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Abstract

Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with

Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis

and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vascu-

lature in BU pathogenesis remains almost completely unexplored. We hypothesise that

fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis

by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within con-

tiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascu-

lar and coagulation biomarker phenotype and explore potential links to fibrin deposition. We

also integrated this with our understanding of mycolactone’s mechanism of action at Sec61

and its impact on proteins involved in maintaining normal vascular function. Our findings

showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic

regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-

dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared

to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly

greater than expected fibrin staining around vessels that had TF staining within the stroma,

and this correlated with the distance it extended from the vessel basement membrane. TF-

induced fibrin deposition in these locations would require plasma proteins outside of ves-

sels, therefore we investigated whether mycolactone could increase vascular permeability

in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolac-

tone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cad-

herin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings
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suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infec-

tion, due to the unique action of mycolactone, allowing TF-containing structures and plasma

proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia.

Author summary

To date, the debilitating skin disease Buruli ulcer remains a public health concern and

financial burden in low or middle-income countries, especially in tropical regions. Late

diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease.

Hence patients often present with large, destructive opened ulcers leading to delayed

wound closure or even lifelong disability. The infectious agent produces a toxin called

mycolactone that drives the disease. We previously found evidence that the vascular sys-

tem is disrupted by mycolactone in these lesions, and now we have further explored

potential explanations for these findings by looking at the expression of vascular markers

in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expres-

sion patterns of certain proteins and found that tissue factor, which initiates the so-called

extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to dis-

rupt the barrier function of the endothelium, further aggravating the diseased phenotype,

which may explain how clotting factors access the tissue. Altogether, such localised hyper-

coagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.

Introduction

Buruli ulcer (BU) is a neglected tropical disease found in over 30 countries world-wide result-

ing from a subcutaneous infection with Mycobacterium ulcerans, an opportunistic environ-

mental pathogen. According to the World Health Organization (WHO), approximately 2700

new cases were reported globally in 2018 [1], which suggests case numbers are falling from a

peak of 5,000–6,000 per year in 2004–2010. However, the actual number of cases is likely far

higher, since many BU endemic countries do not report data to the WHO [2]. Approximately

13% of the 2018 cases were in Australia, where the state of Victoria [3] is seeing increasing and

sustained case numbers. Hence Buruli ulcer (known as Bairnsdale ulcer in Australia) is a pub-

lic health problem of world-wide concern.

Despite its relative rarity globally, BU is a devastating disease in communities with high

endemicity, where the prevalence can be up to 77 cases per 10,000 population [2–4]. BU often

presents late, due to the characteristic painlessness of the lesions and lack of other overt signs

of infection such as fever and malaise. In these patients, necrotic skin ulcers and soft tissue

destruction can extend up to 15% of body surface area. Even smaller lesions may cause lifelong

disability [5]. While the infection can be effectively sterilised with dual anti-mycobacterial anti-

biotics [6], in some settings surgery is still performed, involving debridement of infected tissue

with or without skin grafts and, in extreme cases, amputation [7]. The disease imposes a large

socio-economic burden on endemic communities, as treatment can require long hospital stays

for patients, many of whom are young teenagers. Indeed, wound-healing remains a critical

issue in BU as it can take more than 12 months, even in high resource settings [6]. Therefore,

to achieve the long-term goal of reducing the disease burden and serious sequelae, there is a

real need for a better understanding of BU pathogenesis.
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Clinically, BU presents in various forms: nodules, plaques, ulcers, and oedema [4]. Impor-

tantly, these are not inevitably progressive “stages” of disease. For example, nodules (or pap-

ules) are palpable lumps under the skin that already have a core of necrotic tissue containing

clusters of acid-fast bacilli (AFB) surrounded by healthy tissue [8,9]. On the other hand, pla-

ques consist of wide areas of necrotic skin tissue under an intact dermis [10] giving rise to a

characteristic indurated presentation. Oedematous forms present with substantial diffuse

swelling, which can be mistaken for cellulitis clinically, although oedema due to BU is discrim-

inated by a lack of pain at the affected site and absence of fever. Nodules, plaques and oedema-

tous forms all have the potential to ulcerate, and BU ulcers are usually surrounded by an area

of plaque.

Histopathological analysis of BU patient biopsies reveals the unique features of M. ulcerans
infections [11], even when compared to other mycobacterial skin infections such as “fishtank

granuloma” (M. marinum infection), cutaneous tuberculosis or leprosy. The infected macro-

phages within a granuloma structure typical of these infections are rarely seen in BU except

during antibiotic treatment or in late-presenting chronic disease [12]. Instead, the bacteria are

predominantly found in clusters of extracellular bacilli, frequently at the base of the subcutis.

Importantly, these clusters are not necessarily seen in every section of a biopsy sample of a BU

patient [9,12,13]. The characteristic features of BU lesions are coagulative necrosis (where the

cellular architecture remains intact but anucleated cells are prevalent) along with “fat cell

ghosts” and epidermal hyperplasia. Necrosis may be seen extending away from the AFB

[11,14], a feature that presented the very earliest clue that BU pathogenesis is largely driven by

a secreted diffusible toxin [15–17], later identified as mycolactone [14]. Mycolactone is also

immunosuppressive, explaining the relative paucity of leukocytic infiltration close to site of

infection [11,18]. Instead, a belt of infiltrating cells including neutrophils, macrophages and

lymphocytes, surrounds the necrotic core, some distance from the bacteria [9,19]. However, it

is important to note that a technique to determine mycolactone’s spatial distribution within

tissue currently eludes the field.

Much is now known about how mycolactone mediates its pathogenic effects. Mycolactone

is a lipid-like compound [14], produced by polyketide synthases encoded on the M. ulcerans
megaplasmid, pMUM [20]. Mycolactone targets a vital cellular process found in all nucleated

host cells: the transport of proteins into the endoplasmic reticulum (ER) by a the heterotri-

meric Sec61 translocon [21]. Mycolactone inhibits the co-translational translocation of many

secretory and membrane proteins via the Sec61 complex [22–25]. This discovery has been

transformational in our understanding of BU pathogenesis, since it explains both the direct

cytotoxicity of mycolactone (due to the cellular stress invoked) and the immunosuppression

(since many immune mediators, including inflammatory cytokines, are Sec61-dependent

secretory or membrane proteins).

We still know relatively little about the effect mycolactone has on other local physiological

pathways within infected skin. Due to the painlessness of the lesions, some research has

focussed on its effects on neurons and neuronal cells [26–28]. Another key candidate, and the

topic of the current work, is the vascular system, because coagulative necrosis is commonly

associated with ischemia due to blood vessel dysfunction. Moreover, fibrin deposition is a

common feature of BU lesions, reported as long ago as the mid-20th Century, and this pheno-

type is strongly correlated with tissue necrosis and delayed wound healing when sustained

[29]. Finally, the chronic unhealing ulcers seen in BU, which may even persist after sterilisation

with antibiotics, are reminiscent of ulcers seen in other diseases with vascular complications

such as in patients with diabetes mellitus [30]. However, despite this, vessel function in BU

remains almost completely unexplored.
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A healthy vasculature cannot be separated from the function of endothelial cells, a heteroge-

neous yet continuous monolayer that lines both arterial and venous blood vessels, as well as

the microvasculature and lymphatics [31,32]. Once considered to be a merely a ‘lining’ for

blood vessels, it is now clear that the endothelium is a dynamic regulatory organ, forming a

semi-selective barrier that controls the passage of small molecules and white blood cells into

and out of the bloodstream, and can respond to wide range of stimuli that alter tissue homeo-

stasis [33,34].

A central function of endothelial cells is to maintain blood fluidity under normal condi-

tions, and to particate in the response to vessel damage. This blood clotting process involves a

variety of blood-borne proteins (eg coagulation factors) and cell-derived components (such as

platelets and cell-derived microparticles). Endothelial cells express von Willebrand factor

(vWF), stored within organelles called Weibel-Palade bodies (WBPs) [35]. Upon exposure to

so-called secretagogues, such as the coagulation factor thrombin, these are exocytosed, leading

to the formation of multimeric strings of vWF molecules whose function is to facilitate platelet

binding to collagen exposed at the injured vessel wall [36]. Formation of platelet plugs is

known as ‘primary haemostasis’ [32,34].

Secondarily to platelet plug formation, coagulation reinforces the plug by producing a fibrin

mesh to hold it in place. Two coagulation pathways are involved in fibrin generation, known

as the intrinsic and extrinsic pathways. The intrinsic pathway, or contact activation, involves

autoactivation of factor XII on a negatively-charged surface [37]. The extrinsic pathway is initi-

ated when tissue factor (TF) binds to factor VII/VIIa forming a complex that activates factor

Xa. Both pathways ultimately lead to rapid amplification of thrombin formation and process-

ing of fibrinogen to fibrin [38]. In disease states, fibrin accumulation within vessels can lead to

thrombosis, where the circulation of blood is impeded by physical obstruction due to the fibrin

clot. As a result of the serious consequences of uncontrolled coagulation, the endothelium

expresses a variety of anticoagulant proteins that regulate thrombin generation [34]. These

include thrombomodulin (sometimes abbreviated to TM) and the endothelial cell protein C

receptor (EPCR) that activate the protein C anticoagulant pathway [34,39], tissue factor path-

way inhibitor (TFPI) that supresses the TF-factor VIIa complex and factor Xa activity [40],

and heparan sulphate proteoglycans within the glycocalyx that bind antithrombin to directly

inhibit thrombin activity [41].

In the only study to date on the effect of mycolactone on endothelial cells and the vascula-

ture in BU, we showed that mycolactone depletes the Sec61-dependent proteins vascular endo-

thelial cadherin (VE-cadherin), TM and EPCR in primary human dermal microvascular

endothelial cells (HDMECs) [42]. This profoundly reduces the ability of mycolactone-exposed

endothelial cells to activate protein C, implying that endothelial cells may display a pro-coagu-

lant phenotype in vivo. We also showed reduced TM expression in BU patient skin biopsies,

suggesting endothelial cell dysfunction in the diseased tissue [42]. This study described a corre-

lation between thrombomodulin depletion and fibrin abundance, but had the limitation that

we were unable to track individual vessels. Furthermore, we found that mycolactone had no

effect on platelet function in vitro, leaving open the question of whether primary haemostasis

occurs in BU skin lesions. Nevertheless, our findings led us to hypothesise that mycolactone

may provide both ‘direct’ and ‘indirect’ routes to necrosis in vivo. In our model, the direct

effect is slow, driven by the cytotoxicity that follows Sec61 inhibition, which takes several days

[22], The indirect effect results from fibrin deposition after rapid loss of Sec61-dependent

coagulation modulators, causing mycolactone-induced ischaemia.

