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A B S T R A C T

Alzheimer's disease (AD) is a prevalent neurodegenerative condition that can lead to severe cognitive and
functional deterioration. Functional magnetic resonance imaging (fMRI) revealed abnormalities in AD in in-
trinsic synchronization between spatially separate regions in the so-called default mode network (DMN) of the
brain. To understand the relationship between this disruption in large-scale synchrony and the cognitive im-
pairment in AD, it is critical to determine whether and how the deficit in the low frequency hemodynamic
fluctuations recorded by fMRI translates to much faster timescales of memory and other cognitive processes. The
present study employed magnetoencephalography (MEG) and a Hidden Markov Model (HMM) approach to
estimate spontaneous synchrony variations in the functional neural networks with high temporal resolution. In a
group of cognitively healthy (CH) older adults, we found transient (mean duration of 150–250ms) network
activity states, which were visited in a rapid succession, and were characterized by spatially coordinated changes
in the amplitude of source-localized electrophysiological oscillations. The inferred states were similar to those
previously observed in younger participants using MEG, and the estimated cortical source distributions of the
state-specific activity resembled the classic functional neural networks, such as the DMN. In patients with AD,
inferred network states were different from those of the CH group in short-scale timing and oscillatory features.
The state of increased oscillatory amplitudes in the regions overlapping the DMN was visited less often in AD and
for shorter periods of time, suggesting that spontaneous synchronization in this network was less likely and less
stable in the patients. During the visits to this state, in some DMN nodes, the amplitude change in the higher-
frequency (8–30 Hz) oscillations was less robust in the AD than CH group. These findings highlight relevance of
studying short-scale temporal evolution of spontaneous activity in functional neural networks to understanding
the AD pathophysiology. Capacity of flexible intrinsic synchronization in the DMN may be crucial for memory
and other higher cognitive functions. Our analysis yielded metrics that quantify distinct features of the neural
synchrony disorder in AD and may offer sensitive indicators of the neural network health for future investiga-
tions.

1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder leading to
severe cognitive and functional deterioration. Delineating the neural
basis of the clinical symptoms in AD may help to advance its treatment.
One well-established neural deficit common in AD, but not other de-
mentias, is a disruption of self-organized synchrony between spatially
separate regions in the so-called default mode network (DMN) of the
brain (Agosta et al., 2012; Binnewijzend et al., 2012; Galvin et al.,

2011; Gour et al., 2014; Greicius et al., 2004; Lehmann et al., 2013;
Zhou et al., 2010). Present long before the onset of clinical symptoms in
individuals at the genetic risk for developing AD (Machulda et al., 2011;
Sheline et al., 2010a) or harboring amyloid pathology (Brier et al.,
2014; Drzezga et al., 2011; Hedden et al., 2009; Sheline et al., 2010b;
Wang et al., 2013), this deficit worsens as the symptoms occur and
progress (Bai et al., 2008; Binnewijzend et al., 2012; Brier et al., 2012;
Damoiseaux et al., 2012; Petrella et al., 2011; Westlye et al., 2011;
Zhang et al., 2010), and therefore, may play a role in the etiology of the
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disease. To date, this DMN dysfunction in AD has been studied pri-
marily by recording the blood oxygenation level dependent (BOLD)
signal while individuals undergo task-free functional magnetic re-
sonance imaging (fMRI). Such ‘resting’ fMRI recordings revealed an
abnormally low correlation between activity time-courses of DMN re-
gions in AD (Greicius et al., 2004). A limitation of this approach is in
the sluggishness of the BOLD signal that relies on the neurovascular
coupling for inferences of the brain activity (Buxton, 2013). The DMN
nodes, including the inferior parietal lobule, the anterior-lateral tem-
poral cortex, the precuneus/posterior cingulate cortex (PCC), and the
medial frontal cortex, have been linked to memory and other higher
cognitive functions (Addis et al., 2007; Andrews-Hanna et al., 2010;
Burianova and Grady, 2007; Fox et al., 2016; Mason et al., 2007; Spreng
et al., 2009; Sun et al., 2016). To determine how the disruption in large-
scale synchrony between these regions may relate to the cognitive
impairment in AD, it is critical to understand how deficits in the low
frequency hemodynamic fluctuations recorded by fMRI translate to
much faster timescales of cognition. The present study focused on the
rapid network-specific fluctuations of oscillatory activity in the 4–30 Hz
frequency range by using magnetoencephalography (MEG), which
measures electrophysiological brain activity and offers a millisecond
temporal resolution (Proudfoot et al., 2014).

The anatomic connectivity of the cerebral cortex enables short-
range and long-range communication between cortical neurons, and
through regenerative feedback, can support spontaneous functional
organization of synchronized neuronal firing at different timescales
(Buzsaki, 2006; McCormick et al., 2003; Singer, 2013). At the neuronal
population level, this spontaneously orchestrated activity generates
oscillations of different frequencies, which can be measured non-
invasively using MEG or electroencephalography (EEG) (Buzsaki et al.,
2012). Resting recordings in healthy humans have revealed that the
cortical maps of inter-regional correlations, computed based on am-
plitude time-courses of the neural oscillations (estimated by source-lo-
calized MEG/EEG in the 2–150 Hz frequency range) or BOLD signal
fluctuations (assessed by fMRI), show an intriguing spatial correspon-
dence between the signal modalities (Brookes et al., 2011; de Pasquale
et al., 2010, 2012; Deligianni et al., 2014; Hipp and Siegel, 2015;
Mantini et al., 2007). Additionally, in resting scan studies, a temporal
concordance has been observed between transient EEG states of quasi-
stable scalp topographies (known as ‘microstates’ and presumed to
mark peaks in oscillatory [1–40 Hz] amplitudes in non-identical net-
works of neural sources) and the BOLD signal changes in the classic
functional networks detected by simultaneously acquired fMRI (Britz
et al., 2010; Jann et al., 2010; Musso et al., 2010; Yuan et al., 2012).
These evident parallels suggest that, albeit the imperfect understanding
of the precise relationships between the fMRI and MEG/EEG record-
ings, the latter might offer a promising complementary tool to study the
neurophysiological basis of the DMN synchrony dysfunction in AD.

A novel analytic approach based on a Hidden Markov Model (HMM)
affords a high temporal resolution method for discerning spatio-
temporal patterns in fluctuating amplitudes of the electrophysiological
oscillations. The Markov Model has been shown to adequately describe
sequential transitions between EEG microstates (Wackermann et al.,
1993). Furthermore, a recent study applied this methodology to the
MEG-based estimates of cortical oscillations (4–30 Hz) during a resting
scan in healthy participants to demonstrate that the HMM can in-
dependently infer a series of discrete states of neural synchrony with
spatial topographies similar to the known large-scale functional net-
works (Baker et al., 2014). The derived states were characterized by
coordinated changes in the amplitude of neural oscillations in brain
regions overlapping the DMN, the dorsal attention network (DAN), the
visual network (VisN), the sensorimotor network (SMN), and several
other large-scale networks. Remarkably, these states tended to be very
short-lived (100–200ms long), coming in rapid succession and

frequently recurring over time. However, the state time-courses also
exhibited longer timescale structure, with the occurrence rates of dif-
ferent states varying on the timescale of several seconds. These slow
rate fluctuations were comparable in frequency (< 0.1 Hz) to the ultra-
slow electrophysiological potentials that might reflect endogenous
fluctuations of neural excitability within the functional networks (He
et al., 2008; Pan et al., 2013). Previously, the ultra-slow electro-
physiological potentials, as well as transient network activations, which
appeared phase-locked to the ultra-slow waves, have been linked to
spontaneous fMRI BOLD signal fluctuations (He et al., 2008; Matsui
et al., 2016; Pan et al., 2013). It is an intriguing possibility that the rates
of the rapid electrophysiological network states are influenced by the
levels of cortical excitability, which could elucidate how and why the
sequences of such fast events might correspond to slow BOLD signal
fluctuations.

