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Deep brain stimulation (DBS) is believed to exert its therapeutic effects through
modulation of brain circuitry, yet conventional preoperative planning does not allow
direct targeting or visualization of white matter pathways. Diffusion MRI tractography
(DT) is virtually the only non-invasive method of visualizing structural connectivity in the
brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not
only has the potential to allow direct white matter targeting for established applications
[e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the
discovery of new therapeutic targets for a variety of other neurologic and psychiatric
diseases. Despite these exciting opportunities, DT lacks standardization and rigorous
anatomic validation, raising significant concern for the use of such data in stereotactic
brain surgery. This review covers the technical details, proposed methods, and initial
clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease
applications, this review focuses on methods that can be applied to virtually any DBS
target.

Keywords: diffusion tractography, deep brain stimulation, neuroanatomy, magnetic resonance imaging,
tractography, diffusion tensor imaging

INTRODUCTION AND BACKGROUND

Deep brain stimulation (DBS) has become an established therapy for medically refractory
movement disorders including Parkinson’s disease (PD), essential tremor (ET), and dystonia.
DBS is also currently under investigation for use in a variety of other neurologic and psychiatric
conditions including depression, chronic pain, and obsessive compulsive disorder.

Diffusion MRI tractography (DT) refers to 3D models of white matter pathways generated
from diffusion weighted MRI data, most commonly diffusion tensor imaging (DTI). Here,
the term DT is used to refer to all forms of tractography derived from diffusion MRI
data including but not limited to DTI (Mori et al., 1999), Q-ball (Tuch, 2004; Descoteaux
et al., 2007), constrained spherical deconvolution (CSD; Tournier et al., 2008), BEDPOSTX
(Behrens et al., 2007), and diffusion spectrum imaging (DSI; Wedeen et al., 2005). DT
is currently the only non-invasive method for modeling structural brain connectivity in
humans.

This review covers recent work on integrating DT into DBS surgical planning. Several
facets of this complex topic have been previously reviewed (Henderson, 2012; Torres et al.,
2014). The current review differs from previous work in that it focuses on DT methods in DBS
surgery, and associated technical concerns, rather than on their use for the treatment specific
diseases. In addition, it incorporates new research that was published in the approximately
2 years since the most recent review was written. Nonetheless, previous reviews are valuable
counterparts to this work, particularly for researchers with interest in a specific disease.
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Calabrese Diffusion Tractography in DBS

As the use of DBS increases both in scope and in patient
numbers, there is a need to evaluate and improve each step of
the surgical process. Several groups have suggested and even
implemented a variety of DT-based DBS targeting techniques
(Coenen et al., 2011a; Hunsche et al., 2013; Schlaepfer et al.,
2013). The rationale for incorporating DT into DBS planning
is based on two prominent, though not rigorously proven
theories in DBS research. First, that DBS functions, at least
in part, by modulation of neural circuitry, and second, that
direct targeting of the circuitry on which DBS is believed to
exert its effects will improve patient outcomes (Coenen et al.,
2012).

Unlike its predecessor, ablative brain lesioning, DBS
theoretically leaves brain connections intact. Due to the
similar efficacy of DBS and brain lesioning for movement
disorders, it was initially thought that DBS functioned by
creating a ‘‘functional lesion’’ via continuous depolarization
lock of local neurons (Benabid et al., 2002). While appealing
as a heuristic, the functional lesion theory fails to explain
several aspects of DBS including, for example, the fact that
lesions of the globus pallidus externus produce Parkinsonism,
while DBS of the same region can reverse Parkinsonian
symptoms (Vitek et al., 2004). High-frequency stimulation does
appear to inhibit local neurons, but there is also evidence
that it simultaneously produces downstream excitatory
activity (Hashimoto et al., 2003; McIntyre et al., 2004a). In
fact, evidence from a variety of different sources including
functional MRI, optogenetics, and DT connectivity analysis
suggests that DBS may exert effects in sites distant from, but
structurally connected to, stimulation sites (McIntyre et al.,
2004b; Gradinaru et al., 2009; Schweder et al., 2010). Exactly
how DBS exerts therapeutic effects through neurocircuitry is
less clear but several theories exist. For example, substantial
evidence suggests that ET is caused by aberrant neural activity
in the dentatorubrothalamic tract (DRT; Coenen et al., 2014),
a pathway connecting the dentate nucleus of the cerebellum to
the contralateral red nucleus, ventral intermediate thalamus,
and motor cortex (Figure 1A). It has therefore been suggested
that DBS for ET functions through normalization of, or
indirect inhibition of, pathological activity (Chiken and Nambu,
2015). It is also possible that DBS causes global brain changes
that extend beyond the area of stimulation and immediate
downstream connections (Montgomery and Gale, 2008). For
example, experiments on DBS of the subgenual cingulum
for depression have demonstrated both modulation of neural
activity and changes in gene expression at various distant
cortical sites, many of which are not directly connected
to the stimulation region (Lujan et al., 2013; Riva-Posse
et al., 2014). The exact mechanisms of DBS remain largely
unknown and are more thoroughly discussed elsewhere
(Benabid et al., 2002; Montgomery and Gale, 2008). However,
it is clear that white matter connections play a role in DBS,
and exploring this role will be an important area for future
research.

