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Abstract: A model with an inner structure was designed to study the relationship between the surface
quality of the inner structure and the scan strategy in this study. The test results showed that the
precision of the inner structure was highly affected by the scan strategy, and the specimens printed
using different strategies showed different performances on the surface quality of the inner structure.
The specimen printed using the square-framed scan strategy had a lower flatness value on the positive
face of the inner structure compared to that of the other two specimens printed using Z-shape scan
strategies, while the specimen printed using the Z-shape scan strategy (along the inner structure) had
a relative optimal surface roughness on the side surface of the inner structure in all three specimens.
The bending deformation caused by the scan strategies was considered to be the main factor affecting
the flatness on the positive surface, while laser energy fluctuation showed a significant impact on
side surface roughness. Combined with the experimental data, a new scan strategy was proposed;
we found that the specimen printed using this new strategy improved positive surface flatness and
side surface roughness.
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1. Introduction

Three-dimensional printing (3DP) has attracted increasing attention all over the world due to its
near net-shape formability, which is both time- and cost-saving [1]. The selective laser melting (SLM)
machine can print a metal solid part by melting metal powder using laser energy, and it has been
widely used in space, aviation, automotive, and other industries [2]. According to previous studies,
there are about 100 factors affecting the properties of the printed parts, but only about 20 of them are
considered to be controllable, including layer thickness, hatch spacing, scan speed, scan strategy, laser
power, and built orientation [3]. In this research, scan strategy was the only variable parameter due to
its commonality and high impact on the properties of printed parts.

Scan strategy has been frequently studied in recent years. Cheng et al. [4] found that different scan
patterns had a great impact on residual stress, and a 45◦-line scan case led to less deformation in all their
results. Lu et al. [5] studied different island scan strategies. They found that the sample printed using a
2 mm × 2 mm island scan strategy had the lowest residual stress, while the samples printed using 5 mm
× 5 mm and 7 mm × 7 mm island scan strategies had higher relative densities. Mohanty et al. [6] proved
that a cellular scan strategy was a reliable simulation method to generate an optimized scan strategy.
Wan et al. [7] investigated the effect of scan strategy on grain structure and crystallographic texture.
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They found that, for the specimen printed using an XY-direction scan strategy, the competitive grain
growth mechanism became more evident and a strong cube texture was developed. Ahrari et al. [8]
developed a method for multiobjective optimization of the scan path in selective laser melting. They
tried to optimize the scan strategy with a nondominating sorting genetic algorithm. The multiobjective
evolutionary method was used to find a set of trade-off solutions for the defined conflicting objectives on
a process simulation domain consisting of 32 cells, which could not be obtained by performing merely a
local search. Wild et al. [9] reported that the scan strategy and laser parameters should be modified
according to the part’s geometry. Open-porous NiTi scaffolds with porosity up to 88% and very dense
lattice material (density >99.8%) were printed. Xie et al. [10] used a knit scan strategy and found that
the porosity of the printed part was significantly decreased compared to the specimen printed using
the single-direction scan strategy. Jhabvala et al. [11] showed that the parallel scan strategy had some
drawbacks. It was better to use a multidirectional scan strategy to fill this gap. Parry et al. [12] tried to
explain the effect of scan strategy using thermomechanical simulation. They found that the design of
laser scan strategies should avoid a long scan vector length and the direction of scan vectors should be
orientated uniformly to produce an isotropic stress field in the component. Rashid et al. [13] studied the
effect of scan strategy on the density of 17-4PH part. They found that the density of the printed parts
increased after printing twice on each layer. Ghouse et al. [14] found that scan strategy had a great
impact on the porosity of the printed parts. To print a part with high density, they optimized their scan
strategy and changed the process parameters accordingly.