In the present study, we built on this prior successful HMM appli-
cation in the MEG analysis to examine patterns of rapid intrinsic syn-
chronizations in the large-scale neural networks in AD. We recorded
MEG data in patients with AD and cognitively healthy (CH) older
adults, and reproduced the HMM-based segmentation of the regional
electrophysiological fluctuations into a set of recurring transient states
with network topographies similar to those previously described (Baker
et al., 2014). The temporal parameters of the HMM states provided
unique information about the short timescale abnormalities of the os-
cillatory activity in the functional networks in AD. Additionally, to
better understand how these fast electrophysiological states may relate
to the prior fMRI findings, we explored the slow timescale structure of
the occurrence rates of the HMM states in CH older adults. The results
demonstrate that MEG-estimated fast states of intrinsic network syn-
chrony differ substantially between patients with AD and CH in-
dividuals, and may provide a valuable marker of AD pathologic pro-
cesses to be utilized in future studies.

2. Methods

2.1. Participants

10 patients with AD and 10 CH individuals were enrolled in this
study through the Brain Aging and Dementia (BAnD) Laboratory at
Massachusetts General Hospital (MGH), from a local longitudinal co-
hort or through community outreach. Participants were also referred to
the study through the MGH Alzheimer's Disease Research Center (MGH
ADRC). CH individuals were non-demented with Mini-Mental State
Examination (MMSE) scores> 26. All participants in the patient group
were referred to the study with the clinical diagnosis of Alzheimer's
disease. Participants were excluded for significant health concerns
outside of the domains of study that would prevent participation or
would be likely to confound study results. These conditions included
major neurological or psychiatric disorders (e.g. Parkinson's disease,
Huntington's disease, vascular dementia, clinical stroke, brain surgery,
psychosis, severe major depression, moderate to severe traumatic brain
injury), or any substantial systemic illness. All individuals had at least a
high school education (12 years). The Partners Healthcare institutional
review board (IRB) approved this work and informed consent was ob-
tained from each participant. The participant groups were comparable
in age, sex distribution, and years of education. Their demographic
characteristics and scores on the cognitive/functional assessment are
provided in Table 1.

2.2. Data acquisition

MEG data were acquired while participants were seated inside a
magnetically shielded room (IMEDCO). Participants were instructed to
keep their eyes on a fixation dot displayed in the center of the screen
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approximately 1m in front of them. Three consecutive 3min long re-
cordings (filter, 0.03–330 Hz; sampling rate, 1000 Hz) were obtained
using a whole-head VectorView MEG system (Elekta-Neuromag; 306
sensors arranged in 102 triplets of two orthogonal planar gradiometers
and one magnetometer). The position of a participant's head with re-
spect to the MEG sensor array was recorded continuously by means of
four head position indicator coils (Uutela et al., 2001). To enable co-
registration of the MEG and MRI data, a Fastrak digitizer (Polhemus),
integrated with the Vectorview system, was used to record the locations
of three fiduciary points (nasion and auricular points, which defined a
head-based coordinate system), as well as of the four head position
indicator coils and approximately 200 points, which digitized the head
surface. The electrooculogram was recorded concurrently to identify
epochs containing artifacts due to vertical and horizontal eye move-
ments or blinks.

Structural MRI data (T1-weighted magnetization-prepared rapid
gradient echo, [MPRAGE]; voxel size, 1 mm3; FoV, 256×256×176;
repetition time 2530ms; echo time, 1.64ms; inversion time, 1200ms;
flip angle, 7°) were acquired using a 3.0T Siemens Trio whole-body
magnetic resonance scanner (Siemens Medical Systems) and a 32-
channel head coil. Structural images of each participant were registered
to the MNI152 standard brain to allow performing all subsequent
source space analyses in the MNI space. The locations of the MEG
sensors with respect to the anatomy were determined by registering the
head surface digitized during the MEG session to the head surface ex-
tracted from the structural MRI.

2.3. Data pre-processing

Each MEG recording was visually inspected to identify channels
and/or time-intervals of data containing obvious artifacts (e.g., ex-
tremely high variance), which were discarded. The data were spatially
filtered using the signal space separation method (Elekta-Neuromag
Maxfilter software) to suppress noise generated by sources outside the
brain and correct for head motion (Taulu et al., 2004; Taulu and
Simola, 2006). Cardiac and ocular artifacts were removed by signal
space projection (Uusitalo and Ilmoniemi, 1997), using the MNE-py-
thon software (Gramfort et al., 2013; Gramfort et al., 2014). Following
artifact rejection, the MEG data were converted to SPM12 (Friston
et al., 2007), and frequency filtered into a wide band between 4 and
30 Hz, which is characterized by a relatively high signal to noise ratio
(SNR) (Hipp and Siegel, 2015). Because neural populations within
different functional brain networks have previously been shown to os-
cillate at slightly different frequencies (Hacker et al., 2017; Mantini
et al., 2007), three additional datasets were created by frequency fil-
tering the data into narrow bands, including theta (4–7 Hz), alpha
(8–12 Hz), and beta (15–30 Hz). In addition, to quantify ultra-slow
electrophysiological potentials (see Appendix D), we lowpass-filtered
the data at 0.1 Hz. All datasets were then downsampled to 200 Hz.

2.4. Analysis tools

MATLAB (The MathWorks Inc., Natick, MA) scripts utilizing several
software packages were used to analyze the data (see https://www.
ohba.ox.ac.uk/groups/analysis-group for sample scripts). The software
packages included FSL (Jenkinson et al., 2012), SPM12 (Friston et al.,
2007), Fieldtrip (Oostenveld et al., 2011), and FreeSurfer (Dale et al.,
1999; Fischl et al., 1999).

2.5. Source analysis

The pre-processed MEG data, wide/narrow band and ultra-slow
datasets, were projected separately onto a regular 8-mm grid spanning
the entire brain using a linearly constrained minimum variance (LCMV)
scalar beamformer implemented in SPM12 (Van Veen et al., 1997; Vrba
and Robinson, 2001; Woolrich et al., 2011). Previously, beamforming
has been shown to provide verifiable neural source estimates and to
effectively reject interference from non-brain sources in the MEG signal
(Sekihara et al., 2006; Sekihara et al., 2001). To account for variations
in the sensitivity of the beamformer at different locations in the brain,
the projected data were scaled by an estimate of the projected noise
(Van Veen et al., 1997; Vrba and Robinson, 2001).

Following beamformer projection, time-courses from 38 anatomical
regions of interest (ROIs) were prepared for the network analysis as
previously described (Colclough et al., 2015, 2016; O'Neill et al., 2015).
The ROIs were chosen based on a group spatial independent component
analysis (ICA) of fMRI resting recordings in the first 200 participants in
the Human Connectome Project database (Van Essen et al., 2013). This
same set of ROIs has been used previously to analyze functional net-
works based on MEG resting scan data (Colclough et al., 2015, 2016).
Regional time-courses were obtained based on the projected wide-band
MEG data using a principal component analysis (PCA) of the voxel time-
courses within each ROI, normalized so that the positive peak had a
height of unity in all regions. The time-course for an ROI was re-
presented by the coefficients of the (first) principal component ac-
counting for most variance, weighted by the strength of the ICA spatial
map. Oscillatory activity with zero-phase-lag, which likely contains
“signal/spatial leakage” to multiple MEG sensors and may lead to in-
flated connectivity estimates, was accounted for by symmetrically or-
thogonalizing all ROI time-courses simultaneously (Colclough et al.,
2015). The multivariate symmetric orthogonalization (Everson, 1999;
Löwdin, 1950) produces a unique solution that is unaffected by any re-
ordering of ROIs and constitutes an optimal set of mutually orthogonal
ROI time-courses, which are minimally displaced from the uncorrected
original time-courses (as measured by the least-squares distance). By
being multivariate, this method can also account for any spurious as-
sociations inherited from true connections (Colclough et al., 2015).

Following leakage reduction, the amplitude envelope of the oscil-
latory wide-band activity for each ROI time-course was derived by
taking the absolute value of its Hilbert transform and downsampling to
20 Hz (Kiebel et al., 2005). These time-courses of oscillatory amplitude
fluctuations were demeaned and normalized by the global (over all
voxels) variance, and then, concatenated temporally across all partici-
pants.