Interestingly, while surgical treatment for movement
disorders has evolved from ablation to DBS-mediated
neuromodulation, stereotactic targeting methods have not

followed suit. Conventional DBS preoperative planning
uses essentially the same stereotactic targeting methods as
ablative procedures. While conventional stereotactic targeting
methods have served functional neurosurgeons for decades,
they have two major drawbacks that limit their use for DBS
targeting. First, stereotactic coordinates are often derived
from histology-based human brain atlases, which are 2D
and prone to spatial distortions from fixing, sectioning, and
staining of tissue slices. Second, available targets consist
largely of brain nuclei, and direct targeting or visualization
of white matter pathways is typically not possible. If indeed
DBS exerts its therapeutic effects through direct modulation
of neural circuitry, it stands to reason that DBS targeting
should be focused on neural circuits. There are many potential
benefits of direct targeting of neurocircuitry for DBS. First,
it may improve targeting accuracy, allowing fewer passes,
fewer ineffective surgeries, and perhaps even obviate the
need for intraoperative contact stimulation testing. Second,
it may expand DBS therapy to new diseases by allowing
targeting of structures that are not visible using conventional
methods. Finally, it may aid in our understanding of the
mechanisms of DBS by revealing the exact pathways affected by
stimulation.

To date, DT remains the only non-invasive method for
visualizing human brain connections. DT suffers from both
fundamental and practical limitations that limit its use for
modeling brain connections. Unlike many invasive modalities,
DT is incapable of determining the direction of information flow,
nor can it distinguish single- and multi-neuron connections.
DT may also have difficulty resolving complex intra-voxel fiber
crossings or non-dominant fiber populations due to limitations
in scan time, hardware, or processing methods. Despite its
many limitations, DT has been successfully used to model
human neuronal connections for over two decades, including
several pathways that are putative DBS targets (Sedrak et al.,
2008).

This review contains two main discussion sections. The
first addresses technical considerations for designing DT-based
studies in DBS patients. This section includes discussion of
the details of diffusion data acquisition, preprocessing, and
DT generation. The second is a review of recent studies on
integrating DT into DBS surgery. This is not meant to be
an exhaustive analysis of DT-based DBS studies, but rather a
broad overview of common methods and their applications. A
majority of these studies can be divided into three broad groups
based on the primary methodology. In this review, we will refer
to these broad methodologies as: Tract stimulation modeling
(TSM); Tract proximity analysis (TPA); and Direct tract
targeting (DTT). Figures 1B–D show graphic representations
of these three research techniques. Each method has a different
goal, and each will be discussed separately. Throughout this
review, implantable quadripolar brain stimulator leads will be
referred to as ‘‘electrodes’’, while the individual stimulation
elements will be referred to as ‘‘contacts’’. DT based models
of white matter pathways will be referred to as ‘‘tracts’’.
Table 1 provides a list of abbreviations used throughout the
manuscript.
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FIGURE 1 | Adapted from Calabrese et al. (2015b) Figure 6, with permission. (A) Directionally colored diffusion MRI tractography (DT) of the
dentatorubrothalamic tract (DRT), which connects the dentate nucleus of the cerebellum, red nucleus, ventral intermediate thalamus, and motor cortex. Note the
absence of a midline crossing in the midbrain, which is a limitation of the diffusion tensor imaging (DTI) technique. (B) Tract proximity analysis (TPA). Distances
between the DRT (blue) and the deep brain stimulation (DBS) electrode (red) are compared with treatment outcomes. (C) Tract activation modeling. Fiber tracts
(yellow) are generated from a region of interest surrounding the DBS contacts (red). (D) Direct tract targeting (DTT). The DT model of the DRT (red) is used for
preoperative DBS electrode targeting.

TECHNICAL CONSIDERATIONS

DT generation can be divided into three separate steps: data
acquisition, data processing, and tracking. Each of these steps
has several variables that must be considered in order to ensure
accurate DT. Many of the most common and important variables
are discussed here.

