRNA oglionu-

cleotides for human FOXM1 (Cat # L-009762-00-005, Dharmacon—Horizon Discovery, UK),

MYBL2 (Cat # L-010444-00-005, Dharmacon—Horizon Discovery, UK), both, or non-target-

ing control (Cat # D-001810-10-05, Dharmacon—Horizon Discovery, UK), mixed with 5X

siRNA buffer (Cat # B-002000-UB-100, Dharmacon—Horizon Discovery, UK) and trans-

fected using DharmaFECT 1 Transfection reagent (Cat # T-2001-01, Dharmacon—Horizon
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Discovery, UK). Cells were transfected, cultured for 24 hours, and transfected again with the

same concentration of siRNA, then incubated for an additional 24 hours before RNA was

extracted using the Aurum Total RNA Mini Kit (Cat # 7326820, Bio-Rad, CA, USA). cDNA was

synthesized using an iScript cDNA Synthesis Kit (Cat # 1708891, Bio-Rad, CA, USA) and expres-

sion levels of FOXM1 andMYBL2were checked with qRT-PCR using SYBR Green Supermix

(Cat # 1708886, Bio-Rad, CA, USA) with the listed primers (S11 Table). RNA-seq was performed

using 150 bp paired-end sequencing using an Illumina HiSeq 4000 (GENEWIZ, South Plainfield,

NJ, USA) for the single gene knockdown experiments, and using 100 bp paired-end sequencing

using an Illumina NovaSeq 6000 (MedGenome, Foster City, CA, USA) for the double knock-

down. RNA-seq reads were aligned to the human reference genome hg38 using the Genomic

Data Commons Bioinformatics mRNA analysis pipeline. Read counts were generated for GEN-

CODE v22 genes [19] using the htseq-count function [63]. Differentially expressed genes were

called using DESeq2 [64] with the lfcShrink function [65]. Gene ontology analyses were per-

formed using PANTHER [66] (S8C–S8E Table) (see S1 Methods for more details).

ChIP-seq

ChIP-seq was performed on the D0, D4, and D6 AECs isolated from the 25-year-old and

62-year-old male subjects using H3K27ac antibody (Cat # 39133, Active Motif, CA, USA), as

previously described [22,23]. The ChIP-seq library from the 25-year-old individual was

sequenced using 50 bp single-end reads on an Illumina HiSeq 2000 (S1 Table). Two technical

replicates of A549 H3K27ac ChIP-seq data and two replicates of H3K27ac ChIP-seq data from

lung tissue from a 53-year-old female donor generated by the ENCODE Consortium [25,26]

were used. H3K27ac ChIP-seq data from two additional lung tissue samples from 30-year-old

female and 3-year-old male donors generated by the ROADMAP Consortium [67,68] were

also included (S1 Table). Finally, H3K27ac ChIP-seq data collected from 12 lung cancer lines

from the DBTSS were downloaded and processed as well [27]. ChIP-seq reads were aligned to

the human reference genome hg38 and reproducible peaks were called, following the

ENCODE ChIP-seq pipeline [69] (see S1 Methods).

ATAC-seq

Intact nuclei from D0 AT2 cells were isolated from the 67-year-old male subject utilizing the

protocol from Buenrostro et al. [70]. Briefly, intact nuclei were isolated and incubated with

Tn5 transposase (Cat # FC-121-1030, Illumina, CA, USA). The transposed DNA was extracted

and was amplified with PCR using NEBNext High-Fidelity PCR Master Mix (Cat # M0541S,

New England Biolabs, MA, USA) and the resulting library was purified using a bead clean with

AMPure XP Magnetic Beads (Cat # A63880, Beckman Coulter, CA, USA) and quality control

was performed using a BioAnalyzer High-Sensitivity DNA Analysis kit (Cat # 5067–4626, Agi-

lent, CA, USA). Data was sequenced as 75 bp paired-end reads on an Illumina HiSeq 2000.

ATAC-seq data were processed using the ENCODE ATAC-seq pipeline (https://www.

encodeproject.org/atac-seq/) (see S1 Methods). In addition, ATAC-seq peaks from 34 LUAD

tissue samples were downloaded and lifted over to the hg38 reference genome using the Lift-

Over tool available in the UCSC genome browser (https://genome.ucsc.edu/cgi-bin/

hgLiftOver) for TENET 2.0 analyses [30]. ATAC-seq peaks from an additional 22 LUAD tissue

samples were added [29] along with peaks from the PC-9 LUAD cell line [28] (S1 Table).

