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The development of AI that can socially engage with humans is exciting to imagine, but

such advanced algorithms might prove harmful if people are no longer able to detect

when they are interacting with non-humans in online environments. Because we cannot

fully predict how socially intelligent AI will be applied, it is important to conduct research

into how sensitive humans are to behaviors of humans compared to those produced

by AI. This paper presents results from a behavioral Turing Test, in which participants

interacted with a human, or a simple or “social” AI within a complex videogame

environment. Participants (66 total) played an open world, interactive videogamewith one

of these co-players and were instructed that they could interact non-verbally however

they desired for 30min, after which time they would indicate their beliefs about the

agent, including three Likert measures of how much participants trusted and liked the

co-player, the extent to which they perceived them as a “real person,” and an interview

about the overall perception and what cues participants used to determine humanness.

T-tests, Analysis of Variance and Tukey’s HSDwas used to analyze quantitative data, and

Cohen’s Kappa and χ² was used to analyze interview data. Our results suggest that it

was difficult for participants to distinguish between humans and the social AI on the basis

of behavior. An analysis of in-game behaviors, survey data and qualitative responses

suggest that participants associated engagement in social interactions with humanness

within the game.

Keywords: Social AI, Human-AI Interactions, Cognitive plausibility, Turing Tests, Social Robotics, Videogames,

Virtual Agents

INTRODUCTION

The concept of Artificial Intelligence (AI) is not new. Alan Turing, the father of computer
science, predicted that truly “intelligent” machines would appear around the year 2000 (Turing,
1950). According to Google, global leader in AI technology, Explore History of Machine
Learning Machine Learning (ML) has become deeply interwoven into our society since the
early 2000s. Advances in deep learning have produced near human-level performance in
image and speech recognition (LeCun et al., 2015); recent algorithms have even surpassed
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human world champions in complex competitive games like
Go (Silver et al., 2017) and Starcraft II (Vinyals et al., 2019).
Still, there is the societal fear that AI will be used in ways
that are detrimental to the general public (Piper, 2019). Elon
Musk, engineer and entrepreneur, has compared the creation
of advanced and unregulated AI to “summoning a demon”
(McFarland, 2014). Some benevolent AI creators have used the
technology to protect rainforests (Liu et al., 2019), or create
diagnostic algorithms that can detect breast cancer better than
human experts (McKinney et al., 2020). Other applications can
produce undesirable consequences for the general public, such
as job loss as a result of automation (Reisinger, 2019), or racial
discrimination resulting from biased algorithms used by the U.S.
criminal justice system (Angwin et al., 2016).

But beyond traditional applications where AI/ML is used as a
tool, the emergence of social AI that attempts to understand and
communicate with people in social contexts raises many logistical
and ethical questions. It is certainly possible that fears about
AI reflect underlying insecurities about human relationships in
our present society (Cassell, 2019), especially since technology
is developed and applied by human actors who have their own
(good and bad) motivations. Advanced robots and AI that are
designed to be “social agents” that can interact with humans
in meaningful and socially intelligent ways might provide great
benefit to humans when applied in human-centric fields like
healthcare (Robins et al., 2005; Šabanović et al., 2013) or personal
assistantship (Romero et al., 2017). However, much more work
is needed to determine the extent to which humans can, and
are willing to, perceive non-human agents as appropriate social
interaction partners, as well as to determine a set of physical and
behavioral features that could potentially induce such perception
(see Wiese et al., 2017; for a review).

By default, humans are perceived as having “minds of their
own” (Epley et al., 2007; Gray et al., 2007), which conveys
an assortment of assumptions about their moral rights and
responsibilities (see Waytz et al., 2010a; for a review). While
anthropomorphism, or imbuing non-humans with human-like
qualities, is a universal human tendency (see Epley et al., 2007;
for a review), such perceptions are not binary but rather vary
based on the observer, the observed agent and the environment.
When a non-human agent is perceived to have high amounts
of human-likeness, individuals adopt the “intentional stance”
(Dennett, 1989), or the belief that the actions carried out by
the agent are the result of “having a mind” that is capable of
rational, intentional choices (Gray et al., 2007). The adoption
of this belief has strong overall effects on our perceptions of
these agents. The belief that behavior is intentional can affect
the allocation of attentional resources and increase sensitivity
to subtle social cues such as gaze direction (Wykowska et al.,
2014; Caruana et al., 2017), which can help us communicate
important social information effectively (Frischen et al., 2007;
Mutlu et al., 2009). On the other hand, mindful agents are more
likely to be perceived as deserving punishment for wrong-doing
(Gray et al., 2007), unfair action from such agents are more likely
to inspire disgust (Sanfey et al., 2003), and the perception that
inflicted pain was intentional can increase the sensation of pain
(Gray and Wegner, 2008).

The extent to which non-human agents can trigger the
perception of mind is still an active topic of study in Human-
Robot Interactions (HRI; Wiese et al., 2017; Iwasaki et al., 2019;
Schellen and Wykowska, 2019), and important consideration in
Human-AI Interactions (HAI). Some studies have demonstrated
that only agents with very humanlike physical appearance can
elicit humanlike social interactions (MacDorman and Ishiguro,
2006) or expectations of social experience (Martini et al.,
2016). In real world interactions, it will be necessary for
agents to maintain the appearance of “having a mind” over
the course of dynamic social interactions by displaying socially
plausible and adaptive behaviors. Behavioral triggers for mind
perception include the action of engaging in eye contact
with human interaction partners (Kompatsiari et al., 2019),
making humanlike facial expressions (Breazeal and Scassellati,
1999), making mistakes (Salem et al., 2013), and presenting
unpredictable or random behaviors (Short et al., 2010; Waytz
et al., 2010b; Hayes et al., 2014). However, though unpredictable
or random behaviors are often accompanied by a decrease in
positive perceptions of the agent, presenting challenges if agents
are designed for long-term relationships.