Data Acquisition
Data acquisition involves the collection of diffusion weighted
MRI data from subjects. For DT studies, the most important
acquisition parameters include image resolution, diffusion
weighting factor (b-value), and the number and distribution
of diffusion measurements. Image resolution is important for
DT because some fiber configurations, such as intra-voxel
curving, can only be resolved by increasing spatial resolution
(Calabrese et al., 2014). Image resolution also affects the accuracy
of tract volume estimates, which is essential for DT-based

DBS targeting (Lebel et al., 2011). In clinical MRI, resolution
is typically limited by signal-to-noise ratio (SNR), and it is
uncommon to achieve voxel sizes smaller than 2 mm isotropic
at 3T. Many studies report spatial resolutions of 1 mm or less
in plane, but typically have much larger (e.g., 3 mm) slice
thickness. The use of anisotropic voxels should be discouraged
for DT studies as it complicates accurate determination of
fiber angles and fiber crossings due to partial volume effects
(Mukherjee et al., 2008). SNR, and therefore resolution, can
be improved by averaging or repeating scans, but a doubling
of total scan time only increases SNR by a factor of

√
2 or

approximately 1.4. Other important yet infrequently mentioned
parameters that contribute to effective image resolution are
sense factor, and incomplete k-space acquisition strategies like
partial Fourier acquisition or zerofilling in k-space (Paschal
and Morris, 2004). In general, it is best to use the highest
isotropic resolution achievable without compromising SNR,
and within a scan time compatible with clinical constraints
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TABLE 1 | List of abbreviations used in this review.

Abbreviation Definition

CSD Constrained spherical deconvolution
DBS Deep brain stimulation
DRT Dentatorubrothalamic tract
DSI Diffusion spectrum imaging
DT Diffusion tractography
DTI Diffusion tensor imaging
DTT Direct tract targeting
ET Essential tremor
HARDI High angular resolution diffusion imaging
MRI Magnetic resonance imaging
PD Parkinson’s disease
SNR Signal-to-noise ratio
TPA Tract proximity analysis
TSM Tract stimulation modeling

(Jones and Cercignani, 2010). Increased resolution is unlikely
to reduce accuracy, but it may not always be beneficial. For
example, McNab et al. (2009) showed good correspondence
between standard 2 mm isotropic preoperative DT and 0.73 mm
isotropic postmortem DT in a patient who received DBS of
the subgenual cingulum. In DBS studies, image resolutions as
high as 1.6 mm isotropic have been used (Sudhyadhom et al.,
2012).

In addition to spatial resolution, diffusion MRI requires
consideration of intravoxel diffusion resolution. All DT
techniques, in essence, use measurements of the 3D diffusion
function in each voxel (often referred to as the diffusion
propagator) to determine underlying fiber orientation.
By convention, MRI measures diffusion in a spherical
coordinate system known as q-space, which has a Fourier
transform relationship with the diffusion propagator. All
points in q-space can be defined by two angles (the diffusion
measurement direction) and a radius (the diffusion weighting
factor, or b-value). Increasing the number of diffusion
measurement directions increases the angular resolution of
the fiber reconstruction, which can allow multiple fibers to be
reconstructed from a single voxel with appropriate processing. In
general, higher b-values yield a larger signal difference between
restricted and unrestricted diffusion at the cost of lower SNR.
This increased signal difference affects the ability to accurately
detect certain fiber populations (Frank, 2001; Basser, 2002).
Both the number and the arrangement of q-space measurements
required for accurate fiber reconstruction depends heavily on
the constraints and assumptions of the DT technique being
used.

The simplest case, DTI, assumes that there is a single
fiber population, and that the diffusion propagator is a tensor.
As such, it requires only six unique diffusion measurement
directions and a b-value sufficient to distinguish the primary
diffusion direction from the two perpendicular diffusion
directions (usually b ≥ 800 s/mm2). In practice, using
only six diffusion measurements is problematic because the
reconstruction algorithm is highly sensitive to error with
minimal inputs (Lebel et al., 2011). Increasing the number
of diffusion measurement directions improves the accuracy

of DTI fiber orientation estimations, but diminishing returns
are reached at around 30 unique directions (Jones, 2004).
Similarly, for DTI low b-values can introduce error, but there
is little benefit to increasing b-value above b = 1500 s/mm2

(Dyrby et al., 2011). In contrast, multi-fiber methods such as
spherical harmonic Q-ball (Descoteaux et al., 2007), have far
fewer model assumptions, and therefore require more diffusion
measurement angles and higher b-values. Typical values are
30–120 directions and b-values in the 2000–5000 s/mm2 range.
Diminishing returns are reached at around 90 directions and
b = 4000 s/mm2 (Tournier et al., 2013). DSI, a DT reconstruction
method that is often described as ‘‘model free’’, requires
hundreds of diffusion measurement angles and b-values in
the 10,000–50,000 s/mm2 range because it attempts to directly
calculate the underlying diffusion propagator in each voxel using
the Fourier transform relationship (Wedeen et al., 2008). b-values
in this range are often difficult or impossible to achieve on certain
scanners because of hardware and/or SNR limitations. Even if
appropriate hardware is available, lengthy diffusion sampling
schemes may be impractical or cost-prohibitive in DBS patients.
In general, diffusion sampling scheme should be chosen based
on the data processing method, and should be as complete
as possible given scan time limitations. In the existing DBS
literature, 12–60 diffusion directions have been used, typically at
b = 1000 s/mm2 (Johansen-Berg et al., 2008; Klein et al., 2012;
Sudhyadhom et al., 2012; Anthofer et al., 2014).