To allow for the computation of spatial maps at higher spatial re-
solution, oscillatory amplitude time-courses were also obtained from
each brain voxel, separately for the wide-band and each of the narrow-
band datasets. Following beamformer projection, the amplitude en-
velopes were computed as the absolute value of Hilbert-transformed
raw data and downsampled to 20 Hz. Following beamformer projec-
tion, the ultra-slow data was also downsampled to 20 Hz.

Table 1
Demographic and clinical characteristics of study participants.

Assessment AD CH p-Value

Age 76.65 ± 8.99 76.26 ± 12.08 n.s
Gender 6 males 5 males n.s
Years of education 15.00 ± 2.87 16.00 ± 1.63 n.s.
MMSE 21.40 ± 4.62 28.30 ± 1.42 <0.001
MoCA 17.20 ± 5.22 27.10 ± 2.88 <0.0001

Note: Shown are means and standard deviations. Abbreviations: AD,
Alzheimer's disease, CH, cognitively healthy, MMSE, Mini-Mental State
Examination, MoCA, Montreal Cognitive Assessment, n.s., not significant.
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2.6. Hidden Markov model

The HMM inference was conducted using previously described
computations (for exhaustive details, see Baker et al., 2014). An HMM
with 10 states was inferred based on the time-courses of the wide-band
oscillatory amplitudes from 38 ROIs, concatenated across all partici-
pants. HMMs with 8 and 12 states were also inferred based on the data
concatenated across all participants and yielded similar core results
(presented in the Appendix A). The model with 10 states was selected
because it produced a clear-cut replication in our older CH sample of
the spatial patterns of HMM states previously described in younger
participants (Baker et al., 2014). Furthermore, in an earlier HMM
analysis that compared models with 3–12 states, free energy estimates
reached the floor effect at 10 states (Rukat et al., 2016). For the model
with 10 states, we replicated similar core results in group-specific
HMMs inferred separately in the datasets concatenated across the CH or
AD participants (presented in the Appendix B). To illustrate utility of
the HMM in describing the network dynamics, we compared the 10-
state HMMs between the real data and 100 datasets simulated from
random normal deviates, which were of the same dimensionality and
were similar to the real data in frequency spectra and inter-timeseries
correlations. The HMM with relatively simple state observation models
(Baker et al., 2014) parsed the rich temporal dynamics of the surrogate
datasets into separate states. Nonetheless, the temporal parameters of
the HMM states inferred in each surrogate dataset, which was sta-
tionary by design, lacked robust profiles characteristic of the real data
(presented in the Appendix C).

Fig. 1 illustrates the basic principles of the HMM inference; the
model detects transient states when coordinated changes in the oscil-
latory amplitude recur in a distinct set of brain regions, and infers a
time-course for each state. The individual HMM states are defined by a
unique multivariate normal distribution over the ROIs (a mean vector
[M×1] and a covariance matrix [M×M], where M=38, the number
of ROIs; Rezek and Roberts, 2005). To account for variability in the

HMM inference due to different initializations, 10 realizations were
performed and the model with the lowest free energy was selected. The
Viterbi algorithm was applied to identify the most probable state at a
given time point (Rezek and Roberts, 2005). Time-courses for each state
were constructed as indicator variables specifying the time intervals
when the state is most probable.

2.7. State spatial maps

Following Baker et al. (2014), anatomical regions exhibiting state-
specific activity (i.e., changes in oscillatory amplitudes during an HMM
state, relative to what is happening on average over time) were mapped
by computing partial correlations within the general linear modeling
(GLM) framework. Several types of maps were derived. First, to de-
termine which of the 38 a priori ROIs show activity changes during
each network state, partial correlations were computed using the time-
courses of the HMM states and the time-courses of the wide-band os-
cillatory amplitudes in each ROI. While the HMM was inferred on ROI
time-courses in order to reduce the dimensionality of the data to a
computationally manageable amount, this did somewhat limit the po-
tential spatial resolution. Therefore, to map state-specific activity
within the ROIs with higher resolution, we also calculated the partial
correlations of the HMM state time-courses using the wide-band am-
plitude envelope at each brain voxel. An additional map was created
based on correlations of each HMM state time-course with the wide-
band amplitude envelope at each brain voxel that were computed se-
lectively within time-intervals of the high occurrence rate of the state
(presented in the Appendix D, Fig. D.3). Finally, to map frequency-
specific activity during HMM states, the partial correlations of the HMM
state time-courses were computed with the narrow-band amplitude
envelope at each voxel separately for the theta, alpha, and beta fre-
quency bands.

A similar approach was employed to map the regions where the
time-courses of the ultra-slow electrophysiological potentials correlate

Fig. 1. Sample data obtained in a CH participant during a 10s-
long time-interval. A multicolored band in the center shows a
sequence of network states inferred by the HMM; 10 different
colors correspond to 10 states characterized by distinct spatial
patterns of the brain oscillatory activity. Note, the timing of
the HMM state shown in yellow coincides with increases in
the envelope amplitude time-courses shown in yellow in the
upper pane. It so happens that all these time-courses were
extracted from the known nodes of the DMN, as is shown on
the top/left (loci in the cerebral cortex are represented by
yellow dots). In contrast, visits to the HMM state shown in
magenta are temporally concordant with rises in the envelope
amplitude time-courses shown in magenta in the lower pane.
It so happens that these time-courses were extracted from the
known nodes of the VisN, as is shown in the lower left (loci
are represented by magenta dots). Several temporal metrics of
the inferred HMM states can be computed. For instance, given
that the yellow state (labeled DMN) was visited n number of
times during the recording session, and the visits lasted for x1,
x2, … xn ms, fractional occupancy, fractional count, and mean
lifetime can be computed for this state as shown in the
bottom.
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with the occurrence rates of the fast HMM states. The long timescale
time-course of the occurrence rate fluctuations for each HMM state was
quantified as changes in the proportion of time spent in the state within
5-sec-long sliding windows (half a cycle length in 0.1 Hz oscillation).
Partial correlations were computed between these state-rate time-
courses and the lowpass filtered (< 0.1 Hz) electrophysiological signal
fluctuations at each voxel (the analysis of the long timescale structure
of the HMM states is presented in the Appendix D).

In all GLM analyses conducted to compute the cortical maps, we
employed a design matrix (T×K), where K is the number of states and
each of the K columns is a state time-course with T time-points (Brookes
et al., 2004; Friston et al., 1996). For each participant, at each ROI/
voxel, a multiple linear regression was performed with the time-course
of the electrophysiological activity as the dependent variable. Prior to
fitting the GLM, both the design matrix and the ROI/voxel data were
normalized to have zero mean and unit variance. Estimates of the
partial correlation coefficients between each state and the ROI/voxel
data yielded a set of K spatial maps. These maps were averaged across
participants and visualized on the cerebral cortex. In the ultra-slow
analysis, averaging across participants was based on the absolute values
of the coefficients to account for the ± π phase ambiguity of MEG-
based estimates of the cortical activity, which are influenced by the
arbitrary default orientation of elementary current dipole sources
constrained to the local cortical anatomy (Baillet et al., 2001).