The overall aim of the current work was to investigate the hypothesis that the ‘indirect’

route to tissue necrosis involving vascular dysfunction is involved in BU pathogenesis. This

was achieved by carrying out detailed analysis of BU patient punch biopsy samples through a
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series of contiguous sections. The primary aim was to identify and track a large number of ves-

sels and evaluate their phenotype with regard to vascular and coagulation biomarkers to

understand which may be linked to fibrin deposition. The secondary aim was to integrate this

with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on pro-

teins involved in maintaining normal vascular function, using in vitro studies on mycolactone-

exposed primary endothelial cells to seek supporting evidence for processes that may drive the

clinical observations.

The clinical samples generated a complex dataset, in which 908 individual vessels were

tracked and analysed relative to staining for fibrin using an antibody that discriminates from

its precursor, fibrinogen. The data will be presented in the following order. First we provide a

more in-depth analysis of CD31 and thrombomodulin loss from endothelial cells. We then

consider whether there is any evidence primary haemostasis in the lesions, on the basis of

staining for endothelial vWF and CD61 (a marker for Integrin β3 expressed on platelets).

Finally, we consider the staining pattern for TF, the extrinsic factor activator, which was the

only marker analysed that correlated with fibrin deposition. Supporting in vitro data from pri-

mary endothelial cells is presented at relevant points throughout, and culminates in vascular

permeability assays. Hence, mycolactone-dependent changes in endothelial cell morphology

leading to increased vascular permeability may underpin the vasculopathy and fibrin deposi-

tion seen in BU.

Results

In order to better understand how the vascular and coagulation systems are involved in BU

pathogenesis, particularly in the fibrin deposition that we hypothesise may be linked to tissue

necrosis, we analysed nine contiguous sections from each of eight skin punch biopsies taken

from different, untreated, laboratory confirmed BU patients (6 with ulcerative lesions and 2

with plaques, covering 3 WHO categories; Table 1 and S1 Fig). In BU patients displaying ulcer-

ated lesions, punch biopsies were taken 1 cm inside the outer margin of the induration sur-

rounding the ulcer. Otherwise, punch biopsies were collected from the non-ulcerated centre of

the lesion. The sections were stained by haematoxylin-eosin (H&E) and Ziehl-Neelsen, and

immunohistochemistry for fibrin, thrombomodulin, CD31, smooth muscle actin (SMA),

vWF, CD61 and TF was performed (S1 Fig). We chose to use the same biopsy samples as in

our previous study [42] in order to facilitate a direct comparison between the same markers

across these 4mm biopsy samples. This revealed that the pathology of Buruli ulcer is highly

focal (S2A Fig), justifying the need to utilise contiguous sections within the same biopsy, in

order to minimise drift and allow the tracking of individual vessels between the sections

Table 1. Clinical features of analysed Buruli ulcer patients. All 8 patients had previously been confirmed to have

Buruli ulcer [42]. Category 1: a single lesion< 5 cm in diameter; Category 2: a single lesion 5–15 cm in diameter; Cate-

gory 3: a single lesion> 15 cm in diameter, multiple small lesions or facial lesions. Age is presented in median (with

range) and the rest of data are n (%).

Age (years) 12 (7–70)

Type of lesion Ulcerative 6 (75%)

Plaque 2 (25%)

WHO category 1 2 (25%)

2 4 (50%)

3 2 (25%)

Location Upper extremities 4 (50%)

Lower extremities 4 (50%)

https://doi.org/10.1371/journal.ppat.1010280.t001
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(S2B Fig). Importantly, while all the biopsies are positive for AFB in at least one section, in our

contiguous section that was used for Ziehl-Neelsen staining, AFB were only detected in the

sections from two of the patients (S2C Fig). Therefore, we do not report analysis of the coinci-

dence of Ziehl-Neelsen staining further in the current work.

As expected, all the punch biopsies displayed widespread necrosis, which is a defining fea-

ture of BU thought be due to the diffusibility of mycolactone. Highly necrotic areas are not

well-suited to immunohistochemical analysis, since the pathological process has passed the

endpoint, and such regions can be associated with higher background staining. However, all

biopsies also contained at least one area adjacent to the necrotic regions where a pathologist

could identify few sub-macroscopic signs of coagulative necrosis, including blood vessels

where nuclei were still evident under H&E staining, and which had reasonable staining for the

well-characterised vessel markers SMA and CD31 as the submacroscopic level. We therefore

focussed our analysis only on vessels identified in these pathologist-defined “least necrotic”

regions (outlined in red in S1 Fig, nine in the dermis, one in the subcutis; two patients con-

tained two such areas), which represented 17.6–48.2% (median 24.3%) of the total biopsy area.

In order to facilitate an unbiased analysis, we performed quantitative analysis on all identifi-

able vessels within these regions, regardless of whether they were later revealed to contain

localised microscopic signs of necrosis, such as anucleated cells.

Vasculopathy is common in Buruli ulcer lesions

Our first step when analysing this complex dataset was to revisit the analysis of the well-known

perivascular and/or endothelial cell markers CD31, SMA and thrombomodulin, previously

performed in non-contiguous sections without vessel tracking [42]. Since we showed both

thrombomodulin and, to a lesser extent, CD31 are depleted by mycolactone exposure we took

a conservative approach and identified vessels which stained positively for SMA, or at least one

of thrombomodulin and/or CD31. Using this approach, a total of 908 vessels were tracked in

the eight patient skin biopsies (median of 92.5 vessels per patient sample, range 18–253).

When vessels were categorised according to the expression of SMA, CD31 and thrombo-

modulin at any level of positive staining, thrombomodulin presence was found to vary widely,

regardless of the lesion type or WHO Category, closely matching our previous analysis. This

gave us sufficient confidence to continue, despite an overall lower intensity of staining for

thrombomodulin in these sections [42], which made identification of TM- vessels more diffi-

cult. All the vessels of one patient were TM+ (Fig 1A), although for this patient the least-

necrotic region was very small and contained only 18 vessels (S1 Fig). In contrast, two patients

had few TM+ vessels (~3%), while other patients’ samples showed intermediate degrees of pos-

itive staining (Fig 1A). Overall, only 299 out of 908 (32.9%) vessels showed a normal staining

pattern (TM+ CD31+ SMA+). The remaining vessels lacked one or more of the expected mark-

ers, with the most common phenotypes being TM- CD31+ SMA+ (37.4%) and TM- CD31-

SMA+ (18.7%). Some of the singly-positive SMA structures could arguably be sweat glands

with vessel-like morphology, but since many of these proved positive for the endothelial cell-

specific vWF (S1 Table, and see below) only 60 vessels (6.6% of the 908 analysed) remained

questionable. Hence, even if a proportion of singly-positive SMA structures are glands, the

data still suggest a general vasculopathy in BU lesions that may conceivably precede the emer-

gence of coagulative necrosis.

In order to understand whether the previously identified association between thrombomo-

dulin depletion and fibrin deposition [42] is functionally linked, fibrin deposition was scored

for each vessel according to distance of fibrin staining from the vessel, where a score of 0 indi-

cated no fibrin staining, and scores of 1–3 indicated fibrin staining in a<20, 20–30 and
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>30 μm radius of the vessel, respectively. Here, 852 vessels were trackable, since not all vessels

identified above could be found in the fibrin-stained section. As reported previously [42],

fibrin staining was seen across the biopsies, varying in intensity and coverage for each patient

(S1 Fig). In the current analysis, fibrin deposition was found in tissue surrounding 298/852

(35.0%) of the tracked vessels. On the other hand, fibrin staining within blood vessels was

rarely seen (in a maximum 20 vessels).

Analysis of the fibrin scores for 329 TM+ and 523 TM- vessels showed thrombomodulin

expression had no overall impact on fibrin deposition within tissue (chi2 vs normal staining

pattern P = 0.2007, Fig 1B). Hence, thrombomodulin depletion itself does not seem to be a

good predictor of local fibrin deposition. However, while most vessels were fibrin-negative, in

vessels lacking thrombomodulin expression the proportion with the highest fibrin score was

increased compared to TM+ vessels (13.0 vs. 7.3%, Fig 1B). Moreover, the maximum percent-

age of the area positively staining for fibrin within 20 μm of vessels was higher for TM- vs TM+

vessels (79.0 vs. 45.8%, Fig 1C), suggesting the loss may aggravate fibrin formation in certain

subgroup(s) of vessels. This is borne out when the analysis was repeated for vessels that had a

fibrin score of�1, where the percentage of the area positively staining for fibrin within 20 μm

reached statistical significance (Fig 1C).

Fig 1. Thrombomodulin expression and fibrin deposition in and around blood vessels. A. Vessels were tracked by the endothelial cell

marker CD31 and perivascular cell marker SMA, analysed and categorised according to the expression of TM, CD31 and SMA. The

number of vessels in each category per patient was expressed as a percentage of the total number of the vessels counted for that

representative area (listed right). Patients displaying plaque lesions are indicated with asterisks. The pie chart to the right shows the

overall distribution of each category. B and C. The degree of fibrin deposition surrounding tracked vessels in A. B represents the

distribution of fibrin scores of thrombomodulin-positive (TM+) and thrombomodulin-negative (TM-) vessels. Increasing fibrin scores

corresponding to increasing extension of fibrin staining and are represented by stronger colour (0; no fibrin staining with 20 μm, 1–3 are

fibrin staining in a<20, 20–30 and>30 μm radius, respectively). The total number of the vessels analysed is shown. C. The percentage of

the area within 20 μm of each tracked vessel that stained positively for fibrin (TM- or TM-) was determined using Nikon Elements

software, and is presented for all and fibrin-positive (Fib+) vessels. Data for individual vessels as well as median and interquartile range is

shown. ���; P< 0.001.

https://doi.org/10.1371/journal.ppat.1010280.g001
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In conclusion, the vast majority of endothelial cells in the majority of BU patients have evi-

dence of vasculopathy, as they no longer express at least one of the constitutive endothelial cell

markers. In addition, while fibrin deposition surrounding vessels is quite common, the loss of

thrombomodulin (leading to a local procoagulant phenotype within affected vessels due to an

inability to activate the protein C anticoagulant pathway) cannot not explain all the fibrin dis-

position seen in BU patient lesions.