Data Processing
There are many different DT data processing methods
available, each with different requirements, assumptions,
limitations and benefits. Perhaps the most important processing
difference for DBS studies is single-fiber (e.g., DTI) vs.
multi-fiber reconstruction (e.g., Q-ball; Tuch, 2004). Multi-
fiber methods may be preferable since many putative tract
targets for DBS are located in structurally complex brain
regions. Further, it has been shown that at clinical image
resolution, 60–90% of white matter voxels contain crossing
fibers (Jeurissen et al., 2012). Another important processing
difference is direct fiber estimation methods (e.g., BEDPOSTX,
CSD) vs. orientation distribution function-based methods
(e.g., Q-ball, DSI). Orientation distribution function based
methods attempt to reconstruct the diffusion propagator
in each voxel, and then infer fiber orientation from the
peaks of this function. In contrast, direct fiber estimation
methods attempt to recover fiber orientation directly from
diffusion MRI data. Direct methods may be less prone to
error, and more flexible in terms of sampling requirements,
but often have dramatically increased computational
requirements (Behrens et al., 2007; Tournier et al., 2008,
2013).

DTI is by far the most common DT method used in DBS
studies (Torres et al., 2014). This technique has the advantage
of being readily available on most commercial scanners, as
well as having a relatively quick acquisition, and a simple
reconstruction. The major drawbacks of this method are the
assumptions of the model and the fact that it only accounts for
a single fiber population per voxel, which is insufficient for a
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majority of voxels in the human brain (Jeurissen et al., 2012).
The strengths and weaknesses of other fiber reconstruction
methods like Q-ball, CSD, and DSI are less clear, and depend
heavily on the diffusion measurement scheme and the particular
fiber tract of interest (Calabrese et al., 2014). These advanced
DT methods are almost certainly more anatomically accurate
than DTI, but their sampling requirements may be prohibitive
in DBS patients, and it is not known if the added anatomic
accuracy actually improves DBS surgical planning or electrode
targeting. It is also important to note that many tractography
data processing methods are neither designed for nor approved
for use in surgical planning. Nonetheless, as DBS targets become
more complex and nuanced, it stands to reason that advanced
DT processing methods may play an important role in accurately
visualizing the underlying anatomy. For instance, there are
several examples of DBS studies that utilize BEDPOSTX fiber
reconstruction for complex anatomic targets (Johansen-Berg
et al., 2008; Klein et al., 2012; Clelland et al., 2014; Choi et al.,
2015).

Tracking
Even with the exact same data and processing method,
differences in tracking algorithms can dramatically affect the
size, shape, and extent of resultant tracts, which has obvious
implications for DT-based DBS targeting (Fillard et al., 2011).
Most of the differences in tracking algorithms can be distilled to
deterministic vs. probabilistic tracking, and the choice of tracking
thresholds. Deterministic DT algorithms use only the calculated
fiber orientations, while probabilistic algorithms randomly draw
from a probability distribution of fiber orientations based on
estimated error. Deterministic algorithms thus generate the
same set of tracts every time, while probabilistic methods
yield a random set of probability distributed tracts. This
random, iterative process makes probabilistic methods much
more computationally expensive and time consuming. The
data formats for probabilistic and deterministic DT are also
quite different, and often require different analysis methods.
Deterministic data are typically stored as a set of 3D streamlines,
while probabilistic data usually takes the form of an image, where
intensity values reflect strength or probability of connection
between a given voxel and a seed region. Probabilistic DT
data can be easily adjusted using thresholding, which adds an
additional layer of complexity. For example, contact between
a DBS electrode and deterministic fiber tract is all or none,
while contact with a probabilistic tract can be expressed in
terms of contact strength or probability (Pouratian et al., 2011).
In addition, probabilistic methods can be more sensitive than
deterministic methods for non-dominant fiber pathways, but
are also likely to have more false positives (Behrens et al.,
2007). The choice of deterministic vs. probabilistic DT depends
on the application, but for complex pathways probabilistic
methods may be preferable (Behrens et al., 2007; Kwon et al.,
2011). Although deterministic tractography is significantly more
common for DBS applications, there are a number of published
studies that use probabilisticmethods (Johansen-Berg et al., 2008;
Pouratian et al., 2011; Sudhyadhom et al., 2012; Riva-Posse et al.,
2014).