2.8. A spatial map collapsed across a subset of HMM states

In the earlier HMM of the MEG data, weak partial correlations were
observed between the activity in the precuneus/PCC and the time-
course of coordinated activity changes in regions overlapping other
DMN nodes (Baker et al., 2014). In part, this result could be due to
relative insensitivity of MEG to deep sources, such as those on the
medial cortex. Notably, the precuneus/PCC has been previously found
to act as a functional connectivity “hub” (Buckner et al., 2009; Deco
et al., 2017a; Deco et al., 2017b; Sporns et al., 2007), and might have
been active during periods of enhanced activity in several networks
(i.e., during several HMM states). To further characterize the pre-
cuneus/PCC engagement during the HMM states, the present study
obtained voxel-wise maps of consistent activity changes, relative to
what is happening on average over time, during a set of time-windows
encompassing the DMN, VisN, SMN, and left associative network (LAN)
states. These four networks were selected as likely candidates for cross-
network interaction with the DMN because [1] in the earlier HMM
(Baker et al., 2014), activity states in similar networks exhibited fluc-
tuations in the rate of occurrence over time that correlated with the
occurrence rate of the DMN (confirmed in our CH sample, see Appendix
D, Fig. D.2), and showed relatively high probabilities of inter-states
transitions to/from the DMN (confirmed in our CH sample, see Fig. 7),
[2] during the time-intervals of heightened occurrence rates of the
DMN state, when the oscillatory amplitudes in the DMN nodes were
internally strongly inter-correlated, the functional networks similar to
the selected four displayed high correlations in their oscillatory am-
plitudes with the PCC (Baker et al., 2014; de Pasquale et al., 2012). For
the GLM analysis, the original 10-state design matrix (T×10;
T= number of time-points) was modified by collapsing four columns,
corresponding to the DMN, VisN, SMN, and LAN time-courses, into one.
The resulting design matrix (T×7) included one column with the
combined multi-state time-course of T time-points (indicating time-
periods when DMN, VisN, SMN, or LAN were the most probable state),
and 6 remaining columns of T time-points each, including time-courses
of other HMM states, which were unchanged.

2.9. Maps of between-group effects

To examine differences in the HMM state spatial maps between the
AD and CH groups, coefficients obtained in the multiple regression of
the HMM state time-courses on the amplitude envelope in each brain
voxel were compared using an independent samples t-test. To assist the
comparisons with other studies, maps of oscillatory amplitudes in three
frequency bands (theta, alpha, beta) averaged across the entire re-
cording of each participant were also compared between the study
groups using an independent samples t-test. To correct for multiple
comparisons, the family-wise error rate was computed using Threshold-
Free Cluster Enhancement in FSL Randomise software. The group dif-
ference maps were visualized on the cortical surface using FreeSurfer
software. Group differences in the inter-participant variance were ex-
amined using a Bartlett test.

2.10. Metrics of network dynamics

To quantify the temporal characteristics of the inferred HMM states,
we obtained a number of summary metrics (see Fig. 1 & Baker et al.,
2014). For the purpose of computing these metrics, the states were
classified as being on or off by choosing the most probable state at each
time point (i.e. the Viterbi path). Fractional occupancy is defined as the
fraction of the overall recording time spent in each state. Fractional
count is defined as the number of times each state is visited as a fraction
of the total number of state transitions. The mean lifetime is defined as
the average amount of time spent in each state before transitioning out
of that state. Transition probability is defined as the probability of
transitioning to any particular state given the current state.

To examine differences in these metrics between the AD and CH
groups, independent samples t-statistics were computed. Statistical
significance of any findings was tested by random permutation of the
group labels. Group differences in the inter-participant variance were
examined using a Bartlett test.

3. Results

This section presents the results of our primary analysis (several
additional analyses are presented in the Appendix). An HMM with 10
states was inferred based on estimates of neural activity fluctuations
during a resting scan, which were obtained from source-localized MEG
of all study participants that was co-registered to a common brain
template. The inferred HMM states represent distinctive spatiotemporal
patterns of coordinated wide-band (4–30 Hz) oscillatory changes that
recurred at different points in time within specific neural networks. In
their cortical topographies, the detected networks were comparable to
those previously described based on MEG, using similar acquisition and
analysis methods (Baker et al., 2014), and overlapped well-established
functional networks that exhibit spontaneous regional correlations
measured by fMRI (Biswal et al., 1995; Corbetta and Shulman, 2002; Di
and Biswal, 2014; Fox et al., 2006; Greicius et al., 2003; Lowe et al.,
1998).

The HMM was inferred from the oscillatory amplitudes of group-
concatenated data that included both CH individuals and patients with
AD. Following the model inference, the partial correlation maps, in-
dicating where in the brain there are relatively high or low amplitudes
in each state, compared to what is happening on average over time,
were computed for each individual participant, and the maps were
averaged across each participant group. Fig. 2 displays the ROI-wise
maps of state-specific changes in wide-band oscillatory amplitudes in
seven salient networks, derived in the HMM analysis. The maps show
the partial correlations between a state time-course and the oscillatory
amplitude envelopes in a priori ROIs. We supplemented the ROI-wise
maps, which were limited in spatial resolution, with voxel-wise maps
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that are displayed in Fig. 3. These maps show the partial correlations
between a state time-course and the oscillatory amplitude envelope in
individual brain voxels. Because very few topographical differences
were evident between the maps in Figs. 2 and 3, we examined group
differences in the state-specific activity using the maps with the higher
spatial resolution. Fig. 4 shows differences between the AD and CH
groups at the brain-voxel resolution level for the wide-band, alpha-
band, and beta-band data.

In CH individuals, State 1 was characterized by enhanced oscillatory
amplitudes in the regions overlapping the DMN, including bilateral
inferior parietal lobe, medial prefrontal cortex, and lateral temporal
cortices (Biswal et al., 1995; Di and Biswal, 2014; Greicius et al., 2003).
Similar to prior MEG results (Baker et al., 2014), no robust effect was

observed in the precuneus/PCC region. The maps of this state (which,
following Baker et al. (2014), we labeled as DMN) showed prominent
differences between the AD and CH groups; the state-specific effect in
AD was much smaller in the inferior parietal cortex and the lateral
temporal cortex, particularly in the left hemisphere (note, the color
scales of the displayed correlations in Figs. 2 & 3 are different between
the groups). State 2 in CH participants was characterized by a left-la-
teralized increase in oscillatory amplitudes within the associative cortex
of the prefrontal, temporal, and inferior parietal lobes. The map of state
2 (which we labeled as the left associative network, LAN), was also
altered in AD; the effect was smaller in the temporal and inferior par-
ietal regions.

No other states of the wide-band oscillations displayed significant

Fig. 2. Maps of state-specific increases (in
yellow/red/brown colors) and decreases (in
blue color) in oscillatory amplitudes during
seven salient network states inferred by the
HMM. Each map shows partial correlations be-
tween the state time-course and the oscillatory
amplitude envelopes in a priori ROIs. Maps in
the CH group are shown in the left panel and in
the AD group in the right panel. Note, for States
1 & 6, the maps are shown using different color
scales for the CH and AD groups to optimally
illustrate the network topography in each group.
Abbreviations: CH, cognitively healthy, AD,
Alzheimer's disease, DMN, default mode net-
work, LAN, left associative network, RTN, right
temporal network, VisN, visual network, SMN,
sensorimotor network, DAN, dorsal attention
network, LGN, language network.

T.A. Sitnikova et al. NeuroImage: Clinical 20 (2018) 128–152

133



differences in the brain topography between the AD and CH groups.
State 3 (labeled as the right temporal network, RTN) showed a right
lateralized enhancement in oscillatory amplitudes, relative to fluctua-
tions over time on average, primarily in the temporal cortex. States 4
and 5 showed increased amplitudes in the bilateral visual network
(VisN) and the sensorimotor network (SMN), respectively (Baker et al.,
2014; Biswal et al., 1995; Lowe et al., 1998). State 6 was marked by a
decrease in the oscillatory amplitude in the regions overlapping the
dorsal attention network (DAN), including bilateral posterior lateral
temporal cortex, intra-parietal sulcus, and extending toward the frontal
eye fields (FEF) (Baker et al., 2014; Corbetta and Shulman, 2002; Fox
et al., 2006; Fox et al., 2005). State 7 was characterized by an

amplitude reduction in the language network (LGN) (Cordes et al.,
2000; de Pasquale et al., 2012; Smith et al., 2012), including the left
parietal-temporal and prefrontal regions (note, amplitude reductions in
state 6 observed by Baker et al. (2014) had a similar topography). The
time-courses of the remaining three states had weaker correlations with
the regional fluctuations in oscillatory amplitudes (maps for these states
are shown in the Appendix E). These states exhibited effects within
subcomponents of some of the first 7 networks, and hence may con-
stitute transitional states.