Poor evidence for primary haemostasis in BU, perhaps due to mycolactone-

dependent depletion of von Willebrand factor from endothelial cells

The next analysis we performed was to investigate whether fibrin deposition was linked to pri-

mary haemostasis, by examining the expression and location of markers involved in this pro-

cess [34]. Activated platelets express platelet glycoprotein IIb/IIIa (CD41/CD61), as their main

receptor for vWF and fibrinogen, and here we examined staining for CD61, also known as

integrin β3 [43]. Since we have previously shown that platelet activation is not directly affected

by mycolactone [42], abundant CD61 staining in vessels would indicate activated platelets had

formed a platelet plug by binding to collagen and vWF, suggesting primary haemostasis in BU

lesions. Note that it is widely accepted that CD61 does not stain healthy tissue, being a marker

specific for activated platelets that is not constitutively expressed by any cells in healthy skin.

Surprisingly, considering the wide abundance of fibrin in the lesions, very little CD61 stain-

ing was seen in any of the eight BU samples (Figs 2C and S1). In vessels that were positive for

of least one of SMA, CD31 or thrombomodulin, none stained positively for CD61 (Figs 2D1-6

and 2E1-6), despite strong fibrin staining in the vicinity (Fig 2D4 and 2E4, blue and purple

arrows).

To find an explanation for this surprising lack of platelet activation, we incorporated our

understanding of mycolactone’s blockade of Sec61-dependent protein production. As men-

tioned in the introduction, vWF is the primary component of WBPs, secretory granules

released from endothelial cells in response to activation or injury [44] in order to capture acti-

vated platelets. Since vWF is a Sec61-dependent secretory protein, we postulated its mycolac-

tone-dependent depletion from endothelial cells might explain the lack of CD61/platelet

staining.

In healthy skin, vWF was present in endothelial cells lining blood vessels as expected (Figs

2A1-2 and S3A) [45]. As others have observed [46,47], there is a relatively high stromal back-

ground for vWF staining due to its presence in serum. By contrast, in the BU biopsies, detec-

tion of endothelial vWF was frequently reduced (Fig 2B1, black arrowheads) or staining was

seen in the intravascular space instead (Fig 2B1-2, black stars); rarely, vWF remained detect-

able in the endothelium (Fig 2B3, black arrow). Indeed, of 734 trackable vessels, only 24.8%

retained a normal expression pattern, with the endothelial monolayer staining positive for

vWF (Fig 2B3 and 2F upper panel). Instead, nearly half (47.4%) had completely lost vWF stain-

ing (vWF-) (Fig 2B1, 2D6, 2E6, and 2F upper panel). Intriguingly, 204 vessels (27.8%) dis-

played vWF staining within the lumen of microvessels, in the intravascular space (Fig 2B1-2

and 2F upper panel). This pattern of staining was particularly evident in areas that were heavily

infiltrated with immune cells (S1 Fig, outlined in blue), representing 52.5% of such vessels (Fig

2F, lower panel). However, fibrin scores were similar across all three phenotypes of vWF

expression in vessels (chi2 vs normal staining pattern P = 0.2882 and 0.1280 for intravascular

and vWF-, respectively, Fig 2F), suggesting that none of these phenotypes are directly related

to fibrin formation.

Supporting evidence for mycolactone-dependent vWF depletion was derived from in vitro
studies examining its expression in cultured primary HDMECs and human umbilical vein
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Fig 2. Endothelial von Willebrand factor is downregulated in response to mycolactone and redistributes in BU lesions. A-E. Histological sections stained

with antibodies against vWF (A1-2, B1-3, D6 and E6), platelet glycoprotein CD61 (C, D5 and E5), SMA (D1 and E1), CD31 (D2 and E2), TM (D3 and E3) and

fibrin (D4 and E4) (positive staining in brown colour) and counterstained with haematoxylin in a healthy subject (A1-2) and BU patients (B, C, D and E). Scale

bars as indicated. A. Examples of normal vessel staining for vWF (black arrows). B. Examples of different phenotypes of abnormal vWF staining that were

observed; black arrowheads (reduced expression), black stars (vessels displaying intravascular vWF staining). C. Overview of CD61 staining in BU patient 5. D

and E. Examples of vessels with different phenotypes in BU punch biopsy samples are indicated as follows; purple arrows are SMA+CD31-TM-, blue arrows are

SMA+CD31+TM-, and asterisks are SMA+CD31+TM+ vessels. F. The overall distribution of vWF staining patterns in all patients (top panel) and vessels in

immune cell-infiltrated regions (lower panel). The distribution of fibrin scores per vWF staining pattern (i.e. normal, intravascular and vWF-) is represented by

pie charts with the total vessel number shown. Increasing fibrin scores corresponding to increasing extension of fibrin staining are represented by darker

colour (0; no fibrin staining with 20 μm, 1–3 are fibrin staining in a<20, 20–30 and>30 μm radius, respectively). G and H. Primary endothelial cells were
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endothelial cells (HUVECs) by immunofluorescence. First, we established that HUVECs and

HDMECs have a similar IC50 for mycolactone after 5 days exposure (S3B Fig), and that, like

HDMECs, HUVECs have minimally reduced viability at 24 hrs (S3C Fig). Although the num-

ber of vWF-positive granules (presumptive WBP) varied from cell to cell, these were greatly

reduced after 24 hours exposure to mycolactone (Figs 2G and S3D). Furthermore, when we

quantified vWF in conditioned medium from HDMECs by enzyme-linked immunosorbent

assay (ELISA), both basal and thrombin-induced vWF secretion were almost completely abol-

ished following mycolactone exposure (Fig 2H).

Taken together, our analysis of CD61 and vWF staining in BU patient samples and our in
vitro studies on platelets [42] and vWF expression by endothelial cells suggest a minor role, if

any, for primary haemostasis in BU lesion formation. Mycolactone’s inhibition of formation

of vWF-containing WBPs may play a role here, since the endothelial cells lining vessels

exposed to mycolactone are less likely to be able to produce vWF to capture activated platelets.

Mycolactone reduces the expression of tissue factor pathway inhibitor in

endothelial cells

Having ruled out a role for primary haemostasis, we considered the extrinsic pathway of coag-

ulation activation. As we had found that the Sec61-dependent protein vWF was depleted from

endothelial cells by mycolactone, we asked whether these cells might lack the critical regulator

of this pathway, TFPI [34,40]. Our rationale was that TFPI is a signal peptide-containing pro-

tein that relies upon Sec61 for the production of both its isoforms. Full-length TFPI (isoform

α) is a GPI-anchored protein, whereas isoform β lacks both the C-terminus and the third

Kunitz-type inhibitory domain. TFPIβ is secreted but associates with the cell surface via gly-

cosaminoglycan interactions. We therefore predicted that TFPI expression by endothelial cells

would be sensitive to mycolactone.

Since TFPIα and β migrate with similar molecular mass by SDS-PAGE [48], we couldn’t

distinguish between the isoforms expressed by HDMEC via immunoblotting (Fig 3A). How-

ever, in line with our hypothesis, we found that TFPI was rapidly depleted following mycolac-

tone exposure with a decrease of 57.4% after 8 hours of mycolactone exposure and 88.3% after

24hours (Fig 3A). A similar decline was seen for non-cell-associated TFPI by ELISA of

HDMEC conditioned medium, where TFPI levels were reduced from 4.59±0.18 to 0.74±0.13

ng/mL (Fig 3B). The loss of THPI suggests negative regulation of the extrinsic coagulation cas-

cade may be compromised in BU.

Extravascular tissue factor within BU lesions correlates to pathogenic

fibrin deposition

As TFPI expression was depleted by mycolactone in vitro, we next considered whether there

was evidence for involvement of the extrinsic coagulation cascade in the fibrin deposited in

BU patient tissues in vivo by examining the localisation of TF staining. In the skin of healthy

individuals, TF staining is normally found only in the epidermis and the adventitia of larger

(but not smaller) blood vessels, as expected (Figs 4A1-2 and S4). This highly restricted expres-

sion pattern is vital to maintain intravascular fluidity, due to the ability of TF to rapidly

treated with 10 ng/mL of mycolactone (MYC), 0.02% DMSO or untreated (Ctrl) for 24 hours. G. HUVECs were fixed, permeabilised and immunostained with

anti-vWF antibody. vWF-containing granules are shown in green and nuclei stained with DAPI (blue). Scale bar = 50 μm. Scatter plot showing vWF-positive

granules per cell in each condition of three independent experiments. ����; P< 0.0001. H. HDMECs were treated with 2 U/mL thrombin to induce exocytosis

of Weibel-Palade bodies. The concentration of vWF in supernatants was quantified by ELISA. Values represent the mean of three independent

experiments ± SEM. nd, not detected. ����; P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010280.g002
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catalyse activation of the coagulation cascade by binding Factor VII/VIIa. In contrast, TF

staining in BU patients was not confined to the sub-endothelium and was instead seen within

the tissues in a complex, highly variable pattern between patients.

Abnormal TF staining fell into one of four main categories. First, staining outside of the

vessel basement membrane (BM) of larger vessels and instead within the skin tissue stroma

(Fig 4B5 and 4C5, red arrows). Second, in presumptive infiltrating cells, either demonstrating

granular intracellular staining (Fig 4D5) or intensively throughout each cell (Fig 4E5, black

arrows). This pattern of staining was seen in regions that appeared to contain eosinophils

based on H&E staining (Fig 4E3, black arrowhead). Third, TF staining was found within the

endothelial cells lining smaller vessels (Fig 4F5, orange arrow), although such cells do not nor-

mally express TF. Lastly, some vessels contained some structures within the vessel lumen that

could not be identified, yet stained strongly for TF (Fig 4G5, purple arrows). Approximately

one quarter of vessels with this phenotype were in infiltrated regions (Fig 4G3).

With respect to TF-positive presumptive-infiltrating cells, these were observed within tissue

rather than close to vessels. Granular or intensive intracellular TF staining was seen in 5 of the

8 BU patient biopsies, located between 2.2–120.9 μm away from the vessel BM. In four of these

patients, it occurred in areas displaying fibrin deposition (compare Fig 4D4 and 4D5).