The choice of DTI tracking thresholds (e.g., angle threshold,
fractional anisotropy threshold) also depends on the application,
and should generally be tailored to the specific tract of interest.
For example, DT of cortical areas, or regions with many crossing
fibers requires a very low fractional anisotropy threshold,
and tracts with high curvature obviously require larger angle
thresholds.

There are several other important differences between
different tracking algorithms, particularly with regard to how
tracts are propagated. The most basic tracking algorithms follow
the calculated fiber orientation exactly when moving from voxel
to voxel, while others integrate fiber direction over several
adjacent voxels (Mori et al., 1999; Lazar et al., 2003). These
differences affect anatomic accuracy and propagation of error,
and can yield wildly different tracts even when performed on
the same dataset (Lazar and Alexander, 2003; Fillard et al.,
2011).

The choice of what to track is also important, particularly
for DBS applications. If a pathway is known a priori, it may
be possible to develop a standard set of seed and waypoint
regions to allow reliable tracking (Coenen et al., 2011c, 2012;
Anthofer et al., 2015). If the goal is to investigate the pathways
being affected by given DBS electrode, a seed region can
be generated around the implantation site using co-registered
pre- and post-operative imaging. Such seed regions can range
from simple cubes (Barkhoudarian et al., 2010) to elaborate
electric field models based on stimulation parameters and
the electrical properties of surrounding tissue (Butson et al.,
2006, 2007). While electric field modeling adds considerable
complexity to a study, it might also provide a more accurate
estimation of the fiber populations that are modulated by DBS
electrodes.

Another major issue with tracking is the lack of full-featured
software suite for tracking and surgical planning in the surgical
context. Many of the techniques described here, including
probabilistic tractography and electric field modeling, are not
commonly available in surgical planning software packages. In
the absence of clinically tested or approved software, these
techniques remain primarily research tools.

Anatomic Accuracy
Recently, several groups have shown that DT has relatively poor
anatomic accuracy, particularly in areas of neuronal complexity
(Thomas et al., 2014; Calabrese et al., 2015a). DT has both
practical and fundamental limitations that decrease its anatomic
accuracy. From a practical standpoint, diffusion MRI data
derived from human subjects is never ideal due to factors like
scan time considerations, hardware limitations, patient motion,
cardiac pulsation, and bulk flow. Each of these factors has the
potential to affect the anatomic accuracy of DT by introducing
error into DT processing algorithms. Even in the absence of
practical concerns, there are fundamental limitations to the
DT method (Thomas et al., 2014). First, DT is based on the
assumption that the diffusion of water in the brain follows
axonal pathways, which may not always be correct. Second, DT
is constrained by the assumptions of the reconstruction and
tracking models. For example, many reconstruction algorithms
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assume that water diffusion in the brain is Gaussian in nature,
and there is often an implicit or explicit limit in the number of
fiber populations that can be reconstructed from a single voxel.
Even so-called ‘‘model free’’ fiber reconstruction methods are
still subject to the assumptions of tracking algorithms including
tract initiation and termination criteria, and step length (Wedeen
et al., 2008). Fortunately, for DBS targeting applications, the
absolute accuracy of DT is not important as long as it is accurate
enough to guide effective electrode placement. This question, ‘‘is
DT accurate enough for effective DBS targeting?’’ is one of the
fundamental motivations for the studies reviewed in the next
section.

DT-BASED DBS METHODS

A number of different studies have been conducted with the goal
of incorporating DT into DBS surgery. Table 2 is a list of the
DT/DBS studies discussed in this section. This is a representative
rather than comprehensive list. Studies are organized into three
broad categories based on methodology rather than the specific
disease or DBS target.

Tract Stimulation Modeling
TSM (Figure 1B) refers to the practice of seeding DT from the
region surrounding previously implanted DBS electrodes. The
goal of TSM is to identify the population of brain connections
that are likely to be modulated by a given DBS contact. This
technique can be used to confirm that efficacious contacts
are near or within a tract of interest. For example, Coenen
et al. (2011b) performed TSM in a patient who received DBS
for PD, and found that DT of the most efficacious contact
yielded the expected DRT. The DRT was also identified by
TSM of efficacious contacts in a patient with SCA1 dystonia
by Copeland et al. (2014). Using similar methods, Kovanlikaya
et al. (2014) found that TSM of efficacious contacts in a
patient who received DBS for chronic pain demonstrated
connections to the somatosensory cortex. TSM can also be
used to identify pathways that lead to undesired side effects.
Barkhoudarian et al. (2010) used TSM to demonstrate why
stimulation of specific contacts at high voltages caused motor
side effects in three patients who received DBS for movement
disorders.