Group differences in oscillatory amplitudes were most prominent in
the alpha (8–12 Hz) and beta (15–30 Hz) frequency bands. Both in the
DMN (#1) and LAN (#2) states, the state-specific enhancement in

Fig. 3. Maps of seven salient HMM states at the brain voxel resolution level. Maps of state-specific increases (in yellow/red/brown colors) and decreases (in blue
color) in oscillatory amplitudes in the CH group are shown in the left panel and in the AD group in the right panel. Each map shows partial correlations between the
state time-course and the oscillatory amplitude envelopes in individual brain voxels. Color scales and abbreviations are the same as in Fig. 2.
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alpha/beta amplitudes was lower in AD relative to CH in extensive
bilateral regions primarily in the temporal and inferior parietal cortices.
In the beta activity, the group effect was also observed in the lateral
prefrontal cortex and precuneus, particularly in the left hemisphere. No
significant group differences were observed in the theta band (4–7 Hz,
p > 0.85 in all voxels, not shown). Notably, group differences selective
to the higher frequency bands were observed in the RTN (#3), DAN
(#6) and LGN (#7) states. During the RTN state, the enhancement in
alpha/beta amplitudes was smaller in the AD than CH group in the right
temporal cortex. In both DAN and LGN states, the state-specific re-
duction in oscillatory amplitudes in the parietal and temporal regions
was less evident in the AD than CH group in the beta band. In the LGN,

this effect was restricted to the left hemisphere. No frequency-specific
group differences were found in the visual or sensorimotor cortices.
When oscillatory amplitudes in the brain voxels were averaged across
the entire session, no significant differences were found between the
participant groups in any of the frequency bands (p > 0.1, in all
voxels). For all comparisons, we confirmed that between-participant
variability in the patient group could not account for the results.
Variance in the data averaged across voxels within cortical nodes in the
functional networks (Freesurfer parcellation, Yeo et al., 2011) in the AD
group did not exceed that in the CH group (Bartlett test, no nodes with
p < 0.1).

The precuneus/PCC region, which has been consistently linked with

Fig. 4. Maps of group differences in the voxel-wise state-specific activity changes in the wide band (4–30 Hz) in the left panel, in the alpha band (8–12 Hz) in the
central panel, and in the beta band (15–30 Hz) in the right panel. Brain voxels where the state-specific enhancement in the oscillatory amplitude was less prominent
in the AD relative to CH group are shown in yellow color. Brain voxels where the state-specific attenuation in the oscillatory amplitude was less prominent in the AD
relative to CH group are shown in blue color. Abbreviations are the same as in Fig. 2.
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the DMN in the resting fMRI studies (Biswal et al., 1995; Di and Biswal,
2014; Greicius et al., 2003), was not a part of the DMN (#1) state both
in the current (Figs. 2, 3) and previous HMM/MEG analyses (Baker
et al., 2014). However, the oscillatory amplitude in the precuneus/PCC
and several other DMN nodes in the CH group was consistently en-
hanced during a set of HMM states, including the DMN, LAN, VisN, and
SMN, compared to what was happening on average over time. Fig. 5
shows the maps of partial correlations, averaged across the CH parti-
cipants, between the combined time-course of these four HMM states
and the amplitude fluctuations in the brain voxels. Corresponding maps
for the AD group are also included, as well as the maps of group dif-
ferences. In the AD patients, the activity increase during this four-state
set was smaller in the precuneus/PCC and other regions overlapping the
DMN, especially in the beta frequency band.

The HMM infers time-courses of visits to each of the brain states,
revealing fluctuations in synchrony at timescales down to the order of
hundreds of milliseconds. These state dynamics showed robust differ-
ences between AD and CH participants (Fig. 6). The overall temporal
make-up of synchrony states in the brain activity, quantified by frac-
tional occupancy, or the proportions of time the neural system spends in
each spatial state of activity, showed pronounced differences between

the groups (Fig. 6A). The proportion of time when the DMN (#1) and
DAN (#6) states were visited was lower in the AD relative to CH group.
Fractional occupancies for these states in the CH group (approximately,
6% & 14%, respectively) were comparable to those previously observed
(Baker et al., 2014), but in the AD group, were only about half the
magnitude (approximately, 3% & 7%, respectively). On the contrary,
the fractional occupancies for two lateralized states (LAN #2 & RTN
#3) and the SMN state (#5) were higher in the AD relative to CH group.
Fig. 6B shows that, for the large part, group differences in the fractional
occupancy could be accounted for by the fractional counts of state
visits. The fractional count, or the number of visits to a state, normal-
ized by the overall number of state shifts, was reduced for states 1 & 6
and increased for states 2, 3 & 5 in AD relative to CH participants. In
addition, the mean lifetime, or the mean duration, of visits to the DMN
(#1) and DAN (#6) states was shorter in the AD relative to CH group
(Fig. 6C). All HMM states were on average short-lived in both groups,
similar to previously observed (Baker et al., 2014). Mean lifetimes of
most states lasted approximately 150ms, but in the CH group, mean
lifetimes of DMN and DAN states were longer than those of other states
(p < 0.05, Bonferroni corrected), lasting between 200 and 250ms. The
mean lifetime for the DMN state in our older CH sample, matched to the

Fig. 5. Maps of effects specific to a combined set of four HMM states, including the DMN, LAN, VisN, and SMN. ROI-wise maps on the very top show consistent
enhancements (in yellow/red/brown colors) in oscillatory amplitudes during these network states, as quantified by partial correlations between the aggregate four-
state time-course and the oscillatory amplitude envelopes in a priori ROIs. Directly below are the corresponding maps at the voxel-wise resolution, as quantified by
partial correlations between the aggregate four-state time-course and the oscillatory amplitude envelopes in individual brain voxels. Maps in the CH group are on the
left, and maps in the AD group are on the right. The bottom panel shows voxel-wise group differences. Brain voxels where the amplitude enhancement during the four
network states was reduced in the AD relative to CH group are shown in yellow color in the wide band (4–30 Hz) in the left panel (p < 0.05, corrected), in the alpha
oscillatory band (8–12 Hz) in the central panel (p < 0.025, corrected), and in the beta band (15–30 Hz) in the right panel (p < 0.025, corrected). Color scales and
abbreviations are the same as in Fig. 2.
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AD patients in age, was slightly longer than that previously observed in
younger participants (250ms in our sample vs. 205ms in Baker et al.,
2014). In the AD group, the lifetimes for the DMN and DAN were
considerably shorter (150ms). For all comparisons, we confirmed that
between-participant variability in the patient group could not account
for the results. Variance in the HMM state parameters in the AD group
did not exceed that in the CH group (Bartlett test, no effects with
p < 0.1).

Patterns of transition between the activity states of individual net-
works also differed between the groups, as was evident from the esti-
mated probabilities of shifting to any other state given the current state.
Fig. 7A shows the probability of transitioning from a certain state (la-
beled in rows) at the time-point, t, to any other state (labeled in col-
umns) at the time-point, t+ 1, for the CH group. Fig. 7B shows the
transition matrix for the AD group. The structure of the matrices ob-
served in both study groups was similar to that observed previously
(Baker et al., 2014), suggesting certain regularities in the interactions
between the functional networks. For instance, the probability of
shifting between the DMN (#1) and the DAN (#6) states was very low,
and the probability of transitioning from the DMN to the LAN (#2),
VisN (#4), and SMN (#5) states was relatively high. Fig. 7C indicates

whether the estimated probabilities of specific state-to-state transitions
were different between the AD and CH groups. Interestingly, the LAN
(#2) state was less likely to transition to the DMN (#1) state in AD
individuals compared with CH, but the DMN was more likely to shift to
the VisN (#4) and SMN (#5) states. Among the networks transitioning
to the DMN (#1), the VisN (#4) had the highest probability in both
groups. However, in AD patients, the probability of transition from the
VisN to the DMN was reduced, but the probability of transition from the
VisN to the LAN (#2) was higher. In fact, several other networks (States
##3, 8, 9) in AD transitioned more readily to the LAN (#2). For all
comparisons, we confirmed that between-participant variability in the
patient group could not account for the results. Variance in the tran-
sition probabilities in the AD group did not exceed that in the CH group
(Bartlett test, no effects with p < 0.1).