Vessels were tracked and classified according to their TF expression patterns. Of 830 track-

able vessels, 18.2% showed normal TF expression in the adventitia, 45 (5.4%) showed TF stain-

ing outside of the vessel BM, 63.3% displayed abnormal TF staining in the vessel endothelium,

and 13.1% showed TF within the vessel lumen (Fig 4H). All abnormal expression patterns

were associated with an increased chance of having the highest fibrin score. While this was not

significantly different for vessels where TF staining was seen in the lumen (chi2 vs normal

staining pattern P = 0.5901), it was distinct in vessels where the endothelium was TF+ (chi2 vs

normal staining pattern P = 0.0014). Most strikingly, whilst being relatively rare, vessels that

displayed TF staining outside of BM were significantly more likely to have fibrin deposited in

the surrounding tissue, (chi2 vs normal staining pattern P< 0.0001, Fig 4H) and more likely to

have fibrin that extended further from the vessel (82.22% exhibiting the highest fibrin score).

Notably the coincidence of fibrin and TF outside the BM was often found where there were

local signs of tissue necrosis by H&E staining (e.g. Fig 4C3).

In conclusion, this data provides the tantalising possibility that the presence of TF within

tissues can trigger fibrin disposition, if the necessary other components of the coagulation

Fig 3. Mycolactone reduces the expression of tissue factor pathway inhibitor in endothelial cells. A. HDMECs

exposed to 10 ng/mL of mycolactone (MYC) for the indicated times, 0.02% DMSO or untreated (Ctrl) were lysed and

subjected to immunoblotting. TFPI immunoblot intensity was normalised according to GAPDH and untreated

controls. Data from 3 independent experiments are presented (mean ± SEM). B. Supernatant was collected from cells

treated as above for 24 hours, cell debris removed and TFPI was quantified by ELISA. Values represent the mean of

three independent experiments ± SEM. ���, P< 0.001; ����, P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010280.g003
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Fig 4. Tissue factor expression is altered in BU patient skin lesion. A-G. Histological sections were stained with anti-tissue

factor (TF) antibody (A1-2, B5, C5, D5, E5, F5 and G5), anti-SMA antibody (B1, C1, D1, E1, F1 and G1), anti-CD31 antibody (B2,

C2, D2, E2, F2 and G2), eosin (B3, C3, D3, E3, F3 and G3) or anti-fibrin antibody (B4, C4, D4, E4, F4 and G4) (positive staining in

a brown colour) and counterstained with haematoxylin in healthy subjects (A) or in BU punch biopsy samples (B-G). Scale

bar = 50 μm (20 μm in the crop panels of D5, E5 and F5). B and C. Red arrows indicate regions of TF staining distant from the
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cascade, including blood-borne factor VII/VIIa, are also present. It is also tempting to suggest

that in these circumstances, the fibrin deposited might trigger local tissue necrosis, presumably

due to ischaemia.

Tissue factor ingress into the stroma surrounding vessels correlates with

fibrin deposition

Taken together, the data from BU punch biopsies suggests that the expression of haemostatic

markers on the vessel endothelium is not a reliable predictor of fibrin deposition close to that

vessel. Instead, fibrin deposition in the tissue seems to arise locally. It is conceivable that activa-

tion of the coagulation pathway to generate the thrombin that converts fibrinogen to fibrin,

could be initiated by the TF detected within the stroma. There is some evidence to support this

in the current analysis. There was no correlation between the percentage of the area positively

stained for fibrin and TF within a 20 μm radius of the vessel (r = -0.1623, P = 0.2869) (Fig 5A).

However, there was a moderately positive correlation (r = 0.2981, P = 0.0467) between fibrin

coverage and the distance of TF+ signal extended from the same vessel BM (Fig 5B). This sug-

gests that the further the TF has invaded the tissue beyond the stroma, the more likely it is that

there will be a high degree of fibrin deposited.

Mycolactone-dependent vascular permeability as a potential driver of

coagulopathy in Buruli ulcer lesions

The generation of fibrin within tissue, a substantial distance away from vessels, after extrinsic

coagulation pathway activation by TF would require large plasma glycoproteins to leave blood

vessels and gain access to the stromal compartment. Coagulation factors are approximately

50–70 kDa in mass, while cofactors and fibrinogen are larger (~330 kDa). We therefore asked

whether mycolactone might induce changes in endothelial cells in vitro that might explain the

breakdown of vessel integrity and increase of vascular permeability in vivo.

Hence, we evaluated the effect of mycolactone on the permeability of HDMEC monolayers to

70 kDa FITC-labelled dextran in a transwell system. Remarkably, exposure to 10 ng/mL mycolac-

tone for 24 hours increased the permeability of the monolayer to 33.1±6.2% of the value seen

when cells were completely absent from the transwell (Fig 5C), equivalent to around one-third of

that seen after exposure to the proinflammatory cytokine interleukin-1β (IL-1β), a known inducer

of vascular permeability [49]. To understand what might be driving this increase, we used live-cell

imaging to monitor changes in HDMEC morphology after exposure to mycolactone in compari-

son to permeability inducing inflammatory stimuli lipopolysaccharide (LPS) and IL-1β (Fig 5D

and S1–S5 Videos). Mycolactone-treated endothelial cells initially maintained a normal, cobble-

stone-like appearance with a few rounded cells undergoing cell division. By 8 hours exposure,

cells had developed a distinctive, elongated appearance, which became more evident at 16 hours

and predominant at 24 hours (Fig 5D and S3 Video). These changes all preceded the cells suc-

cumbing to mycolactone-induced apoptosis ([42] and S3C Fig).

vessel basement membrane (BM). D. Asterisks label the same vessel, black arrows in the crop panel of D5 indicate examples of

cells containing punctate structures staining strongly for TF. E. Black arrows indicate examples of cells staining intensively for TF

throughout the cells, in regions where cells stained intensively for eosin in the H&E stain (black arrowhead). F. An orange arrow

in the crop panel of F5 indicates an example of the endothelium of a small vessel stained positively for TF. G. Purple arrows

indicate examples in a region where multiple small vessels contained unidentified structures stained positively for TF. H. The

overall distribution of vessel phenotypes for TF staining across 8 BU patients. The distribution of fibrin scores associated with

each phenotype are represented as pie charts. Increasing fibrin scores corresponding to increasing extension of fibrin staining are

represented by stronger colour (0; no fibrin staining with 20 μm, 1–3 are fibrin staining in a<20, 20–30 and>30 μm radius,

respectively). The total number of the vessels analysed is shown.

https://doi.org/10.1371/journal.ppat.1010280.g004
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We also wondered whether a mycolactone-dependent increase in permeability might

extend to the lymphatic system since BU can sometimes have an oedematous presentation. In

human dermal lymphatic endothelial cells (HDLECs), a subpopulation of endothelial cells that

actively participate in fluid balance and transport [50,51]. HDLECs and HDMECs had compa-

rable IC50 to mycolactone (around 0.67 ng/mL, S3B Fig), but the permeability response of lym-

phatic endothelial cells to mycolactone was more pronounced in HDLECs. Exposure to 10 ng/

mL mycolactone for 24 hours increased the permeability of the monolayer to 68.6±19.8% of

the value seen in empty wells (Fig 5E). In the same time window, even 2.5 ng/mL mycolactone

could increase Dextran diffusion but this was not statistically significant (26.7±2.8%, Fig 5E).

Mycolactone-dependent reduction in junctional proteins likely contributes

to vascular permeability

The endothelial monolayer is maintained by a diverse system of adhesion proteins, intracellu-

lar interacting factors and signalling molecules. Both adherens junctions (mediated by VE-cad-

herin and catenins) and tight junctions (mediated by Claudin, Occludin and the junctional

Fig 5. Extravascular tissue factor (TF) is the primary driver of fibrin deposition in BU lesions, potentially driven by an increase in

vascular permeability. A and B. Correlation between the abundance of fibrin within a 20 μm radius of each vessel and the abundance of

tissue factor (TF) in the same radius (A) or the distance the TF+ signal extended from the vessel basement membrane (BM) (B) for 45

trackable vessels. r is Spearman’s rank correlation coefficient for each data set. C-E. Endothelial cells were exposed to 10 ng/mL mycolactone

(MYC), 100 ng/mL IL-1β, 400 ng/mL LPS, 0.02% DMSO or remained untreated for the indicated times then subjected to further analysis. C.

Permeability of HDMEC on inserts with 0.4 μm pores that received various treatment for 24 hrs. Fluorescence intensity of FITC-dextran in

the receiver wells was measured and presented as a % where 100% is the value obtained from transwell lacking a cell monolayer, and 0% is

untreated control wells. Values represent the mean of three independent experiments ± SEM. ��, P< 0.01; ����, P< 0.0001. D. Endpoint

brightfield images of HDMECs exposed to different stimuli and monitored by live-cell imaging for 24 hrs (three independent experiments).

Scale bar = 200 μm. E. Permeability of HDLEC monolayers, on inserts with 1.0 μm pores that received various treatment mentioned above

or 2.5 ng/mL mycolactone (MYC) for 24 hrs. Fluorescence intensity of FITC-dextran in the receiver wells was measured and presented as a

% where 100% is the value obtained from transwell lacking a cell monolayer, and 0% is untreated control wells. Values represent the mean of

three independent experiments ± SEM. ��, P< 0.01.

https://doi.org/10.1371/journal.ppat.1010280.g005
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adhesion molecules (JAMs)) play an important role in maintaining junctional integrity

required to prevent large molecules from diffusing across the endothelial cell monolayer [52].

In addition, the angiopoietin-1/ tyrosine kinase with Ig-like loops and epidermal growth factor

homology domains (TIE) receptor system controls vascular remodelling and vessel leakage

during inflammation [52,53]. VE-cadherin, JAMs, TIE-1 and TIE-2 (or TEK) can all be pre-

dicted to be sensitive to the Sec61-dependent effects of mycolactone as they are type I trans-

membrane proteins. We therefore tested this in vitro using primary endothelial cells,

comparing the effects to LPS and IL-1β [49,54] since inflammatory conditions often potentiate

redistribution of junctional proteins [55] and suppress the expression of TIE-1 [53,56].