The surface quality of the printed parts has also been studied in the last few years.
Calignano et al. [15] investigated accuracy and dimension limitation in the printing process. They
said that the printed part with a base size below 0.8 mm and a geometry with sharp edges could
not be reached using aluminum alloy. Mumtaz et al. [16] studied the effect of laser parameters on
surface roughness. They found that process parameters had a significant impact on top and side
surface roughness. Tian et al. [17] mainly investigated the influence of process parameters (laser power,
scan speed, layer thickness, and sloping angle of the surface) on surface roughness printed using
the Hastelloy X alloy. They confirmed that contour and skywriting scan strategies can be helpful in
reducing surface roughness. Bagheri et al. [18] found that some geometries and mechanical mismatches
can be reduced using a compensation strategy in the process. For strut thickness, the results showed
that the largest mismatch (60% away from the design) occurred for horizontal members, which reduced
to 3.1% upon application of the compensation. In this work they also studied the surface quality of
general objects. They captured the dependence of strut thickness on the building angle in a spider
web, and this scheme has been successfully applied to Ti6Al4V three-dimensional lattices, with a cell
topology suitable for load-bearing applications.

The main focus of the current study was the precision of the inner structure, which includes
the surface quality of the side and positive surfaces of the inner structure part. This field has been
studied much less than the mechanical properties of the printed parts. This is due to the fact that some
postprocessing treatments can be employed after printing the general parts; however, as it is hard
to postprocess the inner structure surface, especially some microinner structures, it is meaningful to
optimize the precision of the inner structure in the printing process.

In this study, the relationship between the surface quality of the inner structure and the scan
strategy was studied. The inner structure part had both an inner structure layer and a noninner
structure layer, which was different from the studies listed before. According to the special structure
characteristic of the inner structure part, a new scan strategy was proposed to improve the surface
quality of the inner structure.

2. Material, Methods, and Procedure

The Ti6Al4V metal powder used in this research was supplied by Shenzhen Minatech Co., Ltd.
(Shenzhen, China), and it was printed with dimensions of 17.0 mm × 15.0 mm × 7.0 mm (L ×W × H)
using FS271M (Farsoon, Changsha, China). Three different scan strategies were used, as shown in
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Figure 1. These were a Z-shape scan strategy vertical to the inner structure (in X direction (Figure 2a))
shown in Figure 1a; a Z-shape scan strategy along the inner structure (in Y direction (Figure 2a)) shown
in Figure 1b; and a square-framed scan strategy (Figure 1c). The printed specimen in this study is
shown in Figure 2. The positive and side surfaces of the inner structure performed differently, so they
were studied separately. Therefore, P1–P6 were defined as the positive face, while S1–S6 were defined
as the side face. The building orientation is also shown with the red arrow in Figure 2a.
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Figure 1. Three scan strategies used in this study. (a) Z-shape scan strategy vertical to the inner
structure; (b) Z-shape scan strategy along the inner structure; (c) square-framed scan strategy.
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Figure 2. Specimen model with measuring information(a) and cutting surface(b) in this study.

The Trilinear Coordinates Measuring Instrument (Hexagon Metrology, Stockholm, Sweden) was
used to test the surface flatness of the inner structure. Specimens were processed using a slow wire
cutting machine, and the Surface Roughometer (Mitutoyo Kanagawa, Japan) was used to measure the
roughness of the inner structure. A 3D surface profiler (RTEC, MFD-F profilometer 2207, San Jose,
CA, USA) and a scanning electron microscope (SEM) (Carl Zeiss, Sigma300, Oberkochen, German)
were also used to test the properties of the inner structure to give an explanation of the phenomenon.
The detailed steps for the entire study are given below.

The first step of this experiment was to print the specimens using the three different scan strategies
shown in Figure 1. Some other process parameters, such as laser power and layer thickness, were all set
to an optimized condition according to our previous experiment, shown in Table 1. The diameter and
chemical composition of the Ti6Al4V powder used in this study are listed in Table 2. The specimens
were printed under the same conditions with the same Ti6Al4V powder, and all were printed in one
base plate. After the printing process, the specimens were cut from the base plate using a slow wire
cutting machine, provided by Wuxi Institute of Technology, to ensure precision.
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Table 1. Process parameters used in this study.

Parameter Laser Power
(w)

Laser Scan
Velocity (m·s−1)

Layer Thickness
(mm)

Hatch Space
(mm)

Protective
Gas

Value 180 1 0.05 0 Argon

Table 2. Relevant information about the powder used in this study.