4. Discussion

Fluctuations in MEG-based estimates of the electrophysiological
activity in the brain during a resting scan were analyzed using a re-
cently introduced methodology that can detect synchrony variations in
the activity of cortical regions with high temporal resolution. The time-
courses of the activity, estimated in 38 ROIs covering the entire cortex
in patients with AD and older CH participants, were analyzed using an
HMM to infer sequential transitions between ten underlying network
states. These transient states represented distinct spatial patterns of
intrinsic brain activity and lasted on average between 150 and 250ms,
recurring in a rapid succession. In older CH adults, the inferred states
replicated key spatial and temporal parameters of the MEG-based states
previously described using similar methodology (Baker et al., 2014),
and in their spatial topography, showed correspondence to the classic
large-scale functional networks (Biswal et al., 1995; Corbetta and
Shulman, 2002; Di and Biswal, 2014; Fox et al., 2006; Greicius et al.,
2003; Lowe et al., 1998). Many oscillatory and temporal properties of
the inferred states were different in the AD group compared with the
CH group. Particularly, the state of enhanced oscillatory amplitudes in
the regions overlapping the DMN was visited less often and for shorter
time intervals in the patients, indicating that spontaneous synchroni-
zation in this network is both less frequent and less stable in AD. At
some of the DMN nodes, the visits to this state were also marked by
smaller amplitude changes in AD compared with CH, especially in the
higher frequency bands (alpha and beta), when precise timing of local
neuronal firing would be essential to establishing oscillations (Buzsaki,
2006). This result underscores the relevance of MEG-based measure-
ments of fast functional network states in the study of AD pathophy-
siology. Capacity to rapidly establish and flexibly update large-scale
synchrony among the DMN regions may be critical for memory and
other higher cognitive functions (Douw et al., 2015; Douw et al., 2016).

Our analysis yielded metrics that, because of their good spatio-
temporal resolution, may prove sensitive indicators of the neural net-
work health in future investigations. We note an arguably high statis-
tical power of the HMM approach, as significant differences were
detected between relatively small samples of AD and CH participants.
Nonetheless, observations about the spatial patterns of source-localized
MEG data should be interpreted with caution, owing to their inherent
ambiguity due to the inverse problem and the limited spatial resolution
of this signal (Dale and Sereno, 1993; Gross et al., 2013; Troebinger
et al., 2014). Future research is needed to validate the spatial locali-
zation assumptions of the HMM electrophysiological states through
electrocorticography or simultaneous EEG/fMRI recordings. Ad-
ditionally, it will be important to replicate the findings and elucidate
how the properties of fast neural network states relate to variables such
as age and cognitive capacity by analyzing larger datasets; for example,
an MEG dataset at the CamCAN repository includes over 600 cases,
aged between 18 and 88, and currently offers demographic and

Fig. 6. Group differences in temporal characteristics of the inferred HMM
states.
A. Fractional occupancy, or the proportion of time spent in each state. B.
Fractional count, or the number of visits to each state as a proportion of the
number of all state transitions. C. Mean lifetime, or the mean duration of the
visits to each state. Boxplots for the seven salient states (1–7), labeled in the
bottom, and for the three transitional states (8–10) show medians, 25th/75th
percentiles, and outliers; whiskers extend to most extreme points but for out-
liers. Abbreviations are the same as in Fig. 2.
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cognitive characteristics, but in the future will also offer the genetic risk
information (Shafto et al., 2014; Taylor et al., 2017) (available at
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/).

4.1. Transient states of spontaneous synchrony in large-scale functional
networks in older adults

The HMM was applied to the oscillatory amplitudes in a con-
catenated dataset that included both CH individuals and patients with
AD. The resulting clear correspondence between the inferred individual
states across all participants afforded for a well-defined analysis at the
group level. A limitation of this approach could be that the HMM would
identify the spatiotemporal patterns that recur most consistently across
both participant groups, potentially masking some group differences.
Evidence against this possibility came from HMMs that were applied
separately in the CH and AD groups and reproduced the patterns of the
salient states (Appendix B). Notably, in neither the combined nor

separate HMM analysis, was there any indication that the states in-
ferred in the CH participants were biased toward an unexpected spatial
pattern. A previous study, which used a comparable methodology to
analyze the MEG data of healthy participants, noted that topographies
of four most prominent states inferred by the HMM, regardless of the
overall number of the inferred states (varied between 4 and 14), were
similar to the classic large-scale functional networks, including the
DMN, DAN, VisN, and SMN (Baker et al., 2014). In the present study,
the maps of these four prominent states in the CH individuals bore close
spatial resemblance to the MEG-based states inferred in that earlier
study. Whether the observed group differences in the HMM state
parameters represent a functional abnormality in AD or the underlying
neurodegenerative effects is difficult to determine based on the present
data. Future research must address this question, for instance, by
studying the electrophysiological states in persons at risk for AD, and
tracking the progression of the functional deficits in relation to the
structural findings (e.g., local cortical thinning). Noteworthy, we found

Fig. 7. State-to-state transitions. A.
Transition probability matrix for the CH
group. Shown is the probability of transi-
tioning from a certain state (labeled in
rows) at the time-point, t, to any other state
(labeled in columns) at the time-point,
t+ 1. The correspondence between state-
to-state transitions and the loci in the ma-
trix is illustrated on the right. The transi-
tions in a sample sequence of HMM states,
indicated by magenta arrows, would be re-
corded within the first four columns of the
matrix, as indicated by blue arrows. B.
Transition probability matrix for the AD
group. C. Group differences; the lower and
higher transition probabilities in the AD
group relative to CH group are represented
by yellow and blue colors, respectively.
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that inter-participant variability in the examined electrophysiological
data was not increased in the AD relative to CH group. This, together
with the stability of the map topographies in AD across the combined
and group-specific HMM analyses, suggests that the detected patterns of
the HMM state abnormalities reflect a prevalent attribute of the AD
patients, rather than factors related to individual differences in neuro-
degeneration (and the resulting poor cross-patient correspondence in
the MEG neural sources).

The temporal profiles of the HMM electrophysiological states were
highly diverse, featuring distinct fractional occupancies and counts,
transient lifetimes, and specific inter-state transition probabilities. In
contrast, applications of the HMM to simulated multivariate timeseries
with frequency spectra and inter-series correlations that were sta-
tionary over time (even though, across a dataset length, comparable to
those of the real MEG-based time-courses) exhibited considerably less
variation in the properties of the inferred states as well as more sluggish
state time-courses (Appendix C). Because the temporal dynamics of
each simulated time-course were complex relative to the simple state
observation models employed by the HMM (Baker et al., 2014), it was
not surprising that several states were inferred in the surrogate datasets.
The striking discrepancy in the state parameters between the real and
simulated data suggested that the HMM is sensitive to the physiological
processes that may underlie the state-to-state transitions in the real
data, but that were not modeled in the surrogate datasets. One factor
potentially contributing to the temporal patterns of recurrence of dif-
ferent fast states in the real data could be endogenous fluctuations of
cortical excitability within functional systems (He et al., 2008; Pan
et al., 2013). Depolarizations of apical dendrites in cortical superficial
layers (e.g., due to excitatory nonspecific thalamic inputs (Birbaumer
et al., 1990; Mitzdorf, 1985)), by increasing excitability, might facil-
itate shifts to the network-specific fast activity states. Consistent with
this possibility, we found that local ultra-slow electrophysiological
potentials (< 0.1 Hz), thought to reflect periodic cortical depolariza-
tions (He et al., 2008; Pan et al., 2013), temporally correlated with the
occurrence rates of HMM states, mainly, in the regions overlapping the
corresponding maps of fast state-specific changes in the 4–30 Hz oscil-
latory amplitudes and the classic large-scale functional networks de-
scribed by fMRI (Sporns, 2013) (Appendix D). As a rule, ambiguity in
source modeling of the MEG data precludes drawing solid conclusions
about spatial patterns of the brain activity (Dale and Sereno, 1993;
Gross et al., 2013; Troebinger et al., 2014). Nonetheless, the observed
association across both the temporal and spatial dimensions suggests a
possible account of how the fast states may be related to fMRI mea-
surements, especially given the previously established spatiotemporal
links between the ultra-slow spontaneous fluctuations recorded by the
fMRI and the high spatial resolution electrocorticography (He et al.,
2008). It is possible that the slow timescale structure of both the fast
electrophysiological states and the intrinsic BOLD signal variations is
influenced by the cortical excitability.