First, we examined the maintenance of adherens junctions by monitoring the expression

and localisation of VE-cadherin. VE-cadherin was located along cell-cell junctions and the

perinucleus in untreated and control HDMECs (Fig 6A), frequently overlapping with

actin, as expected when adherens junctions are intact [57,58]. Following 24 hours exposure

to LPS or IL-1β, junctional VE-cadherin was reduced and the junctions appeared discon-

tinuous but perinuclear staining remained comparable. On the other hand, VE-cadherin

was severely reduced in mycolactone-exposed cells by 24 hours, with lower levels of expres-

sion already apparent at 8 hours. This was also accompanied by a strong reduction in peri-

nuclear staining (Fig 6A). Mycolactone promoted condensation of actin filaments at the

endothelial cell edge within 8 hours, as previously observed in epithelial cells [59]. We also

quantified expression of the VE-cadherin cytosolic binding partner, β-catenin (CTNNB1),

an endothelial barrier modulator that links VE-cadherin to cytoskeleton [60]. CTNNB1

was also significantly downregulated by mycolactone at 24 hours in HDMECs (Fig 6B).

Furthermore, the tight junctional protein JAM-C was also depleted by mycolactone, with a

significant loss seen at 16 hours (Fig 6C). In contrast neither LPS nor IL-1β caused any sig-

nificant change in JAM-C expression.

We then investigated the effect of mycolactone on TIE-1 and TIE-2 expression. While expo-

sure of HUVECS to LPS or IL-1β caused small, non-significant changes in total TIE-1 and

TIE-2 levels (Fig 6C), mycolactone had a profound effect on both total and cell surface TIE-1

expression in both HUVECS (Fig 6C) and HDMECs (Figs 6D and S5), with an ~80% reduc-

tion at 8 hours that further decreased over time. Likewise, mycolactone reduced total TIE-2

abundance after 16 hours in HUVECs (~80% reduction compared to DMSO control, Fig 6C).

In HDMECS this decrease did not reach statistical significance (S5 Fig) but cell surface expres-

sion was significantly reduced (Fig 6D).

Angiopoietin-1 (ANGPT-1, Ang-1) restores endothelial monolayer integrity via interaction

with TIE-2. We therefore assessed the ability of angiopoietin-1 to reverse the vascular perme-

ability induced by mycolactone. In the presence of LPS and IL-1β, inclusion of angiopoietin-1

during the final 8 hours of the 24 hour experiment led to a non-significant (1.0±0.6% and 12.9

±4.0%, respectively, Fig 6E) increase in Dextran diffusion compared to the baseline, demon-

strating the expected angiopoietin-1-dependent rescue of monolayer integrity. On the other

hand, mycolactone-induced permeability was blunted by angiopoietin-1 but remained signifi-

cantly above the baseline at 40.0±17.4% of the maximum (no cells; Fig 6E).

In conclusion, mycolactone potentiates hyperpermeability of vascular endothelial cell

monolayers prior to cytotoxicity through a mechanism distinct from those induced by classic

inflammatory stimuli, by targeting expression of multiple key junctional proteins. These find-

ings are in line with mycolactone’s predicted ability to prevent translocation of type I trans-

membrane proteins VE-cadherin, TIE-1, TIE-2 and JAM-C into the ER. As β-catenin is not a

Sec61-substrate, we propose that its depletion is an indirect consequence of VE-cadherin loss,

since free β-catenin is destroyed by the phosphodestruction complex [61,62].
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IL-1β aggravates mycolactone-driven endothelial dysfunction

Recent work showed that IL-1β can be induced by mycolactone-containing microvesicles and

is found in M. ulcerans-infected tissues [63]. Since IL-1β has been long-known to repress

thrombomodulin expression in endothelial cells by a transcriptional mechanism [64], we won-

dered whether the presence of this alarm cytokine might exacerbate the effect of mycolactone

on the microvasculature. First, we addressed whether mycolactone’s ability to supress throm-

bomodulin expression in primary endothelial cells might be influenced by IL-1β, exposing

cells to a range of concentrations of mycolactone and/or IL-1β. As expected, exposure to either

10 ng/mL IL-1β or 2.5 ng/mL mycolactone alone for 24 hours led to a significant depletion in

thrombomodulin protein level in both HDMECs (Fig 7A) and HDLECs (Fig 7B). Similar to

our observations regarding vascular permeability, HDLEC were more sensitive to both stimuli,

with>50% reduction in the presence of 0.6 ng/mL IL-1β (P = 0.0132) or 1.25 ng/mL mycolac-

tone (P = 0.0004) (Fig 7B). Remarkably, this downward trend was more evident when the

endothelial cells were co-exposed to non-saturating amounts of both agents (Fig 7A and 7B).

For example, in HDMEC, while each stimulus alone resulted in ~55–75% depletion of throm-

bomodulin expression, it was barely detectable in endothelial cells exposed to both 2.5 ng/mL

mycolactone and 10 ng/mL IL-1β. In HDLEC, the combination of 0.625 ng/mL mycolactone

and 0.6 ng/mL IL-1β suppressed thrombomodulin expression to the same extent as 10 ng/mL

IL-1β. These effects appear to be additive rather than synergistic.

Since the additive effect was particularly evident in HDMECs, we investigated whether it

might also influence vascular permeability in these cells. Here, we used a lower dose of IL-1β,

which only slightly increased the permeability of monolayer after 24 hours (7.66±3.89% of the

value seen in an empty well, Fig 7C). Mycolactone had a dose-dependent effect on vascular

permeability as before, and the additive effect of IL-1β was evident when there was 5 ng/mL

mycolactone, increasing the permeability significantly from 17.58±7.57% to 44.62±9.65%

(P = 0.0021 vs. DMSO; P = 0.0268 vs. mycolactone alone). This data suggests that even low

amounts of IL-1β in infected tissues might have a further negative impact on haemostatic sta-

tus and endothelial monolayer integrity where trace amounts of mycolactone are present.

Discussion

Coagulation is often considered as a frontline host defence response to infection due to trap-

ping of invading bacteria clots [65]; however, some pathogens develop strategies to bypass or

Fig 6. Endothelial junctional proteins are depleted by mycolactone. Endothelial cells were exposed to 10 ng/mL

mycolactone (MYC), 100 ng/mL IL-1β or 400 ng/mL LPS for the indicated times then subjected to further analysis. A.

Treated HDMECs were fixed, immunostained with anti-VE cadherin antibody (green), permeabilised and labelled with

TRITC-conjugated phalloidin (red). Nuclei were stained with DAPI (blue). Images are representative of 3 independent

experiments. Scale bar = 50 μm. B. Treated HDMECs were lysed and subjected to immunoblotting. Immunoblot intensity

of β-catenin was normalised according to GAPDH and expressed relative to untreated controls. Values represent the mean

of three independent experiments ± SEM. ns, not significant; ��, P< 0.01. C. Treated HUVECs were lysed and subjected to

immunoblotting. Immunoblot intensity of TIE-1, TIE-2 and JAM-C was normalised according to GAPDH and expressed

relative to untreated controls. Values represent the mean of three independent experiments ± SEM. ns, not significant; �,

P< 0.05; ��, P< 0.01. D. Treated HDMECs were harvested for flow cytometry analysis of surface proteins, gating on

single cells. Histogram plots of FITC (TIE-1) and PE (TIE-2): filled grey, untreated unstained control; dashed black line,

isotype control of untreated cells; black, blue and red lines, cells stained with anti-TIE-1 or anti-TIE-2 antibodies,

unexposed (black), exposed to DMSO (blue) or MYC (red). Mean fluorescence intensity (MFI) is presented as a % of

untreated control (mean ± SEM of 3 independent experiments). ����, P< 0.0001. E. Permeability of HUVEC monolayers

on inserts with 1.0 μm pores that remained untreated (Ctrl) or were exposed to various stimuli for 16 hrs and another 8 hrs

with or without 400 ng/mL angiopoietin-1 (Ang-I). Fluorescence intensity of FITC-dextran in the receiver wells was

measured and presented as a % where 100% is the value obtained from transwells lacking a cell monolayer, and 0% is

untreated control wells. Values represent the mean of three independent experiments ± SEM. ns, not significant; ��,

P< 0.01.

https://doi.org/10.1371/journal.ppat.1010280.g006
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Fig 7. IL-1β aggravates mycolactone-driven endothelial dysfunction. HDMECs (A) or HDLECs (B) were exposed to different concentrations of

mycolactone (MYC), and/or IL-1β for 24 hours, then lysed and subjected to immunoblotting. TM immunoblot intensity was normalised according

to GAPDH and expressed relative to untreated controls. Mean expression level from 3 independent experiments is presented as a heatmap where

increased TM loss is represented by a paler colour. C. Permeability of HDMEC monolayers on inserts with 1 μm pores was quantified after exposure

to mycolactone (MYC) and/or IL-1β for 24 hours. Fluorescence intensity of FITC-dextran in the receiver wells was measured and presented as a %

where 100% is the value obtained from transwell lacking a cell monolayer, and 0% is untreated control wells. Values represent the mean of five

independent experiments ± SEM. �, P< 0.05; ��, P< 0.01; ����, P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010280.g007
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utilise clot architecture to gain access to host resources. For example, Streptococci generate

streptokinase, a plasminogen activator mimic, that promotes fibrinolysis and thus has a posi-

tive impact on bacterial metastasis [66]. Coagulase-positive Staphylococci, on the other hand,

produce coagulase, which rapidly depletes fibrinogen from the plasma and blunts the phago-

cytic activity of neutrophils [67]. Malaria-infected erythrocytes cause the loss of EPCR and

thrombomodulin in brain vessels, leading to subsequent fibrin deposition within the microvas-

culature [68], which impacts the severity of cerebral malaria [69]. In the case of BU, the skin

lesions exhibit large-scale coagulative necrosis in the subcutaneous regions, a distinct patho-

logical phenotype, which has been long associated with the biological effects of the exotoxin

mycolactone as it diffuses through the infected tissue [70].