Some research has even demonstrated that brain areas
involved in social-cognitive processing, such as the action-
perception system, are similarly sensitive to actions performed
by humans and mechanistic robots as long as the stimuli were
non-repetitive actions and the motion produced by the robot
was reproduceable by a biological organism (Gazzola et al., 2007;
Bisio et al., 2014). Humans even ascribe intentions to videos of
cartoons or even moving simple shapes (Heider and Simmel,
1944). However, others have shown that non-human social agents
do not activate the higher-order social brain areas to the same
extent that human interaction partners do (Sanfey et al., 2003;
Takahashi et al., 2014; Wang and Quadflieg, 2015).

Many questions still remain as to how non-human social
agents can be designed to trigger mind perception and the same
level of activation in social brain areas, and these will require
systematic and cross-disciplinary research (Wiese et al., 2017).
A useful approach is to conduct research that investigates how
distinct (or similar) AI performance is perceived compared to
human performance. While not all AI are created in the same
way, it is important to start asking these questions with state-
of-the-art AI that is developed to produce humanlike behavior
as a basis for understanding design criteria. Another benefit of
this approach is that the development of AI that is inspired
by cognitive and biological mechanisms of human learning
and decision making can bridge the gap between the fields of
AI and human-centered science for mutual benefit (Hadfield-
Menell et al., 2016; Marblestone et al., 2016; Romero et al., 2017;
Rabinowitz et al., 2018).

However, when the design of non-human agents reach the
level of sophistication where they are so humanlike that they
can actually deceive people into believing that they are human
actors can pose societal hazards. We have seen recent evidence
of the success of “bots” that pose as humans in order to
disseminate misinformation across social media (Zaleski, 2016),
or scam people on dating sites (Huhn, 2019). Publicly available
algorithms can be used to make “deepfakes” that depict women
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in pornographic content without their consent (Wagner and
Blewer, 2019) and could easily be used to create false evidence
to promote political goals (Schwartz, 2018). Considering these
applications, it is important to examine how sensitive people are
to true humanness when they have no explicit information about
a social actor’s identity.

The study of convincingly humanlike AI can draw inspiration
from history. Alan Turing’s test of machine intelligence (now
commonly called the Turing test) postulated that a machine
should be considered intelligent if it could convince at least
30% of human evaluators that it was a human after engaging
in 5min of unrestricted conversation (Turing, 1950). While the
evaluation was meant to be on the basis of the natural language
conversation through text, AI designers discovered that adding
certain behaviors (like including typos, delaying the response to
emulate human reaction time, and intentionally not answering
questions) increased the likelihood that the algorithm would be
rated as a human (Epstein et al., 2009). In 2014, the first chatbot
passed the Turing test, though it has been pointed out that clever
use of a back story (giving the agent the identity of a 13 year
old Ukrainian boy to excuse grammatical issues or a lack of
knowledge) and outside these behavioral features were used to
cheat the test (Warwick and Shah, 2016).

While the original Turing test was conducted on the basis
of a typed conversation, some behavioral Turing tests have
been published in recent years (Pfeiffer et al., 2011; Osawa
et al., 2012; Wykowska et al., 2015; Tulk et al., 2018) in which
humans judges must distinguish between human and AI actors
strictly on the basis of observed behaviors. There are several
important takeaways from this research. One is that it is more
difficult to distinguish between humans and AI on the basis of
behavior alone (Osawa et al., 2012; Tulk et al., 2018). People
may have presumptions about what robot vs. human movement
looks like (e.g., quick onset of motion) that affect judgments of
humanness (Wykowska et al., 2015). Also, evaluations of how
humans are likely to behave in specific interaction contexts (e.g.,
cooperative vs. competitive) are used to judge humanness, and
the assumptions of humanlike behavior are different depending
on this context (Pfeiffer et al., 2011).

An important aspect to consider for behavioral Turing tests
is that peoples’ perceptions of agents are affected by subtle
cues such as timing of a response or movement (Epstein
et al., 2009; Wykowska et al., 2015) or the way an agent
communicates (Short et al., 2010). Videogames provide the
perfect environment to study how humans interact with AI
because they are already developed for rich social interactions,
and many provide the opportunity for researchers to build
systems to capture behavioral data from within the game through
custom modifications. Videogames have been used both as a
platform for training and evaluating AI (Laird and VanLent,
2001; Mnih et al., 2015; Bard et al., 2020), and as a way to
investigate how human and AI performances are perceived by
measuring human behavior and subjective experience (Ehsan
et al., 2018; Tulk et al., 2018) as well as physiological measures
(Lim and Reeves, 2009).

In order to begin to understand how to create social AI that
behaves and is perceived as an appropriate social interaction

partner, this research attempts to answer the following questions:
(1) How well can people distinguish between human and
AI performance on the basis of behavior within a complex
environment, and (2) how do social interactions and perceptions
of interaction partners differ when an AI is developed with the
capacity to think and act socially?

This study attempts to answer these questions by first
observing how humans develop opinions and relationships
with human and AI co-players within the complex, naturalistic
multiplayer videogame. The game is Don’t Starve Together (Klei
Entertainment, 2016). A research modification has been created
to provide the environment for a behavioral Turing test and
collect data related to game behaviors and interactions with
different co-players. Secondly, a “social” AI has been developed
to have “a mind of its own” and uses humanlike motivations to
play the game and interact with human players. The cognitively
plausible AI system learns from social interactions with other
players in order to determine its own interaction strategy and
understanding of the social context of interactions.