Powder D10
(µm)

D50
(µm)

D90
(µm)

O
(wt.%)

N
(wt.%)

H
(wt.%)

C
(wt.%)

Al
(wt.%)

V
(wt.%)

Fe
(wt.%)

Ti6Al4V 27.7 37.0 49.0 0.175 0.024 0.0064 0.011 5.74 3.83 0.05

The second step was to cut the specimen into two parts to measure the surface quality of the
inner structure. The cutting machine and mode were similar to the first step, in order to lower the
impact on deformation caused by cutting. The roughness of the inner structure was first measured
using the Surface Roughometer, and Ra was used here to represent the roughness value in this study.
The sampling length was taken as 2.5 mm in accordance with JB/T 7051-2006 and the interval number
was 5. The length between each interval was 1 µm. A Gaussian filter was used and the length of the
accelerating and decelerating parts was 1.25 mm. All the positive and side faces were measured in the
direction along the inner structure. Each surface was measured three times in this study to prevent
error in the measuring process. The average value of each surface roughness for every specimen was
calculated separately and used as the roughness of the positive face and the side face. Flatness was
measured using the trilinear coordinates measuring instrument with a laser triangulation technique
using the HP-L-20.8 Scanner Head provided by Hewlett-Packard Development Company, Palo Alto, CA,
USA. The working distance of this scanner head was 180 ± 40 mm with a rate of 100 Hz. The minimum
point distance was 0.013 mm, while the shape error was within 9 µm. Specimens were scanned first to
obtain point cloud data with ultrafine quality. The direction of the laser probe was changed (vertical,
horizontal, and 45◦) in the scan process, and the focal spot was focused on the inner structure to increase
the scan quality. Some noisy points were deleted from the point cloud data, and then the data were
fitted with the imported three-dimensional design graphic. Specified surfaces were chosen after fitting,
and the flatness value was obtained. No parameters were changed in this process, and all calculations
were done by Polyworks, Version 2016 (InnovMetric Corporation, Québec, QC, Canada).

The third step was to process the relevant data to make the trend clearer. The measured data
were inserted in the table and line charts were generated in Origin, Version 8, OriginLab Corporation
(Northampton, MA, USA).

The last step was to explain the measured data. The side and positive surfaces of the inner structure
were interpreted by the 3D surface profilometer(RTEC, MFD-F profilometer 2207, San Jose, CA, USA).
They were captured under interferometry objectives with a magnification of 20×. The numerical
aperture was 0.4 while the working distance was about 4.7 mm. The field of view was about 860 µm
× 650 µm while the spatial sampling was 0.34 µm. The resolution was about 0.35 µm. The scanning
electron microscope (Carl Zeiss, Sigma300, Oberkochen, German) provided by Additive Manufacturing
Products Supervision and the Inspection Center of Jiangsu Province was also used to capture the
morphology of the side surface printed using two different scan strategies. The accelerating voltage
was 20 kv while the working distance of this instrument was 8.7 mm. The magnification was 42× and
the detector used here was SE2. The design model and measured position in this study are shown in
Figure 2.

3. Results and Discussion

The measured data of the positive surface of the inner structure, including both roughness and
flatness, are listed in Table 3. The line charts of the data are shown in Figure 3. The flatness value
on the positive inner structure surface printed by the square-framed scan strategy was much lower
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than that printed by the other two scan strategies. The performance of the positive surface roughness
printed using different scan strategies was similar according to our experimental data. The average
roughness value for each specimen is listed in the table; however, there was a deviation between the
measured data and the average value, which was about ±0.10 µm on the positive surface. We should
note that although the roughness values of Specimens 1 (printed by Z-shape scan strategy vertical
to the inner structure shown in Figure 1a), Specimen 2 (printed by Z-shape scan strategy along the
inner structure shown in Figure 1b), and Specimen 3 (printed by square-framed scan strategy shown in
Figure 1c) were almost the same, there was a different roughness performance on the upper-positive
surface compared to the lower-positive surface. The roughness values of P1, P3, and P5 were lower
compared to that of P2, P4, and P6, which means that the lower-positive surface roughness was better
than the upper-positive surface roughness; this was mainly due to the fact that the coagulation of
powder on the upper-positive surface was more significant than that on the lower-positive surface.