Cumulative reports with in vitro or in vivo assays have addressed how cell death can be

potentiated in response to mycolactone, either directly via the activation of caspase-3, caspase-

9 [71] or Bcl-2-like protein 11 [72] with resultant apoptosis, and/or via an integrated stress

response leading to ATF4 activation [73,74]. These pathways may also involve disruption of

actin cytoskeleton [59]. Apoptosis of mycolactone-exposed cells is clearly linked to its effect at

the Sec61 translocon. Cells carrying specific mutations in the gene encoding the major subunit,

Sec61α, are resistant to mycolactone-driven cytotoxicity and continue to proliferate in its pres-

ence [23,73,75]. They are also resistant to mycolactone-induced cellular stress [73,74], autop-

hagy [73,76] and Ca2+ leak from the ER [77]. More recently we proposed an indirect

mechanism may operate in vivo, via mycolactone’s influence on endothelial cell anticoagulant

function and resultant tissue ischemia [42]. However, to what extent coagulation is dysregu-

lated in BU has been unclear. This present work demonstrates several abnormal haemostatic

phenotypes in the dermal microvasculature of BU patients that includes: 1) loss of key endo-

thelial proteins such as the endothelial adhesion molecule CD31, the anticoagulant thrombo-

modulin, and the platelet binding partner vWF, and 2) highly abnormal expression patterns of

TF that suggest a loss of containment. These changes have the potential to generate the patho-

genic fibrin deposition seen in the skin lesions and imply that infection with M. ulcerans may

cause a localised, disturbed haemostatic status. This conclusion is reinforced by in vitro data

using primary endothelial cells, where mycolactone can profoundly reduce endothelial cell

junctional proteins including TIE-1, TIE-2, JAM-C as well as VE-cadherin and β-catenin, and

potentiate vascular and lymphatic hyperpermeability. Moreover, mycolactone limits the

expression, and secretion of both vWF and TFPI.

Mechanistically, a combination of mycolactone’s action at the Sec61 translocon, and

increased local concentration of IL-1β likely explains the endothelial dysfunction seen in BU.

The single-pass type I membrane proteins thrombomodulin, CD31, VE-cadherin, JAM-C,

TIE-1 and TIE-2 [42], the secretory proteins vWF and GPI-anchored TFPI all require Sec61-

dependent co-translational translocation into the ER lumen to complete their biosynthesis.

These classes of protein are all inhibited by mycolactone [24,25]. In in vitro model systems, the

mycolactone concentration is uniform, whereas levels in BU skin lesions may vary consider-

ably. However, where the local mycolactone concentration is high enough, depletion of these

molecules will also occur. The range of endothelial marker expression seen across different

specimens and sections from the same specimen may therefore reflect local variations in

mycolactone concentration. However, while there is evidence for mycolactone within BU

lesions [14,78], current methodology lacks the spatial resolution to understand exactly how

much mycolactone is present at specific sites.

Despite a shared dependence on Sec61, there was less correlation between endothelial

markers than expected in the disordered skin in BU. For instance, while many vessels lacked

both thrombomodulin and vWF, some lost expression of one marker but not the other. Since

it was recently shown that IL-1β is present in BU skin lesions, also with variable intensity
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across biopsy samples [63], we tested the hypothesis that IL-1β may add an additional layer of

complexity in the in vivo setting. We showed that mycolactone and IL-1β have an additive

effect in vitro, suggesting that the variation in marker expression could be caused by the cumu-

lative effect of local mycolactone and IL-1β. In this context, it is also worth noting that the dis-

tance between our serial tissue sections for these markers is 24 μm inclusive. Given the focal

nature of the staining for the same markers across the section (see S2A Fig), distance between

sections could also be a contributing factor.

These BU patient biopsies showed widespread changes to vWF localisation with only a

minority of vessels displaying a normal expression pattern. In healthy tissue, vWF is expressed

solely in endothelial cells, contained within WBPs, which also contain a variety of other com-

ponents regulating inflammation as well as vascular modulators, including angiopoietin-1

[35]. Endothelial cell activation results in WBP exocytosis and the formation of vWF multi-

meric strings which capture platelets [79]. It is possible that WBP exocytosis explains the pat-

tern we observed, particularly in immune cell infiltrated regions, where vWF was lost from

endothelial cells and instead observed in the adjacent intravascular space. This pattern of

expression has been previously reported in the dermal vasculature of patients with malignant

melanoma [80] as well as alveolar septa and large blood vessels of patients with malaria-associ-

ated acute respiratory distress syndrome [46]. In melanoma vasculatures, CD42+ platelet

aggregates were also seen bound to intravascular vWF fibres [80], due to an endothelial glyco-

calyx shedding-dependent process [81]. We did not observe platelet aggregates in these vessels

in our BU patients, although we cannot completely rule out that it was a technical limitation of

the antibody used to detect them [82].

Another haemostatic factor with a grossly abnormal expression pattern was the extrinsic

pathway initiator TF, which plays a critical role in both fibrin generation and wound repair

[83]. Exposure of TF to blood is sufficient to initiate clotting, due to its cofactor activity in the

activation of factors IXa and Xa by factor VIIa [84]. Consequently, TF expression in the skin is

normally restricted to the epidermis and the adventitia surrounding larger vessels as a so-called

“haemostatic envelope” [84], and its activity is usually tightly regulated by an inhibitor, TFPI

[40]. Changes in TF expression have been reported in many inflammatory thrombotic condi-

tions [83,85], as well as in infections such as tuberculosis [86,87]. Myeloid cells do not nor-

mally express TF, but during M. tuberculosis infection, TF expression is observed in

macrophages along with conspicuous fibrin deposition within granulomas [87,88]. Mice

genetically altered to have low TF expression [86] or TF deficiency in myeloid cells [88] do not

show these changes.

Whether the endothelium can be a cellular source of the TF in pathogenic conditions

remains highly controversial [83,89]. It is well-established that inflammatory agents such as

LPS oxidized low density lipoprotein and IL-1β can induce TF mRNA and protein expres-

sion in monocytes and macrophages both in vitro and in vivo [90–92]. On the other hand,

while endothelial cells can be induced to express TF in vitro in response to LPS and IL-1β
[49,93,94] the evidence that this takes place in vivo as part of a pathophysiological process is

not so clear. For instance, endothelial-specific TF-knockout mice display little change in

pathogenesis in a range of disease models [83,95]. Much evidence supports a view that pro-

coagulant TF always arises via activated mononuclear cells and that the detection of TF in

other cells is a consequence of microparticle uptake [83,96]. Indeed, early reports that eosin-

ophils could express TF following activation [97] were more recently shown to be explained

by their uptake of monocyte-derived microparticles [89]. While this is a highly complex and

also controversial area, many cell types including endothelial cells, platelets, and mono-

cytes/macrophages have all been shown to be capable of producing TF-bearing microparti-

cles in vitro, but monocyte-derived microparticles have been shown to be the most
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thrombogenic [98]. As well as providing the extrinsic clotting pathway initiator TF, micro-

particles are also thought to promote coagulation by providing a rich negatively charged

surface for the amplification of the coagulation cascade at their location [83]. The presence

of circulating TF-bearing microparticles has been reported in patients with cancer-associ-

ated thrombosis [99], venous thromboembolism [100], cardiac bypass surgery [101], Beh-

çet’s disease [102] and sepsis [103].

In the BU patients we investigated, epidermal expression of TF was not altered, but within

the dermis and subcutis extremely disordered TF expression was observed. In stark contrast to

healthy skin, TF was detected in the endothelial cells of>60% of tracked vessels, as well as in

infiltrating cells in five patients with either granular, or in one patient with whole-cell, staining.

This finding, reminiscent of inflammatory thrombotic conditions, such as sepsis and athero-

sclerosis [83,85,89], was surprising because of mycolactone’s well-characterised immunosup-

pressive and anti-inflammatory effects [78]. Once again, IL-1β may play an important role

here. We speculate that the TF+ endothelial cells and presumptive eosinophils we observed

could have arisen by uptake of TF-bearing microparticles induced by IL-1β within the lesions.

It is unlikely that TF in the endothelium has much influence over disease progression in these

BU patients, as fibrin deposition was little altered around these vessels even when the anticoag-

ulant thrombomodulin was also lost from the endothelial cell surface. On the other hand, we

observed, albeit rarely, TF+ cells (presumably eosinophils) in regions of BU lesions containing

intensive fibrin staining. Notably, eosinophils have also been reported as the cellular source of

TF seen in another skin condition, chronic urticaria [104]. It is also possible that some of the

infiltrating TF+ cells we observed are activated macrophages that have been induced to express

TF. M. ulcerans infection is known to include a phase where macrophages are transiently

infected with bacteria [105], and the death of these cells due to the cytotoxic effects of mycolac-

tone could conceivably be another source of microparticles. Whether microparticles of any

origins play an important role in BU will be the subject of future investigations.

The strongest association we observed with fibrin deposition was diffuse TF staining

extending away from larger vessels, up to 200 μm into tissue. A key question that arose was;

how do TF and the other plasma clotting factors required to produce thrombin and conse-

quently process fibrinogen to fibrin access these sites? Using an in vitro vascular permeability

assay, we showed that mycolactone potentiates the passage of 70 kDa-size dextran through

monolayers of HUVECs, HDMECs and HDLECs, and also provided mechanistic data show-

ing that a variety of junctional and vascular permeability modulating proteins are depleted in

the presence of mycolactone. This data builds upon previous work showing that CD31 and

thrombomodulin, which also act as essential regulators for endothelial tight junctions [106–

108], are also downregulated by mycolactone [42]. Hence, a disturbed endothelial physical bar-

rier between plasma and tissue could be an unavoidable phenotype in BU. A leaky vasculature

is well-established to result in increased immune cell invasion, as well as allowing plasma com-

ponents and fluids to enter tissue [109,110]. Theoretically, the disruption of the barrier

between blood and tissue could initiate a clotting cascade as blood-borne clotting factors

engage with their sub-endothelium located binding partners or activators such as TF [111].

However, further evidence is needed from animal models before such a process can be certain.

Pro-inflammatory cytokines and pathogen-derived molecules are known to affect both

microvascular and lymphatic endothelial barriers and augment vascular permeability

[56,109,112], and this can cause tissue oedema in many disease conditions [32,105,108]. Many

pathogens also target cell-cell junctions in order to cross the barrier and colonise in tissues.

Interestingly, Mycobacterium marinum, a close genetic relative of M. ulcerans, targets vascular

integrity to aid its multiplication in granulomas [106]. In BU, oedematous forms are seen in

around 5% of patients [113]. Further work will be required to establish how early in the
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infection process vascular permeability increases, and to understand whether it has a direct

impact on M. ulcerans growth. In the present study, mycolactone demonstrated a broad and

rapid effect, limiting the biosynthesis of endothelial cell junctional proteins, triggering mor-

phological changes within 16 hours and disrupting monolayer integrity. Mycolactone’s effect

on vascular permeability in vitro occurred much earlier (within 24 hours) than its cytotoxic

effects (more than 72 hours in HDMECs [42] and HUVECs) and at an extremely low dose (10

ng/mL), even lower in the presence of small amounts of IL-1β. Our in vitro data also suggest

that pharmacological interventions targeting angiopoietin-1/ TIE receptor system [114] would

probably offer limited protection to vasculatures where M. ulcerans or mycolactone is present.