There are two hypotheses for this experiment: (H1) Even
within a complex environment, participants will be able to
distinguish between the behaviors of human players and
“simplistic” AI co-players that simply emulates human behaviors
with no overarching motivations. This finding would be
consistent with Wykowska et al. (2015). While our pilot study
(Tulk et al., 2018) did show that it was difficult to differentiate
between a human and a “simplistic” AI co-player, the human
was instructed to play in a manner that was similar to how
the AI was programmed, and the interaction was relatively brief
(15min), which likely affected participants’ ability to judge. (H2)
It will be more difficult for participants to distinguish between
the behaviors of human players and “social” AI co-players that
have been designed to play the game and interact with humans
on the basis of cognitively plausible, humanlike motivations.
This finding would be in line with Osawa et al. (2012), which
demonstrated that it was more challenging to differentiate
between human and AI behavior when the AI was developed to
emulate human-human communication qualities. Additionally,
behavioral measures and qualitative data was collected in order
to explore the range of behaviors and cues that affected overall
perceptions of these co-players.

METHODS AND MATERIALS

Participants
A total of 83 undergraduate students (mean age = 20.3, SD =

2.60; 43 females) participated in this study. Participants were
compensated for their participation with credits through the
SONA psychological research system, which could be applied for
course credit in psychological classes offered at George Mason
University. Seventeen participants were removed due to technical
difficulties or glitches associated with the modifications made to
the game (e.g., game crashing after the experiment was started,
the modification not being started properly, internet connectivity
issues, agent continuing to run into a wall or standing still
for more than half the experiment) or incomplete datasets.
This removal resulted in a total of 66 usable datasets (mean

Frontiers in Robotics and AI | www.frontiersin.org 3 November 2020 | Volume 7 | Article 531805

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Tulk Jesso et al. Behavioral Cues of Humanness

age = 20.6, SD = 2.81; 37 female). The only screening criterion
was that participants had no prior experience playing the game.
Participants reported spending an average of 5.8 h (SD= 2.93) on
a computer per day and an average of 4.7 h (SD = 8.09) playing
videogames per week.

For this experiment, participants engaged in 30min of
unrestricted, non-verbal game-play (i.e., no text or audio
communication) with a human or AI co-player. The humans’ co-
player was a second participant (human: 22 participants; mean
age = 21.3, SD = 2.34; 13 female) who participated in the
study at the same time and simultaneously judged one another
while playing according to their own preferences. Two AI co-
players were used in this study: a simple AI (22 participants;
mean age = 20.3, SD = 3.12; 9 females) that used a behavior
tree to play in a manner that emulated humanlike actions in the
game, and a social AI (22 participants; mean age = 20.2, SD =

2.94; 15 females) that was designed to perceive and learn from
participants, and played the game based on plausible cognitive
mechanisms for survival and social interactions. Participants
were randomly assigned to their experimental group prior to
arriving to participate in the study, however, most of the data
collection for the social AI occurred a few months after data
collection finished for the other two experimental groups, as
it took longer to create a stable version of the social AI.
Additionally, since the tandem human condition required two
participants to be present at the same time, if one participant
did not show up, the other participant was re-assigned to either
the social or simple AI group. This research was conducted

with approval from the university’s ethics committee (i.e., the
institutional review board) and was carried out ethically. In total,
each participant took an hour to complete to protocol.

Multiplayer Videogame
Don’t Starve Together is an immersive, multiplayer wilderness
survival game where players collect resources (e.g., food and
fire wood) and craft tools and other objects (e.g., hats, armor,
hand tools) to trade or use to survive. Players can choose to act
however they desire within the game, including exploring a vast
environment, fighting or befriending creatures they encounter,
or building elaborate tools to help them survive and progress in
the game.

Two players can choose to interact with one another in a
variety of ways, including following one another around the
map, exchanging goods (e.g., food, clothing, tools), fighting one
another, and assisting each other in hunting food or fighting
monsters. Because the two players can see one another’s avatar
in the top-down vision of the world, and see each player’s
icon on the map, each can be observed in relation to their
low level behaviors (e.g., moving around the environment or
making micro adjustments to avoid obstacles or interact with
the environment, how frequently and how long they pause to
look at their menu or at items in the environment, how quickly
they react if an interaction is engaged by a player or an entity in
the environment) as well as higher level behaviors (e.g., if and
when they cook food, consume food or craft tools, how often
they go to home base, if they assist the participant by helping to

FIGURE 1 | A Typical Game Scene: Both players (Wilson and Woodie) are in view. Both players are within the “home base” that featured some barriers, a cook pot

and a constant light source that offered protection at night. The game statistics (hunger, health, sanity) are displayed in the upper right corner of the screen. The

player’s inventory is displayed on the bottom of the screen. On the left side of the screen is the “crafting tab” where players can view and pick from different.
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FIGURE 2 | Player avatars: Wilson (left) was played by the participant; Woodie

(right) was played by half of the participants in the human condition and by the

confederate human, simple AI, and social AI.

hunt or fight entities, or give gifts, or if they act competitively by
snatching up all the valuable resources or intentionally attacking
the other player, and how they respond based on the social actions
of the other player). Overall, many aspects of behavior can be
construed as social cues, including direct interactions (e.g., giving
gifts, attacking, or helping a player hunt or fight other entities),
or less direct interactions, such as how close co-players stayed to
the participant, if co-players followed participants, or appeared
to watch the participant as they played the game.