DNase-seq

Peaks of DNaseI hypersensitive sites in PC-9 and A549 cells processed by the ENCODE con-

sortium were acquired [25,26]. Those from A549 cells aligned to the hg19 human reference
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genome were lifted over to the hg38 reference genome using the LiftOver tool available in the

UCSC genome browser (https://genome.ucsc.edu/cgi-bin/hgLiftOver) (S1 Table).

TENET program update and settings

Here we improved the original TENET program [14] and developed TENET 2.0. TENET 2.0

uses a new reference genome (hg38) and gene annotation dataset (GENCODE v22) which cov-

ers>60,000 transcripts [19]. It also includes a new dataset of 1,639 validated human transcrip-

tion factors [20], the processing speed is increased, and useful functions were added to identify

enhancers, genes, and tumor subgroups associated with survival. For enhancer analysis, we uti-

lized H3K27ac ChIP-seq, ATAC-seq and DNase I hypersensivite site datasets. RNA-seq data

along with DNA methylation data were downloaded for BRCA and LUAD samples from the

TCGA [7,71] using the TCGAbiolinks package [72] (see S1 Methods for more details on

enhancer analysis, TCGA datasets, and TENET 2.0 program). TENET 2.0 program is available

at http://github.com/suhnrhie/TENET_2.0.

Heatmaps

For Fig 4A, unsupervised clustering was performed and for Fig 2D, pairwise correlation coeffi-

cients were calculated between each of the top LUAD transcriptional regulators identified and

an unsupervised clustering was performed. For Fig 6 and S8 Fig, heatmaps were generated and

unsupervised clustering was performed. DNA methylation levels (β) ranging from 0 (unmeth)

to 1 (meth) were plotted. Continuous variables, including gene expression, patient age, and

tumor purity, were scaled using the function (X—Xmin)/(Xmax—Xmin) with values equal to

zero set to the minimum, non-zero value. Tumor purity values, including leukocytes unmethy-

lation for purity, and overall derived consensus purity, were obtained from the Tumor purity

dataset available from TCGAbiolinks package [72] (see S1 Methods).

Expression/correlation analyses

Expression values of key oncogenic transcriptional regulators from the adjacent normal and

LUAD tumor samples were plotted, and Student’s t-tests were performed to compare differen-

tial expression between normal and tumor groups. An one-way ANOVA analysis was per-

formed to assess overall differences in transcriptional regulator expression between the

smoking groups (67 never smokers, 278 former smokers, and 106 current smokers) and a

Tukey Honest Significant Differences test was performed to assess significant differences

between individual groups. Linear regression models were fit to predict expression of CENPA,

FOXM1 andMYBL2 with respect to variables recorded for sample clinical information in the

TCGA, including sample type, sex, age, smoking history, total pack years smoked, and race for

samples which contained complete information for these variables. Independent RNA-seq

data from 728 lung tumor tissues generated as part of the ORIEN were used to validate our

correlation analyses. The correlation analyses were performed using the normalized RSEM val-

ues calculated following the ORIEN Total Cancer Care protocol (http://www.oriencancer.org/

) accessed in May of 2020 [73–75] (S2 Fig).

Survival analyses

Survival analyses were performed comparing prognosis of patients with the highest and lowest

quartiles of CENPA, FOXM1 andMYBL2 expression, linked-enhancer probe DNA methyla-

tion levels. Patient survival from samples within the "highly linked" group to those without any
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links to CENPA, FOXM1, andMYBL2 were also compared. Survival plots from Kaplan-Meier

Plotter were performed on their website (https://kmplot.com/analysis/) [36] (see S1 Methods).