Another major use of TSM is to elucidate the activation
patterns of successful vs. unsuccessful DBS for investigational
applications. This exploratory (rather than confirmatory) use
of TSM has been most widely used for depression, where the
mechanism of DBS therapy is poorly understood. Johansen-Berg
et al. (2008) generated a DT atlas of the subgenual cingulum
from 17 healthy controls and then analyzed TSM of electrodes
projected onto the atlas from nine patients who received DBS
in the anterior cingulate cortex for refractory depression. They
identified unique TSM patterns of efficacious contacts extending
into frontal, limbic, and visceromotor regions. These results
were built upon by Lujan et al. (2013) and Riva-Posse et al.
(2014) in one and 17 patient(s) respectively. In both cases, TSM
was compared between efficacious and non-efficacious contacts
using simulated electric field models based on stimulation

parameters. Both studies clearly showed different connectivity
patterns of efficacious vs. non-efficacious contacts. Lujan et al.
(2011) also performed a similar study in seven patients with
refractory depression who received DBS of the ventral anterior
internal capsule and ventral striatum. Once again, they found
unique TSM patterns in responders and non-responders. Choi
et al. (2015) performed intraoperative behavioral analysis on
nine patients implanted for treatment-resistant depression, and
found that contacts associated with acute positive mood changes
were connected to the bilateral ventromedial frontal cortex and
cingulate cortex. These TSM results lead the authors to suggest
this specific connectivity pattern as a biomarker for effective DBS
contact positioning.

Studies with similar methodologies have been conducted in
patients who received DBS for cluster headache (Clelland et al.,
2014), PD (Klein et al., 2012), primary dystonia (Rozanski et al.,
2014), and chronic pain (Owen et al., 2007, 2008). In each case,
authors analyzed TSM of efficacious vs. non-efficacious contacts
in an effort to understand the neural networks that, when
stimulated, lead to effective DBS therapy. These studies improve
our understanding of the neurophysiologic underpinnings of
brain diseases, and may eventually lead to more accurate
and efficacious DBS targeting for the treatment of those
diseases.

Tract Proximity Analysis
TPA (Figure 1C) refers to retrospective analysis of the location
of DBS contacts with respect to a specific tract of interest. This
method can be used to answer the question of whether the
proximity of a contact to a specific tract correlates with treatment
efficacy, as well as for retrospective analysis of electrode targeting
accuracy. TPA has been most commonly used in the study of
DBS for movement disorders where putative tracts of interest
(e.g., the DRT) are well described in the literature. Pouratian et al.
(2011) performed TPA on a total of 10 DBS tremor patients and
found that efficacious contacts were most likely to be associated
with thalamic projections to the premotor cortex. Subsequent
TPA studies have largely focused on the DRT as a putative
target for the therapeutic effects of DBS in tremor patients.
Sweet et al. (2014) found a non-significant trend in improved
tremor control with increased contact proximity to the DRT in
a study of 14 patients who received DBS for tremor-dominant
PD. Similarly, Coenen et al. (2014) found a non-significant trend
towards improved efficacy with increased proximity of the DRT
to simulated contact electrical fields in 11 ET patients. Anthofer
et al. (2014) also found that efficacious contacts were frequently
near or within the DRT in a study of 10 ET patients, however
no statistical analysis was performed. Finally, Calabrese et al.
(2015b) were able to show a weak, but statistically significant
correlation between treatment efficacy and contact proximity to
the DRT, however, they used a high-resolution postmortem fiber
atlas to generate the DRT model.

TPA has also been used to investigate DBS-related adverse
effects in tremor patients including motor, sensory, and
psychiatric side effects. Motor side effects have been studied
both by Calabrese et al. (2015b), who showed no significant
correlation between side effects and contact proximity to the
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TABLE 2 | List of articles on DT/DBS discussed in this review.

Reference Title Patients Disease

Anthofer et al. (2015) DTI-based deterministic fiber tracking of the medial forebrain bundle 10 ET
Anthofer et al. (2014) The variability of atlas-based targets in relation to surrounding major fiber tracts in thalamic

deep brain stimulation
11 Depression

Barkhoudarian et al. (2010) A role of diffusion tensor imaging in movement disorder surgery 3 PD, ET, Dystonia
Bhatia et al. (2012) Diffusion tensor imaging to Aid subgenual cingulum target selection for deep brain stimulation

in depression
59 Depression

Butson et al. (2006) Predicting the effects of deep brain stimulation with diffusion tensor based electric field
models