The HMM analysis of time-courses from 38 a priori ROIs regressed
out the zero-phase correlated signal, presumed to encompass artifact
due to “signal leakage” to multiple MEG sensors (Colclough et al., 2015;
O'Neill et al., 2015). Therefore, the obtained maps of the HMM states
represent conservative synchrony estimates, with reduced likelihood of
spurious partial correlations (Fig. 2). We supplemented the ROI-wise
maps, which were limited in spatial resolution, with maps of voxel-wise
state-specific effects, which were computed as partial correlations with
unadjusted oscillatory amplitudes (Fig. 3). Remarkably, few differences
were evident between the ROI-wise and voxel-wise results. Minor dis-
crepancies primarily in the medial cerebral cortex might be due to in-
creased susceptibility of these loci, buried deep inside the brain, to the
signal leakage artifact.

Similar to the prior HMM on MEG (Baker et al., 2014), we observed
two states characterized by the oscillatory amplitude enhancements

that spatially overlapped with the DMN but were lateralized to the left
and right hemispheres (LAN and RTN). The probability of transitioning
between the DMN and LAN states, estimated by the HMM, was parti-
cularly high, suggesting that the two networks may be related. This
finding agrees with a recent result from the whole-brain fMRI study that
acquired the images with improved temporal resolution of 0.8 s and
identified temporally-independent components of the DMN exhibiting
lateralized, spatially-overlapping topographies (Smith et al., 2012).
Interestingly, in our study the periods of activation of the DMN nodes
also included the executive areas of the lateral prefrontal cortex,
especially in the left hemisphere. This temporal overlap between the
executive and the DMN states in our sample of older participants is
consistent with prior fMRI studies that found reduced distinctions be-
tween the functional neural networks in older individuals (Ferreira
et al., 2016; Keller et al., 2015; Ng et al., 2016).

Absence of a robust association between the activity fluctuations in
the precuneus/PCC and the time-intervals of coordinated activity en-
hancement in regions overlapping other DMN nodes is in agreement
with the prior HMM on MEG data (Baker et al., 2014). However, this
finding is inconsistent with the classic view of the DMN coming from
fMRI studies, which includes this region as a major network node
(Buckner et al., 2008). Based on several mathematical models of the
whole-brain activity, the living brain was recently suggested to be in a
perpetual state of metastability that maximizes not only the functional
segregation but also integration across the large-scale overlapping
networks and across time (Deco et al., 2017a; Varoquaux et al., 2012).
Evidence from structural and functional MRI studies indicated that the
precuneus/PCC might perform as a ‘hub’ that both has extensive across-
network connectivity (Buckner et al., 2009; Sporns et al., 2007) and
supports binding of neural processes across time (Deco et al., 2017a;
Deco et al., 2017b). Furthermore, in an MEG study, the amplitude of the
oscillatory activity in the PCC during time-windows of the DMN in-
ternal synchronization showed the highest correlations with the node
activity in other large-scale functional networks (de Pasquale et al.,
2012). The present study examined whether, due to the ‘hub’ role, the
precuneus/PCC may be consistently engaged during multiple states of
network activity by computing partial correlations between fluctuations
in the oscillatory amplitude in this region and the combined time-
course of the DMN and three other HMM states. We expected that the
VisN, SMN, and LAN would be most likely to interact with the DMN,
because the probabilities of switching between their activity states and
the DMN were relatively high, and fluctuations in their occurrence rate
paralleled those of the DMN (Fig. 7A and Appendix D, Fig. D.2; also
Baker et al., 2014). Voxels in the precuneus/PCC showed robust posi-
tive partial correlations with the aggregate time-course, assembled from
the visits to the DMN, VisN, SMN, and LAN states, in line with the
central role of this node in between-network functional interactions.

4.2. DMN neural oscillations in AD: Spontaneous synchronization deficit
and its putative functional significance

Both in CH individuals and patients with AD, we isolated the tran-
sient time-windows during a resting scan when a coordinated increase
in the amplitude of the electrophysiological oscillations, estimated from
MEG data, was the most robust in the DMN regions. We then showed
that visits to this DMN state in AD were shorter, occurred less fre-
quently, and were characterized by less pronounced changes in the
oscillatory amplitude, particularly in the associative cortex of the lat-
eral parietal and temporal nodes. It has been argued that correlations
among neuronal systems at smaller scales are likely to survive through
the largest scales (Roberts et al., 2015). Therefore, while cognizant of
the limitations of the MEG, which offers a large-scale activity mea-
surement with inherently ambiguous source-localization (Dale and
Sereno, 1993; Gross et al., 2013; Troebinger et al., 2014), we attempted
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to relate the present findings to the small-scale activity measurements
in the animal literature, suggesting a provocative interpretation with
potential clinical significance.

Oscillations are a manifestation of synchrony in neural firing
(Buzsaki, 2006). Therefore, the oscillation deficit in AD may indicate
underlying abnormalities in the neuronal architecture of the DMN that
disrupt spontaneous synchronization of the neuronal discharges. Find-
ings in animals suggest that synchronizing complex and distributed
networks in the associative cerebral cortex may depend on bursting
patterns of neuronal firing. In the associative cortex, as much as half of
neuronal firing might occur in bursts, but in the sensory cortex,> 80%
of spikes occur in isolation (de Kock and Sakmann, 2008; Degenetais
et al., 2002). Bursts optimized in length can deliver precise and reliable
signals to the downstream neurons (Gabbiani et al., 1996; Otto et al.,
1991). Further, neuronal bursts may be developmentally regulated,
increasing in intensity and rate of occurrence with aging (Hickmott and
Dinse, 2013; Kepecs and Lisman, 2003; Smith et al., 2000). Taken to-
gether, these observations indicate that the bursting firing patterns may
promote stability in signaling that is needed for temporal organization
of neuronal activity in the distributed associative networks, especially
in the aging brain.

Recent findings in the AD animal model demonstrated that temporal
parameters of the neuronal bursts may be critical in regulating both
quality and quantity of released β-amyloid, the protein that accumu-
lates in the brain of AD patients and is linked to neurodegeneration
(Dolev et al., 2013). A tantalizing possibility is that the average dura-
tion of the HMM states during a resting scan might be a suitable proxy
measure of the amount of bursting in the neural activity. The prolonged
duration of state visits might reflect stability of the spatiotemporal
activity patterns resulting from the neuronal bursts. Interestingly, two
HMM states (DMN & DAN) that were marked by oscillatory amplitude
changes in widespread associative regions showed the longest average
durations both in the current CH group and the previous study (Baker
et al., 2014). Moreover, the DMN state showed a disproportionate in-
crease in the average duration in our sample of older HC participants
relative to younger healthy participants in a previous study (Baker
et al., 2014). Prior studies employing fMRI revealed that abnormalities
in spontaneous DMN synchrony track with β-amyloid accumulation in
the DMN regions during the AD progression, as determined by PET
(Brier et al., 2014; Brier et al., 2012; Hedden et al., 2009; Schultz et al.,
2017; Sheline et al., 2010b). In addition, some MEG-based connectivity
measures, computed for the regions overlapping the DMN, based on
phase relationships in the source-localized electrophysiological oscil-
lations, showed correlations with β-amyloid levels in the cerebrospinal
fluid both in mild cognitive impairment and Alzheimer's disease
(Canuet et al., 2015; Yu et al., 2017). An interesting future direction
will be to investigate whether abnormally low durations of the DMN
state visits may be a sensitive predictor of the β-amyloid accumulation
in the DMN regions. Better understanding of the DMN neural dynamics
that may influence the dysregulation of the β-amyloid metabolism can
potentially facilitate development of novel, alternative therapies for
AD.