Genetic alteration and mutation count analysis

Genetic alteration data for LUAD samples in the TCGA PanCancer Atlas was downloaded

from the cBioPortal [73,76] by selecting a query for mutations and putative copy-number

alterations from GISTIC (https://software.broadinstitute.org/cancer/cga/gistic) for KRAS,

EGFR, NF1, and BRAF. 445 of the 453 LUAD tumor samples in the TENET dataset contained

information for these four alterations. Samples which were listed as having a "putative driver"

mutation, amplification, deletion, or a fusion of each of the genes in this dataset were recorded

as being positive for an alteration to that gene. Total mutation count data containing informa-

tion for 447 of the 453 LUAD tumor samples was also downloaded from the cBioPortal reposi-

tory [73,76].

Identification of potential target genes for CENPA/FOXM1/MYBL2-linked

probes in LUAD and BRCA

Student’s t-tests were performed for all genes in the LUAD and BRCA datasets, comparing

expression in the tumor vs. normal samples. Genes that were significantly differentially

expressed (fdr-corrected p<0.05) and upregulated specifically in the tumor samples were

selected for further gene ontology (GO) analyses (S8A and S8B Table) (see S1 Methods).

Motif analysis

Minmeme motif files for FOXM1 or MYBL2, based on ChIP-seq experiments (3 from

GSM12878 cells, MCF-7 cells, and SK-N-SH cells for FOXM1 and 1 from HepG2 cells for

MYBL2), were downloaded from Factorbook (http://factorboook.org) in August of 2019,

Additional minmeme motif files for FOXM1 and MYBL2 were downloaded from the HOCO-

MOCO v11 database [77]. Motif files we used are listed in S10 Table. Using these motif files

and FIMO program [78], we scanned DNA sequences within 1,117 bp, equivalent to half the

average enhancer size as calculated from the lung enhancer regions (S2A Table), of FOXM1,

MYBL2, or CENPA-linked enhancers (n = 1,338).

Hi-C analysis

Using “ENCODE3-iced” data from A549 cells [25] and “Rao_2014-raw” data from GM12878

cells [79], Hi-C heatmaps (25kb resolution, hg38) in S10 Fig were created from the 3D genome

browser (http://promoter.bx.psu.edu/hi-c/view.php). Both datasets were processed and nor-

malized using the pipeline, described in Wang et al. [80]. TAD information from A549 and

GM12878 cells was downloaded from ENCODE and Rao et al. [79], respectively (S1 Table).

Supporting information

S1 Fig. TENET 2.0 pictoral workflow. (A) DNA methylation levels of enhancer probes are

used to assess differential activity of transcriptional regulator-linked enhancers. Enhancer

probes are identified using H3K27ac ChIP-seq peaks overlapping with regions of open chro-

matin. Probes intersecting both of these regions are subsetted to those>1.5kb from GEN-

CODE v22-annotated transcription start sites to avoid promoter regions. (B) TENET classifies

enhancer probes based on their differential activity as measured by methylation level in nor-

mal vs. tumor samples. Methylated and unmethylated probes represent enhancers that are uni-

formly inactive and active, respectively. Hypermethylated probes represent enhancers that are
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inactive in cancer samples. These probes possess a low level of mean methylation in normal

samples, but higher levels of methylation in a subset of tumor samples. Conversely, hypo-

methylated probes represent enhancers that are active in cancer samples, showing a decreased

level of methylation in tumor vs. normal lung samples. (C) Analyses are focused on transcrip-

tional regulators that are overexpressed in LUAD, resulting in increased activity of their regu-

lated enhancer regions as represented by decreased DNA methylation. The expression of each

transcriptional regulator and DNA methylation of each enhancer probe are assessed to find

"linked" pairs with increased expression of the transcriptional regulator and decreased methyl-

ation of the probe in a subset of the tumor samples, relative to normal samples. (D) Transcrip-

tional regulators with the most linked enhancers are of interest for study because they are

more likely to have large-scale effects on genome-wide expression patterns. TENET 2.0 also

includes new functions to identify tumor subgroups based on differences in the activation of

enhancers linked to the top transcriptional regulators using heatmaps (E) and association with

patient survival (F) as well as potential target genes of enhancers using topologically associating

domain (TAD) information (G).

(TIF)

S2 Fig. Correlation analyses of key transcriptional regulators activated in lung cancer

using ORIEN datasets. (A) Using ORIEN gene expression datasets from lung tumor tissue

samples (n = 728), TR gene expression correlation analyses were performed. Barplots show the

top 5 most correlated transcriptional regulators for CENPA (top), FOXM1 (middle), and

MYBL2 (bottom). (B) TR gene expression scatterplots are shown for FOXM1 vs.MYBL2 (top),

FOXM1 vs. CENPA (middle), and CENPA vs.MYBL2 (bottom).