1 PD

Butson et al. (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation 1 PD
Calabrese et al. (2015a,b) Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator

electrode localization
1 ET

Choi et al. (2015) Mapping the “Depression switch” during intraoperative testing of subcallosal cingulate deep
brain stimulation

9 Depression

Clelland et al. (2014) Common cerebral networks associated with distinct deep brain stimulation targets for cluster
headache

7 Cluster headace

Coenen et al. (2009) Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in
subthalamic nucleus deep brain stimulation for Parkinson’s disease

6 PD

Coenen et al. (2011a) A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the
dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor

1 Dystonia

Coenen et al. (2011b) Individual fiber anatomy of the subthalamic region revealed with DTI—A concept to identify
the DBS target for tremor suppression

1 PD

Coenen et al. (2012) Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain
stimulation

N/A N/A

Coenen et al. (2014) Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for
tremor

11 PD, ET, Dystonia

Copeland et al. (2014) Deep brain stimulation of the internal globus pallidus for generalized dystonia associated with
spinocerebellar ataxia type 1: a case report

1 Dystonia

Henderson (2012) “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality
for surgical modulation of neural networks

N/A N/A

Hunsche et al. (2013) Tractography-guided stimulation of somatosensory fibers for thalamic pain relief 4 Chronic pain
Johansen-Berg et al. (2008) Anatomical connectivity of the subgenual cingulate region targeted with deep brain

stimulation for treatment-resistant depression
9 Depression

Klein et al. (2012) The tremor network targeted by successful VIM deep brain stimulation in humans 12 PD
Kovanlikaya et al. (2014) Treatment of chronic pain: diffusion tensor imaging identification of the ventroposterolateral

nucleus confirmed with successful deep brain stimulation
1 Chronic pain

Lujan et al. (2011) Axonal pathways linked to therapeutic and nontherapeutic outcomes during psychiatric deep
brain stimulation

7 Depression

Lujan et al. (2013) Tractography-activation models applied to subcallosal cingulate deep brain stimulation 1 Depression
McIntyre et al. (2004a,b) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or

both
N/A N/A

McNab et al. (2009) Reduced limbic connections may contraindicate subgenual cingulate deep brain stimulation
for intractable depression

1 Depression

Owen et al. (2007) Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation
for lower limb stump pain

1 Chronic pain

Owen et al. (2008) Pre-operative DTI and probabilisitic tractography in four patients with deep brain stimulation
for chronic pain

4 Chronic pain

Pouratian et al. (2011) Multi-institutional evaluation of deep brain stimulation targeting using probabilistic
connectivity-based thalamic segmentation

10 ET

Riva-Posse et al. (2014) Defining critical white matter pathways mediating successful subcallosal cingulate deep brain
stimulation for treatment-resistant depression

16 Depression

Rozanski et al. (2014) Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor
tractography study

8 Dystonia

Said et al. (2014) Correlation of diffusion tensor tractography and intraoperative macrostimulation during deep
brain stimulation for Parkinson disease

17 PD

Schlaepfer et al. (2013) Rapid effects of deep brain stimulation for treatment-resistant major depression 7 Depression
Schweder et al. (2010) Chronic pedunculopontine nucleus stimulation restores functional connectivity 1 PD
Sedrak et al. (2008) The role of modern imaging modalities on deep brain stimulation targeting for mental illness 15 PD, ET, Dystonia
Sudhyadhom et al. (2012) Delineation of motor and somatosensory thalamic subregions utilizing probabilistic diffusion

tractography and electrophysiology
5 ET

Sweet et al. (2014) Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in
Parkinson disease: implications for targeting in deep brain stimulation

14 PD

Torres et al. (2014) Integrating diffusion tensor imaging-based tractography into deep brain stimulation surgery:
a review of the literature

N/A N/A
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DRT, and by Said et al. (2014) who show a non-significant
trend towards greater contact voltage tolerability thresholds
with increasing distance from the corticospinal tracts. Sensory
side effects have also been studied, including work by Sajonz
et al. (2015) who showed that contact proximity to the medial
lemniscus was significantly correlated with hypogeusia and
ageusia. Additionally, Coenen et al. (2009) suggested that
stimulation of the median forebrain bundle was responsible
for hypomania symptoms in a patient who received DBS
for PD.

TPA studies serve as an important first step towards
prospective targeting of DT-derived tracts with DBS electrodes.
TPA has the benefit of allowing a specific tract hypothesis to be
tested, however, unlike TSM, it requires a priori identification of
a pathway of interest, which may not always be feasible. Once
a tract of interest is identified for a given disease, TPA can be
used to retrospectively test whether or not electrode proximity to
that tract results in improved treatment efficacy. This in turn can
provide initial evidence towards DT-based targeting of the tract
of interest.