The game operates on a day cycle, with a clock at the top
right side of the screen indicating when it is morning, evening
or night. At night, the entire field turns dark, and players must
find light to see their environment and stay alive. Players can
track how well they are performing by looking at their health,
hunger, and sanity levels that are displayed on three icons in
the top right of the screen, just under the clock. Players can
also see how many items they have stored in their inventory
(displayed at the bottom of the screen) and can interact with the
crafting tab displayed on the left side of the screen to determine
what items they can build given the resources carried in their
inventory; see Figure 1. A modification to the game code was
created for this research, such that player metrics and behaviors
were recorded. Additionally, a “home base” was added with a
constant light source such that participants and co-players could
always return home at night for safety. Home base also offered a
natural location where players might encounter each other over
the course of the experiment. The game features a map to help
players navigate the environment, and icons for each player were
placed within the map so that players could always find each
other. AI agents were also created for this study by modifying
and further developing existing game AI and by using an existing
playable avatar (i.e., “Woodie,” see Figure 2).

Co-players
Participants interacted with co-players (human or AI) within the
game for 30min. The chat function was disabled such that all
interactions were behavioral. The two avatars that players and co-
players used were “Wilson” and “Woodie”; see Figure 2. These

two avatars were selected for their similar features and relatively
normal appearances compared to other available avatars in the
game. In the AI conditions, the participant played as Wilson and
the AI co-player played as Woodie. The avatar assignment was
specified to make the start up procedure as straightforward as
possible for research assistants, as improperly starting the game
with the research modifications or improperly adding the co-
player to the game could cause the game to crash or result in
missing data.

Human Co-players
In the human condition, two participants were recruited to
participate at the same time and unwittingly played the game
together, such that each participant was also the co-player of
another participant. Human co-players therefore had no prior
experience with the game and could play the game and interact
however they wanted. All human players (participants/co-
players) were aware that they would be asked whether they
thought their co-player was a human or AI at the end of
the experiment. However, participants were given no explicit
instructions on whether and how to evaluate co-players. In
this way, participants and co-players should have behaved in
similar “humanlike” fashion over the course of the game. The
player avatars (Wilson and Woodie) were arbitrarily assigned
to participants.

Simple AI Co-players
A simple AI agent was created for a pilot study (Tulk et al., 2018)
and was developed further based on pilot-participant feedback.
This agent’s behavior was governed by a behavior tree (i.e., no
learning algorithm or learning involved) that was intended to
react to game stimuli in a way that emulated humanlike behaviors
within the game, but the agent had no motivations for making
decisions about how to behave in the game; see Figure 3. In
“social interactions,” the agent was programmed to act with
reciprocity (i.e., if attacked, it would attack back; if given a
gift, it would give a gift back within a few minutes), but would
never initiate these interactions on its own. Since the timing for
returning gifts was random, it was possible that the co-player
had difficulty catching up with participants within the expansive
environment to be able to return gifts. Additionally, this AI was
only sensitive to very salient interactions (i.e., being attacked by
participants, being handed a gift, or having a gift dropped very
near to its avatar in the game) and would not notice actions such
as participants chasing it or running into it. It could, however,
notice when a participant was fighting another entity in the
game if they were very near-by, and would assist participants
in fighting.

Social AI Co-players
As an important aspect of HAI involves the way in which AI
agents perceive and decide to interact with humans, a socially
and cognitively plausible AI agent was created to decide for itself
how to play the game and interact with participants. The model
consisted of two independent components. The first component
was a new behavior tree that determined all survival-based
behaviors and was designed from participants’ descriptions of
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FIGURE 3 | The Simple AI’s behavior tree. The simple AI’s behavior was governed by this behavior tree.

what constituted “humanlike” survival behaviors andmotivations
(analysis not presented in this paper). In contrast with the
simple AI, this behavior tree was designed to emulate humanlike
motivations when playing the game, such as making decisions
to aid in survival and interacting with human players based
on its current survival state and the perceived social context.
The agent kept track of its own health, hunger and stock of its
inventory (combined into one measure called “neediness score”
or “NScore”) in order to make decisions that would increase its
chances of survival. As an example, it only collected items that
were valuable and which it did not already have an ample supply
of, hunting easy prey for food and deciding whether or not to
engage in fights with other creatures in the game that could fight
back; see Figure 4.

The second component was a Partially Observable Markov
Decision Process (POMDP) used to represent the social
context and determine how to treat participants (namely,

to act cooperatively, competitively or tentatively) based on
its own perception of the human’s actions (cooperative or
competitive). POMDPs have been used to dictate AI social
behavior (Rabinowitz et al., 2018) and are particularly suited
for representing environments in which an agent does not have
perfect knowledge about the current state or what to expect. The
POMDP was adapted from the open source POMDPy (Emami
et al., 2015), and made decisions via a Monte-Carlo Tree Search
algorithm that simulated the agent’s own choices (Silver and
Veness, 2010) and the choices of social partners to determine
how to interact with others to achieve the best outcome given
its current representation of the social context. The social AI
represented every action and observation as a two-person matrix
game with turn taking, where each player can decide to act either
cooperatively or competitively (four possible outcomes), plus an
additional option for the social AI to wait and evaluate the other
player rather than act, resulting in six possible outcomes. The
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FIGURE 4 | The Social AI’s Behavior Tree. The social AI’s behavior consisted of two components. The first component was a behavior tree that was designed from

participant’s statements about what constituted humanlike behavior in the game. The social AI kept track of its own “neediness” (NScore) based on its current player

stats (health, hunger, and sanity) and how many resources it had in inventory, or how well it was currently surviving in the game and made decisions based on how

needy it was in the moment. The second component involved a POMDP that kept a memory of other agents it interacted with, estimated for itself the social context,

and made decisions based on how it was being treated by the participant.
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social AI was designed to use the values associated with each
outcome (i.e., a payoff matrix describing relative rewards and
punishments for joint outcomes) to determine how to interact
within the game in order to maximize its expected reward, but
also to update the payoff matrix based on what it observed from
a co-player (i.e., the participant). This meant that not only did it
develop a preference for how to interact, but also decided how
to interact based on what it believed the other player would do
within a social context (e.g., choosing to cooperate if it believed
this act would be met with cooperation). The payoff matrix
was initially configured to assume a context favoring mutual
cooperation. As the social AI interacts with the participant, the
payoff matrix is updated and may shift toward different types of
games. In this way, the agent is able to change its strategy for
interacting with participants.