Table 3. Roughness and flatness on the positive surface of the inner structure part.

Specimen 1 Specimen 2 Specimen 3

Roughness
(µm)

Flatness
(mm)

Roughness
(µm)

Flatness
(mm)

Roughness
(µm)

Flatness
(mm)

P1 5.281 0.093 5.133 0.089 5.517 0.069
P2 6.579 0.085 6.231 0.088 6.719 0.063
P3 5.563 0.089 4.888 0.096 5.040 0.059
P4 7.022 0.096 6.534 0.101 7.283 0.064
P5 5.829 0.094 5.108 0.092 5.377 0.062
P6 6.936 0.093 7.205 0.088 7.005 0.061
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Figure 3. Line charts of roughness and flatness of the positive surface on the inner structure printed
using three different scan strategies. (a) Positive surface roughness of the printed specimens; (b)
Positive surface flatness of the printed specimens.

A similar method was applied to the side surface quality of the inner structure. The measured
data and line charts are shown in Table 4 and Figure 4. The inner structure part printed along the
scan direction showed a much better side surface roughness property compared to that printed using
the other two scan strategies. As for the side surface flatness, the specimen printed using this scan
strategy did not show a significant improvement compared to specimens printed using the other two
strategies. Another interesting point can be seen on the deviation between measured data and the
average value of the side surface roughness. The deviation of side surface roughness was ±0.17 µm,
which was almost twice compared to that on the positive surface. This was mainly caused by the
randomization of the powder conglutination on the side surface.
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Table 4. Roughness and flatness of the side surface on the inner structure.

Specimen 1 Specimen 2 Specimen 3

Roughness
(µm)

Flatness
(mm)

Roughness
(µm)

Flatness
(mm)

Roughness
(µm)

Flatness
(mm)

S1 8.327 0.054 5.475 0.062 9.228 0.055
S2 8.851 0.061 5.388 0.058 9.475 0.058
S3 8.774 0.058 6.121 0.061 8.351 0.059
S4 9.120 0.055 5.702 0.058 8.228 0.060
S5 9.256 0.055 6.033 0.054 8.960 0.059
S6 8.763 0.060 6.143 0.059 8.828 0.056
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Figure 4. Line charts of roughness and flatness of the side surface on the inner structure printed using
three different scan strategies. (a) Side surface roughness of the printed specimens; (b) Side surface
flatness of the printed specimens.

According to the test results, the scan strategy showed an obvious impact on the inner structure
surface quality. The different performances on positive surface flatness printed using these three scan
strategies were mainly caused by the bending deformation of the specimens. The powder melted using
the scan strategies for Specimens 1 and 2 had less time to cool down when the radiation of the laser
increased the temperature again in a short time; this caused the curvature of the layer. To verify this,
fitting images were taken to show the bending deformation of the specimens printed using these scan
strategies, as shown in Figure 5. We should note that the specimens printed here were the traditional
cubic specimens that were used to show the bending deformation of the specimens caused by the
scan strategy.

The different colors shown in Figure 5 represent the deviation between the scan model and the
design model. All the specimens were kept under the same scale bar, and the reference plane set here
was the same as the height of the printed part. To prevent the bending deformation caused by wire
cutting, these three specimens were not cut from the base plate. The red area means that the scan
model was higher compared to the design model, while the blue area means the opposite. Just as
shown in the scale bar, the deeper the color, the higher the deviation between the scan model and the
design model. The specimens printed using the scan strategies vertical to and along the inner structure
showed a significant deformation, while the specimen printed using the square-framed scan strategy
had the lowest deformation in all three specimens. This result confirmed our explanation given before.
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Figure 5. Bending deformation of the three specimens printed using three scan strategies: (a) the
Z-shape scan strategy vertical to the inner structure; (b) the Z-shape scan strategy along the inner
structure; and (c) the square-framed scan strategy.