(TIF)

S3 Fig. Expression of top 12 transcriptional regulators activated in LUAD. Boxplots of

expression of remaining 9 of top 12 oncogenic transcriptional regulators in 453 TCGA LUAD

tumor and 21 adjacent normal samples (CENPA, FOXM1, orMYBL2 are shown in Fig 5A). All

genes were upregulated in LUAD tumors, but none as strongly as CENPA, FOXM1, or

MYBL2.

(TIF)

S4 Fig. Survival analysis of top 12 transcriptional regulators activated in LUAD. Kaplan-

Meier survival plots comparing differences in survival between samples with the highest and

lowest quartiles of expression of the remaining 9 of top 12 cancer-specific transcriptional regu-

lators by number of linked enhancers (CENPA, FOXM1, andMYBL2 are shown in Fig 5B).

Survival was compared using TCGA LUAD samples.

(TIF)

S5 Fig. Replication of association of expression of highly-linked oncogenic transcriptional

regulators with patient survival in LUAD using Kaplan-Meier Plotter. Kaplan-Meier sur-

vival plots comparing differences in survival between samples with the highest and lowest

quartiles of expression of the top 12 oncogenic transcriptional regulators in LUAD cases using

Kaplan-Meier Plotter (https://kmplot.com/analysis/) [36]. Again, expression of CENPA,

FOXM1, andMYBL2 was the most strongly associated with patient survival amongst these

transcriptional regulators.

(TIF)

S6 Fig. Smoking history is associated with CENPA, FOXM1, and MYBL2 expression in

TCGA samples. (A) Boxplots of CENPA, FOXM1, andMYBL2 expression in 453 TCGA

LUAD tumor samples stratified by smoking history. Tumor samples from current smokers
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had significantly higher expression of all three transcriptional regulator genes than those from

former smokers and individuals who had never smoked (significant Tukey HSD p-values dis-

played; ���p<0.005). (B) Boxplots show CENPA, FOXM1, andMYBL2 expression in all 453

TCGA LUAD tumor samples stratified by median total mutational count. Samples with higher

mutational burden had higher expression of these transcriptional regulators.

(TIF)

S7 Fig. Association of total active enhancer links with three expression of three activated

transcriptional regulators and common LUAD mutations. (A) Boxplots show the total num-

ber of links to activated enhancers on a per sample basis in LUAD samples with the highest

quartile and lowest quartile of CENPA, FOXM1, andMYBL2 and expression. (B) Boxplots dis-

play differences in the total number of links to activated enhancers on a per sample basis in

LUAD samples stratified by the presence and absence of a KRAS (right) or EGFR alteration

(left), and with and without the highest quartile of expression of FOXM1 (right) orMYBL2
(left). There is a significant difference in the number of links between samples in the highest

quartile of expression vs. the other three quartiles for both transcriptional regulators regardless

of their alteration status, but no significant difference in the number of links between samples

with and without either alteration but with the same expression level (Significant Tukey HSD

p-values displayed; � = p<0.05, �� = p<0.01, ��� = p<0.005).

(TIF)

S8 Fig. Association of links to CENPA, FOXM1, MYBL2-linked enhancers with clinical

data and subgroup analysis. (A) Heatmap of DNA methylation β-values for CENPA/FOXM1/
MYBL2-linked lung cancer-specific enhancers (n = 1,338) for normal and LUAD tissue sam-

ples. From top to bottom, samples are plotted with the age, sex, and cancer stage of the

patients, smoking history status, expression of additional identified TRs TCF24, SOX2, and

NKX2-1, leukocyte and overall tumor purity, presence of KRAS, EGFR, NF1 and BRAF alter-

ations, log2-transformed mutational count, and sample link status. (B) Chi-square test results

comparing smoking history in the more active cluster b, to the less active cluster a from Fig

6A. There is a much greater proportion of current smokers in cluster b than in cluster a. (C) t-

test results comparing mean total mutation count of samples in cluster b to cluster a. Samples

in cluster b have a significantly higher mean tumor burden than samples in cluster a. (D) Uni-

variate Kaplan-Meier survival plot comparing difference in survival between the very highly-

linked samples (marked in red in the link status bar), and samples that do not possess any

links to CENPA/FOXM1/MYBL2-linked probes (marked in blue in the link status bar).