Direct Tract Targeting
DTT (Figure 1D) refers to prospective targeting of DT-derived
tracts with DBS electrodes. DTT requires not only a priori
knowledge of a tract of interest, but also requires sufficient
supporting evidence to justify targeting that tract in humans.
Few putative tract targets meet these criteria, and as a result
DTT studies are rare, and generally limited to cases where
conventional methods are infeasible or ineffective. For example,
Coenen et al. (2011a) describes successful DTT of the DRT in a
patient with myoclonus dystonia. Conventional targeting, which
employs intraoperative efficacy testing, was not possible because
the patient’s head-dominant symptoms were obscured by the
DBS stereotaxic head frame. Successful symptomatic control
was achieved, and simulated electric fields from efficacious
contacts were shown to overlap the DRT but not other adjacent
tracts such as the corticospinal tracts. Schlaepfer et al. (2013) used
DTT of the medial forebrain bundle to successfully treat six of
seven patients with refractory depression, with the rationale that
this tract cannot be reliably identified using conventional MRI
images. Indeed, previous work by Bhatia et al. (2012) showed that
DT based coordinates of the subgenual cingulum—a related DBS
target for depression—differed significantly from coordinates
derived from conventional T2-weighted MRI. Hunsche et al.
(2013) used a hybrid DTT approach to target the posterior
limb of the internal capsule in four patients with thalamic pain
syndrome. The stereotaxic target was based on conventional
targeting methods, but the electrode implantation trajectory was
adjusted to provide at least 20 mm of overlap with DT of the
spinothalamic tract. This approach lead to a 40% or greater pain
relief in three of four patients.

In many ways, DTT is the ultimate goal of studies seeking
to integrate DT into DBS planning. It is appealing because
it allows targeting of structures that may not be visible using
conventional methods, and it incorporates a mechanistic view
of DBS as a neuromodulatory therapy. Unfortunately, to date
there have been no controlled clinical trials comparing DTT

to conventional targeting methods. Without such studies, it is
impossible to say for certain whether DTT can improve DBS
patient outcomes.

CONCLUSIONS

While DT-based DBS targeting is still in its infancy, considerable
progress has been made in incorporating DT into DBS surgery.
These advances represent an exciting opportunity for both the
DT and DBS communities. For DT researchers, DBS could
become the second major clinical use for DT, the first being
preoperative mapping of eloquent white matter pathways for
brain tumor resection (Witwer et al., 2002; Nimsky et al.,
2005). For the DBS community, DT provides a novel method
for targeting structures that are not visible with conventional
imaging methods, and may eventually help to elucidate the
mechanisms underlying DBS therapy.

Interestingly, the three types of studies discussed here provide
a reasonable workflow for DT-based investigation of novel
DBS applications. For investigational DBS, TSM can be used
to identify putative tracts of interest, which can in turn be
validated using TPA, and then accurately targeted using DTT.
This workflow is perhaps best exemplified by DBS of frontal
lobe white matter pathways for refractory depression, where all
three types of studies have been successfully performed (Coenen
et al., 2012; Schlaepfer et al., 2013; Riva-Posse et al., 2014;
Anthofer et al., 2015). If the issues facingDT-basedDBS targeting
are addressed, this workflow may become a valuable method
for DT-based DBS target discovery, validation, and effective
implementation.

Two major issues currently limit the potential of DT-based
DBS targeting. First is the need for validation and standardization
of DT, and second is the lack of randomized controlled
trials. DT validation in humans is hindered by the inability
to use ‘‘gold standard’’ methods like neuronal tracer studies.
For this reason, animal studies, particularly those in non-
human primates, are an important source of validation for DT
(Schmahmann et al., 2007; Calabrese et al., 2014). However,
no method is without limitations, and comparisons between
DT and other neuronal mapping techniques are problematic
because the data are fundamentally different (Thomas et al.,
2014). Further, any information gleaned from animals will
have to be extrapolated to humans, which reduces its utility
for DBS planning. Interestingly, the integration of DT into
DBS planning may itself provide important validation for DT.
For example, comparisons of DT results with intraoperative
microelectrode recording during DBS implantation has been
used to validate DT-based segmentation of the thalamus
(Sudhyadhom et al., 2012). The pathway towards standardization
of DT is less clear, particularly since optimal methods are
largely undefined. Knowledge of previous studies, like those
discussed here, should help investigators make informed
decisions on reasonable DT methods for their particular
application.

Given these uncertainties it is no surprise that randomized
controlled trials of DT-guided DBS have not been attempted
to date. However, as with any emerging medical therapy, such
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trials will be essential for widespread adoption. The major
challenge to the community will be in selecting the proper DBS
application, DTmethods, and the appropriate patient population
for comparing DT-guided DBS to conventional methods.
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