Apparatus
Two copies of the game Don’t Starve Together were purchased
and modified to record participants’ in-game behavior and
interactions with co-players. Modifications were also made to
make the game a little easier for the participant (e.g., they could
never actually die, but were not informed of this fact), and
the chat function was disabled to ensure that all interactions
were behavioral. The game was played on PCs through the
Steam gaming platform (Valve, 2003). Participants were given
the option to use either an Xbox style controller or mouse and
keyboard. All questionnaires were administered through Google
Forms. Interviews were conducted verbally and transcribed by
the researcher.

Measures
In-game Behavioral Measures
While playing the game, various measures associated with the
participants’ in-game behaviors, performance, and interactions
with co-players were recorded. They included: (1) distance
between the participant’s and co-player’s avatars within the
game environment (measured in approximate centimeters on the
monitors), (2) how often participants engaged in interactions
such as giving/receiving items to/from co-players, how often
participants attacked co-players/were attacked by co-players,
and how often they engaged in joint hunting (e.g., rabbits) or
fights with other game entities that could fight back (e.g., giant
spiders). Data was recorded automatically from the game once
any actions of interest occurred and at various times throughout
game play, resulting in approximately 400–1,000 records for each
participant. Distance was recorded approximately once every
5 s. Importantly, while a “give” function was included such that
participants could directly hand gifts to the co-player and would
receive a notification when a co-player gave them items with
the same function, many participants indicated that they would
drop items near the co-player’s avatar instead. Both AI co-players
considered this to be a gift giving action, but it cannot be
said with certainty that participants (who acted as human co-
players for other participants) would have noticed this as it is
significantly less salient, therefore estimations of gifts received
from human co-players only included gifts given directly through
the “give” function.

Surveys
Prior to playing the game, participants filled out a generic
demographics survey. After playing the game, participants
reported the extent to which they trusted the co-player and the
extent to which they felt like the game and co-player were “real”
(Schneider et al., 2004). Both qualities were reported on Likert
measures out of 10 points.

Turing Test and Interviews
After playing the game and responding to survey questions,
participants were interviewed on what they thought the other
player’s identity was (i.e., the Turing test) and what cues led them
to this judgment. Additional data was collected related to overall
perceptions of agents and the perceived social context of the
interaction, but these results will not be discussed in this paper
as a much more thorough qualitative analysis is planned.

Procedure
At the beginning of the experiment, participants read the consent
form and confirmed that they consented to be in the study,
then filled out the demographic questionnaire and were given
instructions for the experiment. Participants were then told
that they would be playing Don’t Starve Together with another
player, and were instructed that they could do whatever they
wanted in the game and toward the co-player, and that at the
end we would ask them if they believed that the co-player
was a human or an AI agent. Researchers randomly assigned
participants to these experimental groups (i.e., participating
with a tandem human, simple AI, or social AI) prior to
their arrival, and participants were not made aware of this
assignment. They were also informed that chat within the game
was disabled, and that all communication within the game would
be behavioral.

Participants practiced playing the game for 5min where they
were given tips on how to play the game and were allowed
to ask questions. Participants were then asked to leave the
computer area while the experimenter brought the co-player
into the game by initializing their avatar in the home base.
In the human condition, an online server was created on one
lab computer where Wilson was selected as the participant’s
avatar, and researchers connected the secondary computer to the
server and initialized as Woodie, who was played by another
participant in another room. Lab rooms were on separate
floors of the same building so that participants in the human
condition did not encounter one another, which could have
potentially biased the experiment. In both AI conditions, a
local server was created with Wilson as the participant’s avatar,
and a new instance of the AI co-player (simple AI or social
AI) was created with Woodie as the avatar. In the social
AI condition, the POMDP was running in a terminal in the
background, but was not visible to the participant at any point.
Once both players were initialized within the environment,
the participants played the game with their co-player for
approximately 30min. After playing for 30min, the game was
turned off and participants responded to survey questions.
Finally, participants were verbally interviewed about the
perceived identity of the co-player and what behavioral cues led
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to this identification. At the end of the experiment, participants
were told the actual identity of their co-player and thanked for
their participation.

Analysis
Performance on the Turing test was evaluated by comparing
the frequency that all co-players were rated as humans in a
forced choice response. Additionally, the accuracy of the binary
responses of humanness were compared against chance (similar
to Wykowska et al., 2015) to examine how sensitive participants
were to humanness (or the absence of it) when compared to the
performance of simple and social AI co-players.