(TIF)

S9 Fig. Key transcriptional regulators identified in LUAD vs. BRCA and comparison of

CENPA/FOXM1/MYBL2-linked probes in each dataset. (A) Barplot of the top 12 transcrip-

tional regulators by number of links to activated enhancers identified using TENET 2.0 in

LUAD (left) and BRCA (right). (B) Venn diagrams display overlap of probes linked to

CENPA, FOXM1, and MYBL2 and (C) all hypomethylated probes in the LUAD vs. BRCA

analyses. There is a considerably higher percentage of overlap between all hypomethylated

probes than for probes linked only to CENPA, FOXM1, or MYBL2.

(TIF)

S10 Fig. Hi-C diagrams from A549 and GM12878 cells showing the cg09580922 and TK1
genomic region. Hi-C diagrams of A549 cells (top) and GM12878 cells (bottom) show the

genomic context of the TK1/cg09580922 locus (middle) from chr17:77125000–79625000. In

both cell lines, TAD boundaries (lower middle) show that both TK1 and cg09580922 are
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located in the same TAD.

(TIF)

S1 Table. Datasets used in this study.

(XLSX)

S2 Table. List of enhancer and open chromatin regions identified in lung for this study. A)

List of enhancer regions. B) List of open chromatin regions.

(XLSX)

S3 Table. List of HM450 enhancer probes. A) List of HM450 probes by enhancer type in

LUAD. B) List of CENPA/FOXM1/MYBL2-linked enhancer probes in LUAD. C) List of

HM450 probes by enhancer type in BRCA. D) List of hypomethylated enhancer probes in

BRCA.

(XLSX)

S4 Table. List of TCGA IDs of LUAD and BRCA samples included in this study.

(XLSX)

S5 Table. Lists of top transcriptional regulators identified by TENET 2.0. A) List of top

inactivated transcriptional regulator genes in LUAD. B) List of top inactivated transcriptional

regulator genes in BRCA. C) List of top activated transcriptional regulator genes in LUAD. D)

List of top activated transcriptional regulator genes in BRCA. E) Order of transcriptional regu-

lator genes and enhancer probes as rows/columns for Fig 4A. F) Order of transcriptional regu-

lator genes for Fig 4B.

(XLSX)

S6 Table. Regression analysis of CENPA/FOXM1/MYBL2 expression in LUAD.

(XLSX)

S7 Table. Lists of CENPA/FOXM1/MYBL2-linked enhancer probes in LUAD or BRCA.

(XLSX)

S8 Table. Gene Ontology categories enriched in potential target genes of CENPA, FOXM1,

and MYBL2. A) GO analysis of genes linked to CENPA/FOXM1/MYBL2 linked enhancer

probes in LUAD. B) GO analysis of genes linked to CENPA/FOXM1/MYBL2 linked enhancer

probes in BRCA. C) GO analysis of genes significantly downregulated after siFOXM1 treat-

ment in A549 LUAD cells. D) GO analysis of genes significantly downregulated after siMYBL2
treatment in A549 LUAD cells. E) GO analysis of genes significantly downregulated after dou-

ble siFOXM1 and siMYBL2 treatment in A549 LUAD cells.

(XLSX)

S9 Table. List of differentially expressed genes identified using siRNA knockdown experi-

ments. A) List of differentially expressed genes by siFOXM1 in A549 LUAD cells. B) List of dif-

ferentially expressed genes by siMYBL2 in A549 LUAD cells. C) List of differentially expressed

genes by double siFOXM1 and siMYBL2 in A549 LUAD cells. D) Potential genes regulated by

CENPA/FOXM1/MYBL2-linked enhancers confirmed by siRNA experiment in A549 LUAD

cell line.

(XLSX)

S10 Table. List of FOXM1 and MYBL2 motifs.

(XLSX)
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S11 Table. List of primer sequences used for RTqPCR.

(XLSX)

S1 Methods.

(DOCX)
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