Taken together, both our cell-based studies and histopathological analysis in patient speci-

mens illustrate a hypercoagulative microenvironment that develops during BU disease pro-

gression. It seems likely that the fibrin deposition in BU lesions is not driven by platelet

aggregation; instead, it may be a consequence of factor VIIa engaging with sub-endothelial TF

following disturbance of endothelial monolayer integrity and exacerbated by loss of its natural

inhibitor TFPI. While the current study provides more evidence supporting the ‘indirect’

mechanism of mycolactone-induced necrosis, more work is needed. We have not yet analysed

any potential contribution of the intrinsic clotting pathway; therefore, it cannot be excluded. A

correct balance of TF-driven coagulation and subsequent fibrin formation is critical in wound

healing [115]. Hence, application of anticoagulants along with antibiotics could help neutralise

the pro-thrombotic phenotype seen in BU patient skin lesions, and ultimately improve healing

rate. Of note, complementary anticoagulant heparin alongside standard anti-tubercular antibi-

otics treatment has been previously employed to treat a case of facial BU. In this patient, facial

oedema was reversed by heparin intravenous injection [116], suggesting lowering haemostatic

status may attenuate BU disease progression.

Materials and methods

Ethics statement

Ethical approval for analysing BU patient punch biopsies was obtained from the Ethikkommis-

sion beider Basel, Basel, Switzerland and the provisional national ethical review board of the

Ministry of Health Benin (N IRB00006860) as well as from the Cameroon National Ethics

Committee and the Ethics Committee of the Heidelberg University Hospital, Germany

(ISRCTN72102977). A favourable ethical opinion for analysing normal human skin was given

by the Faculty of Health and Medical Science Ethics Committee of the University of Surrey

(1174-FHMS-16). The normal human skin samples were collected by the Whiteley Clinic,

Guildford, Surrey or were purchased from AMS Biotechnology. Written informed consent

was obtained from adult patients or the guardians of child patients. The research related to

human tissues complies with the ethical processes of University of Surrey.

Histological analysis of human skin samples

Buruli ulcer punch biopsies (4 mm) were collected previously [117] and reanalysed for the cur-

rent study. The biopsies from 4 male and 4 female patients included lesions on both the upper

and lower extremities, from all WHO lesion categories [1]. Clinical features of these patients

are summarised in Table 1. In BU patients displaying ulcerated lesions, punch biopsies were

taken 1 cm inside the outer margin of the induration surrounding the ulcer. Otherwise, punch

biopsies were collected from the non-ulcerated centre of the skin lesions. After removal, tissues

were fixed in 10% neutral buffered formalin, transported, embedded in paraffin and sectioned.

Five normal human skin tissue blocks were made from 4 mm punch biopsies collected by The
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Whiteley Clinic or surgical removal specimens (< 1cm2) collected by AMS Biotechnology-col-

laborated research clinical centres.

Nine serial tissue sections of each patient were (immuno-)histochemically stained in the fol-

lowing order: haematoxylin-eosin, fibrin, thrombomodulin (CD141), CD61, CD31 (Platelet

endothelial cell adhesion molecule; PECAM-1), SMA (perivascular cell marker), Ziehl-Neel-

sen, TF and vWF. For immunohistochemical staining, 5-μm skin tissue sections were deparaf-

finised, endogenous peroxidase quenched, epitope unmasked (either in preheated pH 6 citrate

buffer or treated with proteinase K, DAKO) and blocked with normal horse serum (Vector

Laboratories). The tissue sections were incubated with primary antibody overnight at 4˚C and

biotin-conjugated horse anti-mouse/ rabbit IgG (Vector Laboratories) for 30 minutes at room

temperature. Primary antibodies were as follows: CD31 (M0823, DAKO), thrombomodulin

(M0617, DAKO), SMA (NCL-SMA, Novocastra), CD61 (M0753, DAKO), vWF (ab6994,

Abcam), TF (TF218; generous gift from Professor Wolfram Ruf, Scripps Research Institute)

and Fibrin (59D8 [118]; generous gift from Professor Charles Esmon, Oklahoma Medical

Research Foundation). Staining was performed using VECTASTAIN Elite ABC kit and Vector

NovaRED peroxidase substrate (Vector Laboratories). Counterstaining was performed with

Shandon Harris Haematoxylin (Thermo Fisher Scientific). Anti-TF and vWF antibodies and

their respective matched isotype controls were introduced to healthy skin tissue slides to rule

out unspecific signals. High resolution images of all slides were scanned using either an Aperio

slide scanner (Leica Biosystems), Panoramic digital slide scanners (3DHISTECH) or the

Hamamatsu slide photometry system (Hamamatsu Photonics). Scanned images were further

analysed using ImageScope software (Leica Biosystems) or CaseViewer (3DHISTECH). In

some cases, photographs were taken with Micropix microscope camera (acquisition software

Cytocam) attached to a Yenway CX40 laboratory microscope (Micropix).

Vessel identification and marker analysis

In the current work, we did not analyse the highly necrotic regions of the BU punch biopsy

samples. Our analysis has focused exclusively on adjacent regions of the biopsies that had no

submacroscopic appearance of coagulative necrosis present in the corresponding H&E section,

as well as plentiful non-necrotic blood vessels based upon positive staining for SMA or CD31.

These were defined independently by a pathologist prior to the start of analysis. Two patient

biopsies showed two distinct regions that contained plentiful non-necrotic blood vessels,

therefore a total of ten representative areas were analysed for each biomarker. Once the regions

were chosen, all blood vessels within them were analysed, regardless of whether nearby tissue

displayed microscopic signs of necrosis, in order to facilitate an unbiased analysis. Throughout

this manuscript, we refer to these as “least-necrotic” regions. To determine the proportion of

the total biopsies that was analysed, the pixel areas were measured using NIS Elements Basic

Research (Nikon, Tokyo, Japan) (version 5.21.03).

Tracked vessels were initially identified by morphology and positive staining for SMA

using the region of interest (ROI) tool on NIS Elements Basic Research (Nikon, Tokyo, Japan)

(version 4.6). This allowed for the same vessels to be easily identified in the other sections.

Structures with vessel morphology that stained positively for the known endothelial markers

CD31, thrombomodulin, or vWF in their corresponding sections were also identified and then

tracked in the corresponding sections. Sweat glands stain for SMA, but do not have endothe-

lium and do not stain positive for CD31, thrombomodulin or vWF [119,120], therefore the

morphology of singly SMA+ structures was carefully considered before assigning them as ves-

sels. Fibrin deposition and TF expression pattern around these vessels, if identifiable, was cate-

gorised. Note that not every vessel could be identified within all sections, therefore the number
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of vessels analysed always represents the number that could be identified through all the rele-

vant sections, and thus varies from analysis to analysis.

To analyse fibrin deposition that was largely seen within the tissues, two different

approaches were taken. First, the distance that fibrin staining extended from the basement

membrane was categorised based on measurements taken with Aperio ImageScope (version

12.3.3). Vessels with no fibrin staining within 20 μm were scored as 0. Fibrin-positive vessels

received increasing scores the further the staining extended (1;<20 μm radius, 2; 20–30 μm

radius, 3; >30 μm radius). Second, fibrin staining around each vessel was quantified using the

calibrated ruler tool of NIS Elements Basic Research (version 4.6 and 5.21.01). Here, the

threshold for positive staining was first defined within random images, which was then applied

to all vessels. Then, a 20 μm area around all vessels was measured and traced again with the

ROI tool. The area of each original vessel was subtracted from the area of its 20 μm radius in

order to give the area in which fibrin staining was to be quantified. Any staining within this

was then calculated as a percentage of the 20 μm area around each vessel.

To analyse the unusual TF staining pattern observed, TF staining coverage within 20 μm

was quantified as above for fibrin using the calibrated ruler tool of NIS Elements Basic

Research (version 5.21.01), and is expressed as percentage of the area that had staining inten-

sity above the positivity threshold. In addition, the distance that the TF signal extended from

the individual vessel’s basement membrane was measured by CaseViewer (version 2.2).

Reagents

Synthetic mycolactone A/B (generous gift of Professor Yoshito Kishi, Harvard University)

[121] and its solvent control dimethyl sulfoxide (DMSO, Sigma) were used in cell-based stud-

ies. Human recombinant IL-1β was from Gibco. Angiopoietin-1 was from R&D Systems.

Lipopolysaccharide (LPS) from E. coli, serotype O55:B5 (TLR-grade) was from Enzo Life

Sciences.

Cell culture and treatment

Primary human dermal microvascular endothelial cells (HDMEC; LONZA), human umbilical

vein endothelial cells (HUVECs, PromoCell) and human dermal lymphatic endothelial cells

(HDLEC; PromoCell) from two donors were used and cultured according to manufacturer’s

recommendations in Endothelial cell growth medium MV2 (PromoCell). Subconfluent cells

were treated with either 10 ng/mL mycolactone, DMSO equivalent to mycolactone dose, 100

ng/mL IL-1β or 400 ng/mL LPS for 24 hrs or as indicated in figure legends. For real-time imag-

ing, endothelial cells were plated onto 24-well plates overnight, treated as indicated and

imaged every 30 minutes by zenCELL Owl incubator microscope (LabLogic) for 24 hrs. Time

lapse videos were generated with zencell-owl software (version 3.3, innoME GmbH).

Vascular permeability assay

Endothelial cells were seeded on cell culture inserts containing 0.4 (Millipore) or 1 μm pores

(Falcon) with a polyethylene terephthalate membrane. Cells were treated as indicated, in both

insert and receiver wells. After 24 hrs, fluorescein isothiocyanate (FITC)-conjugated dextran

(70 kDa, Millipore) was applied to each insert for 20 minutes. The fluorescence intensity of the

solution in the lower chambers was then assessed by a fluorescent plate reader (FLUOstar

Omega, BMG Labtech) with excitation/ emission wavelength at 485/ 530 nm. Fluorescence

intensity was normalised to untreated control wells with an intact monolayer of endothelial

cells (minimum) and expressed as a percentage of subtracted value obtained from wells where

the insert had no cells (maximum). In some experiments, 400 ng/mL angiopoietin-1 was
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added into both the insert and receiver wells 16 hrs after the initial treatment. Its effect was

then evaluated after 8 hrs with the same procedure described above.