In order to compare how participants and co-players engaged
in interactions and how symmetrical these interactions were (i.e.,
if participants and co-players reciprocated interactions engaged
by one another or if one player tried to engage the other
more frequently), the scored difference in interactions engaged
by participants vs. co-players was calculated by the following
equation using data recorded from in-game behaviors:

Scored Difference =

(

p− c
)

[

(p+c)
2

]

Where p= total interactions engaged by participants,
c= total interactions engaged by co-players

Comparing percent difference is a common approach to compare
two experimental values in a standardized way (Glen, 2016)
and offers the opportunity to compare the extent to which
interactions within the game were reciprocated by participants
and co-players. Here, a variation of the percent difference
equation is used as a non-absolute value such that positive and
negative values of the scored difference can be evaluated, where
greater positive scores are associated with relationships where
participants engaged in interactions that were unreciprocated by
co-players, and greater negative scores with relationships where
co-players engaged in interactions that were unreciprocated
by participants. The motivation for using this measure is the
acknowledgment that reciprocity is a strong expectation in
human-human social interactions (Gouldner, 1960; Axelrod and
Hamilton, 1981).

Analysis of Variance was used to examine the relationship
between co-player identity and perceived humanness on
participants’ in-game behaviors (i.e., average distance between
players and the scored difference in participant-engaged vs. co-
player-engaged interactions) as well as explicit survey ratings of
how much participants trusted co-players and perceived them as
a “real person.” All reported post-hoc analyses were conducted
with Tukey’s HSD (Abdi and Williams, 2010).

In order to examine the behavioral cues participants
described when asked how they made determinations
of humanness, participants’ natural language responses
were analyzed and coded by two raters. Cohen’s Kappa
was calculated to determine the inter-rater reliability, and
χ² tests were used to investigate the relationship between

perceived humanness, co-player identity and the most frequently
occurring cues.

RESULTS

Perceived Humanness and Sensitivity to
Human Behavior
Overall, 10 out of 22 participants (45%) perceived human co-
players as humans, five out of 22 (23%) perceived the simple
AI co-players as humans, and seven out of 22 (32%) perceived
the social AI co-players as humans. The overall accuracy of
participants who played with human and simple AI co-players
was 61%, which is a level of performance that is not significantly
above chance, t(43) = 1.53, p = 0.067; d = 0.242, one tailed.
The overall accuracy of participants who played with human and
social AI co-players was 57%, with a performance level that was
not significantly greater than chance, t(43)= 0.90, p= 0.186; d=
0.116, one-tailed.

In-game Behaviors
The average distance between participants and co-players within
the game can be seen in Figure 5A. Analysis of variance showed
that average distance was significantly different across co-player
identity (F(2,60) = 9.84, p < 0.001, ηp2 = 0.223), but not across
perceived humanness (F(1,60) = 0.99, p =0.324, ηp2 = 0.016). A
post-hoc analysis (with Tukey’s HSD) showed that the average
distance between participants and simple AI co-players (M =

40.9 approx. cm, SD= 6.3) was significantly less than the average
distance between participants and human co-players (M= 109.5,
SD = 53.2; p < 0.001, g = 1.77) as well as between participants
and social AI co-players (M = 87.0, SD = 71.4; p = 0.012,
g = 0.89), but the average distances between participants and
human co-players compared to social AI co-players was not
significant (p= 0.323, g = 0.36).

Average scored difference in participant-engaged vs. co-
player-engaged interactions with respect to perceived humanness
and co-player identity can be seen in Figures 5B,C. Analysis of
variance showed that scored difference in participant-engaged vs.
co-player-engaged interactions was significantly different across
co-player identity (F(2,60) = 4.79, p = 0.012, ηp

2
= 0.141), but

not significant across perceived humanness (F(1,60) = 3.30, p
=0.074, ηp

2
= 0.052), where co-players that were perceived to

be humans had a negative average score (M = −9.3%, SD =

26.6%), indicating that co-players that were perceived as humans
engaged with participants more often than they were engaged
with by participants overall. A post-hoc analysis showed that
the scored difference associated with participant vs. social AI
co-player engaged interactions (M = −33.6%, SD = 52.3%)
was significantly lower than the scored difference associated
with participant vs. human co-player engaged interactions (M
= 16.2%, SD = 84.8%; p = 0.032, g = 0.69) and participant vs.
simple AI co-player engaged interactions (M = 18.5%, SD =

48.4%; p= 0.024, g = 1.02).

Survey Responses
Average ratings of how much participants trusted co-players
can be seen in Figure 6A. Participants reported different levels
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FIGURE 5 | In-game behaviors. (A) In-game distance between participant and co-player. The distance between participants and the simple AI co-player was

significantly smaller than the distance between participants and human co-players, and participants and social AI co-players. (B) Scored difference between in-game

social interactions engaged by participants vs. co-players, across perceived humanness. Co-players that were perceived as human engaged participants more often

on average than they were engaged by humans, though the difference was only approaching significant. (C) Scored difference between in-game social interactions by

co-player identity. Social AI co-players engaged participants more often than they were engaged by participants on average. Asterisks (*) correspond to levels of

statistical significance, where one asterisk means p values were less than 0.05, two asterisks means p values were less than 0.01, and three asterisks means p values

were less than 0.001.

of trust depending on co-player identity (F(2,60) = 3.273, p =

0.045, ηp
2
= 0.101), but not perceived humanness (F(1,60) =

0.23, p =0.633, ηp
2
= 0.004). A post-hoc analysis showed that

participants trusted social AI co-players (M = 2.4/7, SD = 1.5)
significantly less than human co-players (M = 4.1/7, SD = 2.6; p
= 0.034, g = 0.81).