As for the different roughness performance on the side surface of the inner structure, a 3D surface
profiler was used to explain this phenomenon, as shown in Figure 6.
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Figure 6. Side surface morphologies: Specimens 1 (printed using Z-shape scan strategy vertical to the
inner structure) and 3 (printed using square-framed scan strategy) ((a,b), respectively); and Specimen 2
(c) (printed using Z-shape scan strategy along the inner structure).

The specimens printed using the Z-shape scan strategy vertical to the inner structure and the
square-framed scan strategy had some obvious pits, as shown in Figure 6a,b, while the specimen
printed using the Z-shape scan strategy along the inner structure had quite a smooth surface, as shown
in Figure 6c. Surface roughness was highly affected by the presence of voids on the surface. In general,
fewer pits on the surface led to lower surface roughness. When the inner structure did not print along
the scan direction, the laser had to turn on and off frequently, which was difficult due to mode locking
for the laser; this caused the frequency instability of the laser source and resulted in the temperature
instability of the powder. This is the reason why the parts printed along the scan direction had a lower
roughness on the side surface than those printed vertical to the scan direction (Figure 7).
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Figure 7. Specific scan strategies shown on the specimens with the inner structure.

A scanning electron microscope was used to verify the explanation given here. To make the
comparison clearer, the inner structure layer was printed using two different scan strategies. The lower
half of the inner structure layers was printed using a Z-shape scan strategy along the inner structure
while the upper half was printed using a Z-shape scan strategy vertical to the inner structure.
The morphology of the side surface can be seen in Figure 8.
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Figure 8. The morphology of the side surface printed using different scan strategies.

It can be seen clearly that the upper half had a significant extra coagulation of powder which led
to the deformation of the side surface. As for the lower half, although the coagulation of powder was
quite significant, its morphology was much better compared to the upper half.

Combining all the experimental data and test results, a new scan strategy was proposed for the
inner structure part. First, the layers under the inner structure were printed using a square-framed
scan strategy. The inner structure part was printed using a Z-shape scan path along the inner structure
and the upper layers without inner structure were printed using a square-framed scan strategy, as
shown in Figure 9. The final results showed that this specimen had the best performance out of all the
specimens, as shown in Table 5 and Figure 10.
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Table 5. Surface quality on the inner structure printed using the modified scan strategy.

Positive Surface Side Surface

Roughness (µm) Flatness (mm) Roughness (µm) Flatness (mm)

1 5.242 0.064 6.115 0.051
2 6.025 0.060 6.237 0.053
3 5.239 0.058 5.887 0.052
4 6.110 0.062 5.940 0.052
5 5.064 0.060 6.052 0.052
6 5.885 0.059 5.993 0.055
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Figure 10. Line charts of roughness and flatness on the positive and side surfaces of the inner structure,
printed using three different scan strategies and the modified scan strategy (Specimen 4). (a) Surface
roughness of the four specimens; (b) Surface flatness of the four specimens.

From the line charts shown in Figure 10, it can be clearly seen that the new scan strategy showed
better overall performance compared to the other three specimens. The surface roughness of Specimen
4 was almost the same as the value of Specimen 2, while its flatness reached the level of Specimen 3.
In another words, the specimen printed using the new scan strategy combined the advantages of the
Z-shape along the inner structure and the square-framed scan strategies. This new proposed multiple
scan strategy was more suitable for printing a specimen with an inner structure compared to the single
scan strategy.
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4. Conclusions

In this study, the relationship between scan strategy and surface quality of the inner structure was
systematically studied. We found that:

1. The square-framed scan strategy showed a great improvement of the flatness of the positive inner
structure surface and led to less bending deformation while printing.

2. The scan strategy printed along the inner structure improved the side surface roughness of the
inner structure as the laser power was relatively stable.

3. Combining these two findings, a new scan strategy was proposed and improved the surface
quality of the inner structure on both the side and positive faces.

Future Work

As the bending curvature will occur during the printing process, more work is needed to find the
maximum printing length of the inner structure.
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