Cell viability assay

Endothelial cells (4 x 103 cells) were seeded onto 96-well plates and treated with a variety of

doses of mycolactone the following day. Serial dilutions of mycolactone from 50 to 0.098 ng/

mL or solvent control equivalent to highest mycolactone dose (0.1% DMSO) was applied to

the cells; on the fifth day viability was assayed using alamarBlue Cell Viability Reagent (Invitro-

gen) with excitation/ emission wavelength at 560/ 590 nm by a plate reader (FLUOstar Omega,

BMG Labtech). Values were normalised to the control wells treated with DMSO and are pre-

sented as survival rate (%). Alternatively, HUVECs exposed to 10 ng/mL mycolactone, 0.02%

DMSO, 400 ng/mL LPS or 100 ng/mL IL-1β for 24 hours were assayed with CellEvent Cas-

pase-3/7 green detection reagent (Invitrogen) as described previously [73].

Immunochemical analysis

Western blot analysis was carried out using standard techniques, following cell lysis with 1X

RIPA buffer (Sigma) supplied with proteinase inhibitor cocktail (Sigma), separation by electro-

phoresis on 10% polyacrylamide gels and transfer to PVDF membranes (ThermoFisher Scien-

tific). Antibodies used were thrombomodulin/TM (sc-13164, Santa Cruz), TFPI (AF2974,

R&D Systems), TIE-1 (AF619, R&D Systems), TIE-2 (AF313, R&D Systems), JAM-C (AF1189,

R&D Systems), β-catenin (sc-7963, Santa Cruz Biotechnology) and GAPDH (AM4300,

Ambion). Immunofluorescence staining was performed on paraformaldehyde-fixed cells. To

visualise intracellular granules or actin cytoskeleton, cells were permeabilised with 0.5% Triton

X-100 for 2 minutes or 0.25% NP-40 for 5 minutes, respectively. Antibodies used were vWF

(ab6994, abcam), VE-cadherin (D87F2, Cell Signaling), TRITC-conjugated phalloidin

(FAK100, Sigma-Aldrich) and Alexa Fluor 488 goat anti-rabbit IgG (H+L) (ThermoFisher Sci-

entific). Nuclei were visualised with DAPI. Images were acquired with Nikon A1M confocal

laser scanning unit attached to an Eclipse Ti-E microscope.

To assess the TFPI protein level in conditioned medium, an in-house ELISA was per-

formed. In brief, samples or TFPI recombinant protein standards (ranging from 1000 to 8 ng/

mL, 2974-PI. R&D Systems) were coated onto immunoplates (MaxiSorp, Nunc). Following

overnight incubation, individual wells were blocked with 1% bovine serum albumin. Antibod-

ies used were TFPI (AF2974, R&D Systems), HRP Rabbit anti-goat IgG (H+L), and Avidin

anti-HRP (Invitrogen). The reaction was developed with 3, 3’, 5, 5’-tetramethylbenzidine sub-

strate (Invitrogen), stopped by 1M H2SO4 and read at 450 nm by a plate reader (FLUOstar

Omega, BMG Labtech).

To determine the effect of mycolactone on the release of vWF from Weibel-Palade bodies,

HDMECs were pre-incubated with DMSO or 7.8ng/mL mycolactone for 24 hours, washed

twice with serum free medium, then stimulated with 2 U/mL thrombin for 10 minutes. vWF

protein levels were then quantified using an in-house vWF ELISA. Anti-human vWF antibody

(A0082, Dako) was coated onto immunoplates overnight at 4˚C and blocked with 2% BSA in

PBS for 1 hour at room temperature. After blocking, the plate was washed three times with

wash buffer (0.05% (v/v) Tween-20 in PBS), samples and standards (NIBSC) ranging from

1000 mIU/mL—4 mIU/mL were added to the wells and the plate was incubated at room tem-

perature for 2 hours. Then, vWF was detected with HRP-conjugated rabbit anti-human vWF

(P0226, Dako) followed by 3, 3’, 5, 5’-tetramethylbenzidine substrate (Invitrogen), stopped by

1M H2SO4 and read at 450 nm by a plate reader (FLUOstar Omega, BMG Labtech).

PLOS PATHOGENS Endothelial dysfunction in Buruli ulcer skin lesions

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010280 January 31, 2022 25 / 34

https://doi.org/10.1371/journal.ppat.1010280


Statistical analysis

Statistical analysis was carried out using GraphPad Prism version 8 (San Diego, USA). Cate-

gorical data was analysed using Chi-square test of association. Yate’s correction for continuity

was introduced to TF categorical data set as some observed values were below 5. Fibrin cover-

age per TM+ or TM- vessel was assessed using Mann Whitney U non-parametric test. Fibrin

coverage versus TF coverage or distance to BM per vessel with TF seen outside of BM was

assessed using D’Agostino-Pearson normality test; as data set displayed a non-Gaussian distri-

bution, correlation used the method of Spearman. Data otherwise was accessed using a one-

way ANOVA and Dunnett’s multi-comparison test. Unless otherwise indicated, statistical

comparison for in vitro assays was vs DMSO-treated controls.

Supporting information

S1 Fig. The expression patterns of haemostatic modulators in 8 BU patient skin biopsies.

Histological sections from 8 BU patient punch biopsies stained with eosin (H&E) or antibody

against fibrin, TM, CD61, CD31, SMA, TF and vWF and counterstained with Haematoxylin.

The least-necrotic regions identified by a pathologist are outlined in red; vessels in these areas

were tracked and analysed for this study. The regions that were infiltrated with immune cells

are indicated in the relevant vWF panel, and are outlined in blue. Scale bar = 1 mm.

(TIF)

S2 Fig. General features of BU patient skin biopsies. A. Comparison of the staining patterns

with the same anti-SMA or anti-fibrin antibody and conditions seen for the same punch biop-

sies at different positions in the tissue block. The “initial section” displays those performed for

Ogbechi et al., 2015 [42], whereas the “contiguous section” was performed for the present

work. Arrows in different colours label the same vessel identified in different tissue sections.

Scale bar = 500 μm. Note how the vessel phenotype can vary even over small distances. B. An

example of vessel identification and labelling (in colours with individual number indicated) in

serial tissue sections stained with anti-SMA and CD31 antibody. C. Mycobacterial clusters (in

purple, indicated with arrows) are identified in histological sections from 2 BU patient punch

biopsies with Ziehl-Neelsen staining. Scar bars as indicated.

(TIF)

S3 Fig. vWF expression in BU patient specimen and in primary HDMECs. A. Histological

sections of a healthy subject or BU patient stained with anti-vWF antibody, the respective iso-

type control or secondary antibody alone and counterstained with Haematoxylin. B. Cell via-

bility of HDLECs, HDMECs and HUVECs exposed to a variety doses of mycolactone for 5

days was determined using alamarBlue assay and presented as a % where 100% is the value

obtained from cells treated with solvent control DMSO. C. Viability of HUVECs that were

untreated or exposed to 0.02% DMSO, 10 ng/mL mycolactone (MYC), 100 ng/mL IL-1β or

400 ng/mL LPS for 24 hrs using CellEvent detection kit. The number of active caspase 3/7 and

PI-positive cells were counted per field and expressed as a % of total number of cells. Three dif-

ferent fields representing the top, bottom and middle part of plate were taken. D. HDMECs

were treated with 10 ng/mL of mycolactone (MYC), 0.02% DMSO or untreated (Ctrl) for 24

hours. Cells were fixed, permeabilised and immunostained with anti-vWF antibody. vWF-

containing granules are shown in green and nuclei stained with DAPI (blue). Scale

bar = 20 μm.

(TIF)
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S4 Fig. Tissue factor (TF) expression patterns in BU patient specimen. Histological sections

of a healthy subject or BU patient stained with anti-TF antibody, the respective isotype control

or secondary antibody alone and counterstained with Haematoxylin. Scale bar as indicated.

(TIF)

S5 Fig. Endothelial TIE1/2 expression in response to mycolactone. HDMECs were exposed

to 0.02% DMSO, 10 ng/mL mycolactone (MYC) or remained untreated for the indicated

times, lysed, and subjected to immunoblotting. Immunoblot intensity of TIE-1 and TIE-2 was

normalised according to GAPDH and expressed relative to untreated control. Values represent

the mean of three independent experiments ± SEM. ns, not significant; ����, P< 0.0001.

(TIF)

S1 Table. Summary of marker analysis per identified vessel in least-necrotic regions. Score

(0–3) per analysed marker is indicated in the info sheet. Score of SMA, CD31, TM, fibrin,

CD61, vWF and tissue factor that links to respective vessel ID, patient ID (#1–8) and location

of least-necrotic regions (D as dermis and S as subcutis) is summarised in the “908 identified

vessels” sheet.

(XLSX)

S1 Video. Live imaging of untreated endothelial cells. Untreated HDMECs were real-time

monitored at 30 min intervals using zenCELL Owl incubator microscope for 24 hours. Time

lapse videos were generated with zencell-owl software. Time stamp and scale bar as indicated.

(three independent experiments).

(MP4)

S2 Video. The effect of DMSO on endothelial cells. HDMECs were exposed to 0.02% DMSO

and real-time monitored at 30 min intervals using zenCELL Owl incubator microscope for 24

hours. Time lapse videos were generated with zencell-owl software. Time stamp and scale bar

as indicated. (three independent experiments).

(MP4)

S3 Video. The effect of mycolactone on endothelial cells. HDMECs were exposed to 10 ng/

mL mycolactone and real-time monitored at 30 min intervals using zenCELL Owl incubator

microscope for 24 hours. Time lapse videos were generated with zencell-owl software. Time

stamp and scale bar as indicated. (three independent experiments).

(MP4)

S4 Video. The effect of IL-1β on endothelial cells. HDMECs were exposed to 100 ng/mL IL-

1β and real-time monitored at 30 min intervals using zenCELL Owl incubator microscope for

24 hours. Time lapse videos were generated with zencell-owl software. Time stamp and scale

bar as indicated. (three independent experiments).

(MP4)

S5 Video. The effect of LPS on endothelial cells. HDMECs were exposed to 400 ng/mL LPS

and real-time monitored at 30 min intervals using zenCELL Owl incubator microscope for 24

hours. Time lapse videos were generated with zencell-owl software. Time stamp and scale bar

as indicated. (three independent experiments).

(MP4)
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