Average ratings of how much participants perceived their co-
player as a “real person” is shown in Figures 6B,C. Participants’
ratings were impacted by co-player identity (F(2,60) =8.66, p
< 0.001, ηp

2
= 0.141), and perceived humanness (F(1,60) =

56.41, p < 0.001, ηp
2
= 0.485), where co-players perceived as

humans received higher ratings (M = 6.8/7, SD = 2.0) than
co-players perceived as AI (M = 3.3, SD = 1.6). A post-hoc
analysis showed that participants perceived simple AI co-players
(M = 3.3/7, SD = 2.3) as a “real person” significantly less than
human co-players (M = 5.0/7, SD = 2.2, p = 0.037, g = 0.71)
and social AI co-players (M = 5.1, SD = 2.3, p = 0.022, g =

0.81), who actually received the highest mean ratings, while the
difference between the human and social AI co-players was not
significant (p= 0.978, g = 0.10).

Behavioral Cues of Humanness
The natural language responses participants provided to indicate
what behavioral cues helped them determine humanness were
coded independently by two separate raters. A summary of these
cues is presented in Table 1, including the top five frequently
occurring cues, Cohen’s Kappa for inter-rater reliability,
the relative frequency for codes occurring across perceived
humanness and co-player identity, and results from χ² tests.

The most frequently occurring cue used by participants
when making determinations of humanness was the observation
that the co-player did not engage in enough interactions
with the participant. While this cue was more frequently
associated with agents perceived as AI, the association was
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FIGURE 6 | Explicit ratings. (A) Co-players that were perceived as humans were perceived as being a “real person” more than co-players perceived as AI. (B) Human

co-players and social AI co-players were perceived as a “real person” more than simple AI co-players. (C) Participants reported that they trusted social AI co-players

less than the human co-players. Asterisks (*) correspond to levels of statistical significance, where one asterisk means p values were less than 0.05, two asterisks

means p values were less than 0.01, and three asterisks means p values were less than 0.001.

not significantly different with respect to perceived humanness
or co-player identity. However, the cue that the co-player did
interact with participants was more strongly associated with
co-players perceived as humans; see Figure 7. With respect
to co-player identity, the only cue (within the top 5) that
differed significantly was the perception that the co-player acted
randomly or unpredictably, which was only associated with social
AI co-players.

DISCUSSION

Our study attempted to shed light on how sensitive humans
are to complex behaviors of human and AI co-players within
a naturalistic game environment. We compared participants’
accuracy in distinguishing between the behaviors of human
co-players and those of AI co-players that were “simplistic”
(i.e., lacking any motivation for social interactions and the
ability to perceive social context), or “social,” with a built-
in capacity to sense social cues and determine for themselves
how to interact with participants using cognitively plausible,
humanlike motivations.

Our first hypothesis was that participants would be sensitive
to performances by humans and be able to distinguish between
human and simple AI co-players. The results from our behavioral
Turing test were that participants labeled human co-players
as humans more often than simple AI co-players, though
the accuracy above chance was only approaching significant.
However, participants reported that they perceived the simple
AI co-player as a “real person” significantly less than human
and social AI co-players, suggesting some support for rejecting
the null hypothesis that humans are incapable of distinguishing
between humans and simple AI co-players. This is in line with
prior research in behavioral Turing tests has suggested that it can
be challenging for participants to distinguish between human and
AI players (Osawa et al., 2012; Tulk et al., 2018), but that humans
may still have some sensitivity (Wykowska et al., 2015). It is
also worth mentioning that human players were rated as humans
<50% of the time, suggesting that participants were more likely
to rate co-players as AI regardless of actual humanness. Since
this Turing Test was conducted only based on behaviors, the
lack of verbal communication may have made co-players seem
less humanlike.
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TABLE 1 | Cues participants used to make determinations of humanness.

Cue Total

count

Cohen’s

Kappa

χ² between

raters

Relative frequency of

cue by perceived

humanness

χ² for

perceived

humanness

Relative frequency of

cue by co-player

Identity

χ² for

co-player

identity

Not enough social

interactions

22 0.893 (1,65) = 48.38,

p < 0.001

AI 41% (1,65) = 2.14,

p = 0.144

Simple AI

co-players

45% (1,65) = 0.51,

p = 0.775

“When the game started,

they immediately walked

away. I would expect that a

person would try and tell if I

was hostile or friendly.”

Human 19% Human

co-players

33%

Social AI

co-players

23%

Movement 14 0.737 (1,65) = 31.21,

p < 0.001

AI 27% (1,65) = 1.70,

p = 0.192

Simple AI

co-players

36% (1,65) = 4.33,

p = 0.115

“They were very active and

their movement was fluid”

Human 10% Human

co-players

14%

Social AI

co-players

14%

Co-players did interact 12 0.692 (1,65) = 25.92,

p < 0.001

Human 43% (1,65) = 9.99,

p = 0.002**

Human

co-players

24% (1,65) = 0.74,

p = 0.691

“helped me chase the rabbit

and helped with other tasks”

AI 7% Social AI

co-players

18%

Simple AI

co-players

14%

Not enough interactions

with the environment

12 0.614 (1,65) = 19.96,

p < 0.001

AI 25% (1,65) = 2.64,

p = 0.104

Social AI

co-players

23% (1,65) = 0.51,

p = 0.775

“It didn’t collect the logs

after the trees were cut

down”

Human 5% Simple AI

co-players

18%

Human

co-players

14%

Random or unpredictable

behavior

11 0.663 (1,65) = 24.06,

p < 0.001

AI 14% (1,65) = 0.00,

p = 0.970

Social AI

co-players

32% (1,65) = 14.30,

p < 0.001***

“Player 2 would attack for

no reason”

Human 5% Human

co-players

0%

Simple AI

co-players

0%

Asterisks (*) correspond to levels of statistical significance, where one asterisk means p values were less than 0.05, two asterisks means p values were less than 0.01, and three asterisks

means p values were less than 0.001.

Our second hypothesis was that participants would have a
harder time distinguishing between human co-players and social
AI co-players, and was supported by our findings. Participants’
accuracy in detecting human co-players was not significantly
above chance, and the level at which the social AI co-player was
rated as a human was above the threshold for a typical Turing
test. Participants reported no significant differences in howmuch
they perceived human and social AI co-players as a “real person,”
and, somewhat surprisingly, the social AI co-player received the
highest ratings on this measure. But the social AI’s higher rate
of perceived humanness was also accompanied by lower ratings
of how much participants trusted this co-player compared to
human co-players. This relationship may be related to the fact
that participants sometimes perceived that the social AI co-player
was acting randomly or unpredictably, which is consistent with
prior research (Short et al., 2010; Waytz et al., 2010b; Hayes et al.,
2014) and this cue was never used to describe any other co-player
(see Table 1).

Considering which observed behaviors participants used as
cues of humanness in this experiment, the most frequently

reported cues were related to whether or not the co-player
engaged in interactions with the participant, and the perception
that the co-player did engage with them was strongly associated
with the perception of humanness. This test was solely based on
observable non-verbal behavior and not communication, which
was disabled. Communication in games through chat is likely
the most common type of engagement normally. The fact that
many humans did not choose to interact very often did not stop
the majority of participants from assuming that a human would
try to interact (for instance either expressing that they thought
the co-player was not human because they did not interact, or
saying they were human because they did interact). This finding
is further supported by the fact that, on average, co-players
that were perceived as humans engaged participants in social
interactions more often than they were engaged by participants.
While social AI co-players engaged the participant most often
on average, these interactions were sometimes perceived as
unpredictable. While the social AI was built upon participants’
descriptions of what humanlike motivations and behavior should
look like, more training and fine-tuning in how it perceives and
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FIGURE 7 | Proportions of participants who reported that their co-player

interacted with them by perceived humanness. The cue that co-players did

interact was significantly associated with the perception of humanness.

Asterisks (*) correspond to levels of statistical significance, where one asterisk

means p values were less than 0.05, two asterisks means p values were less

than 0.01, and three asterisks means p values were less than 0.001.

responds to social cues would be necessary if such an agent was
intended for long-term human-AI social interactions.

It is also somewhat interesting that participants who played
with the simple AI co-player had the smallest in-game distance,
yet these participants reported that the agent did engage with
them less frequently than human co-players and social AI co-
players. This may indicate that participants had the opportunity
to interact with these agents, yet the overall engagement with
the simple AI co-player was low. It is certainly possible that
these agents’ limited capacity to perceive social actions and social
context precluded them from engaging in any meaningful ways
with participants, providing more justification to the notion

that social AI needs to be equipped with the capacity to sense
social cues presented by human interaction partners and respond
appropriately. Distance between participants and co-players is
not easily interpretable. Close distance provides the opportunity
to interact and observe and could have been interpreted as a
social signal in and of itself by participants. At the same time,
distancemay be affected by social interactions, where players who
may not trust each other can intentionally choose to distance
themselves. Participants who were trying to make a decision
on the co-players’ identity may also have attempted to stay
closer. The only conclusion that might be made is that the
navigating behavior of the social AI is more similar to human
behavior than that of the simple AI. While movement was not
analyzed in this fashion, this is supported by the fact that the
social AI was designed to interpret and navigate the game like
a human player would, while the simple AI was only designed
to perform actions that seemed humanlike without any real
motivation to explore. Overall, our results suggest that humans
are sensitive to social engagement by co-players within a complex
environment, and use this cue to determine whether or not
an actor is a human. Our social AI engaged in interact with
participants and was perceived as a human more often than
simplistic AI, and might be considered to have passed the Turing
test, though its perception of the social context and decisions on
how to engage may have been perceived as unpredictable and
resulted in consequences to how much participants trusted these
agents. It is important to note that these results were obtained
for one AI system within the context of a videogame, so the
generality of such findings for different types of social AI and
in different contexts is not known. Videogames provide a great
ecologically valid environment to investigate what cues humans
make evaluate of AI agents when given flexibility in how to make
evaluations. On the other hand, the context can be highly specific,
which guides expectations for behavior and makes it necessary
to develop AI agents that can meet those specific expectations.
However, the game Don’t Starve Together was selected due to
its naturalistic and extremely open environment and participants
were allowed to behave and evaluate their co-player however they
desired aside from the disabled chat function. The author believes
that this lent the experiment ecological validity, which helps to
generalize the findings. Furthermore, the social AI was developed
to be cognitively plausible, with humanlike motivations that were
taken from participants’ descriptions of how humans play this
type of game, making the social AI generalizable to the context
of survival within a naturalistic environment.

Scientists and designers need to improve our understanding
of how well people can distinguish between actual humans
and current state-of-the-art AI on the basis of behavior within
complex environments. As AI begins to incorporate humanlike
behavioral traits and motivations, the result may be that the
information from these actors is more comprehensible and
satisfying (Romero et al., 2017; Ehsan et al., 2018), yet there will
be the potential for other humans to use the technology in ways
that pose serious threats to our society (Zaleski, 2016; Schwartz,
2018; Huhn, 2019; Wagner and Blewer, 2019).

We believe that these results add to the growing body of
literature concerned with the development of artificial social
agents, and is aimed at developing a deep understanding of how
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humans perceive and interact with them. These results imply that
an ability to engage socially is perceived as a humanlike quality
and suggest that the design of cognitively plausible social AI
might help such agents understand how to engage with human
interaction partners.
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