4.3. Relationship of the abnormalities in HMM states with prior MEG and
EEG findings in AD

While generally consistent with prior studies of the resting MEG and
EEG in AD, the present results reflect the ability of our new analytic
approach to resolve the short timescale synchrony changes in the esti-
mates of oscillatory activity localized to voxels of the brain. In previous
investigations, magnetic or electric field measurements obtained and
analyzed on the scalp in the sensor space were not readily interpretable
with regard to the underlying neural network sources.

The spectral analysis of spontaneous oscillations, conducted in the
sensor space over the entire recording, consistently detected a deficit in
the higher frequency bands (alpha, beta). AD patients showed reduc-
tions both in the power of these oscillations recorded at individual
sensors (Berendse et al., 2000; Besthorn et al., 1997; de Haan et al.,
2008; Fernandez et al., 2006; Poza et al., 2007, 2008; Rodriguez et al.,
1999), and in the synchrony metrics, such as the spectral coherence,
phase lag index, and synchronization likelihood, which were computed
between spatially separate sensors (Alonso et al., 2011; Cook and
Leuchter, 1996; de Haan et al., 2009; Franciotti et al., 2006; Jelles et al.,
2008; Leuchter et al., 1987; Locatelli et al., 1998; Stam et al., 2009;
Stam et al., 2006; Stam et al., 2005; Stam et al., 2002; Wada et al.,
1998). The present study substantially refined these prior observations
in AD by estimating that the reduction in the alpha and beta amplitudes
might occur primarily at the parietal and temporal nodes of the DMN,
as well as for the beta band, at the executive regions of the lateral
prefrontal cortex. Organization of synchronized neuronal discharges
into rapid series, forming oscillations, may demand especially precise
time-locking in the intricate networks of these associative regions
(Buzsaki, 2006). Additionally, the HMM analysis discerned a distinct
pattern of oscillatory abnormalities during a subset of brain states
(DAN, LGN), when the normal attenuation of beta amplitudes, com-
pared to what is happening on average over time, was less prominent in
AD than CH participants. The neuronal mechanism of the decrease in
oscillatory amplitudes during these states is yet to be understood, even
if some clues come from prior observations that the hemodynamic re-
sponse during a resting fMRI scan correlates with the alpha/beta am-
plitude positively in the DMN but negatively in the DAN (Mantini et al.,
2007). The present result indicates that ability to detect oscillatory
deficits can be improved if the opposite-polarity effects are disen-
tangled in time and space. The HMM-based analysis revealed a pattern
of robust alpha/beta amplitude abnormalities in AD relative to CH in
the present participant sample, but voxel-wise group differences in
neither alpha nor beta amplitudes, averaged across the entire recording
session, reached statistical significance.

Another approach to analyzing the EEG field potentials in AD pa-
tients has focused on the short timescale changes in the scalp topo-
graphy. Transient states of quasi-stable scalp topography, labeled ‘mi-
crostates’, in the healthy brain usually last for approximately 100ms
(Koenig et al., 2002). In AD patients, the microstates have been found to
be abnormally short-lived, and had more anterior scalp topography
(Dierks et al., 1997; Ihl et al., 1993; Stevens and Kircher, 1998; Strik
et al., 1997). The aim of segmenting EEG into microstates based on
changes in scalp topography is analogous to that in our study – to
identify time-intervals when activity in distinct sets of neural nodes
changes in amplitude. Nevertheless, the HMM approach previously has
been shown to yield improved temporal distinctions between spatial
states (Rukat et al., 2016). Furthermore, the microstates in the earlier
studies of AD were not clustered into unique classes based on their scalp
topography, thus leaving unanswered the question of whether the
deficits may be limited to a certain scalp map(s) and the underlying
specific functional neural network(s).

The present study estimated recurrent changes in the oscillatory
activity in several unique neural networks. The results suggested that
the patients' abnormalities in the state durations and the makeup of the
activated nodes may be limited to a subset of the functional networks.
Shorter state durations in AD patients were selective to the DMN and
DAN HMM states. Furthermore, an abnormal distribution of the oscil-
latory amplitudes across the network nodes (reduced in the more pos-
terior nodes) was observed primarily in the DMN and LAN HMM states.
Between the DMN and LAN, which overlapped spatially, the temporal
balance in AD patients was shifted toward the LAN – less distributed but
with a relatively strong prefrontal/executive component. The DMN
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states in AD patients recurred at an aberrantly low rate, but the LAN
showed the most robust abnormal increase in the rate of synchroniza-
tions. Additionally, there was a consistent reduction in the oscillatory
amplitudes in the posterior DMN nodes during the DMN, LAN, VisN,
and SMN states in AD, relative to CH, indicative of the suboptimal
performance of these regions as hubs for inter-network interactions.
This result was consistent with a previously reported deficit in AD in
posterior connectivity hubs, observed both in the sensor space MEG
data (reduced intramodular synchronization likelihood in the parietal
hub; de Haan et al., 2012) and the source-localized MEG data (reduced
hub metrics, based on phase lag index, for the parietal DMN regions
within a multiplex network integrating five frequency-specific net-
works; Yu et al., 2017). The pattern of the state transition abnormalities
in AD in the present study also suggested that the LAN state, rather than
the DMN, might play a central role in network interactions in AD. The
probability that the DMN transitions to the LAN was higher in the AD
relative to CH group. What's more, the VisN state, which in CH in-
dividuals showed the highest probability of transitioning to the DMN, in
AD patients showed lower probability of transitioning to the DMN, but
together with three other networks, showed higher probability of
transitioning to the LAN.

Overall, our results suggest that synchrony disruptions in the DMN
might have been a key contributor to the abnormalities observed in the
prior MEG and EEG studies of AD. Capacity of spontaneous large-scale
synchrony in this widely distributed network may be highly susceptible
to the pathological changes in the aging brain. Because source modeling
of the MEG signal involves inherent uncertainty (Dale and Sereno,
1993; Gross et al., 2013; Troebinger et al., 2014), it will be critical to
obtain converging evidence for anatomic localizations of the transient
neural abnormalities in AD in the future research. For instance, by re-
cording EEG and fMRI simultaneously, it might be possible to directly
show spatiotemporal correspondence between the slow electro-
physiological/BOLD fluctuations and the occurrence of the fast elec-
trophysiological HMM states. Additionally, developing methods for
using the typical scalp topographies of the DMN and other HMM states
as templates for parsing sensor-space EEG datasets may have promise in
the clinical biomarker research. EEG can be conveniently and

inexpensively acquired in the clinic, and with newly-optimized analysis
methods, can yield sensitive indicators of neural network health in the
clinical trial and other studies.

5. Conclusions

Through a novel application of mathematical modeling to the esti-
mates of the electrophysiological activity in the brain during a resting
MEG scan, we observed several types of abnormalities in the patterns of
transient intrinsic synchronizations within large-scale neural networks
in patients with AD. One of the most prominent functional brain net-
works, the DMN, which may play an important role in memory and
other higher cognitive functions, was affected to the highest degree.
Disrupted capacity to intrinsically synchronize cortical activity in the
DMN, evident in the abnormally low state-specific oscillatory ampli-
tudes and the reduced rate and stability of synchronizations, may un-
derlie impairments in spontaneous memory retrieval and stimulus in-
dependent thought in patients with AD. Future research to determine
the underlying physiological causes and consequences of this dysfunc-
tion at the cellular level may open new opportunities to discover im-
proved treatments for this debilitating neurological condition.
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Appendix A. HMM analyses with 8 and 12 states

We confirmed that the core results were not contingent on a specific number of states inferred by the HMM.

Fig. A.1. Maps of group differences in the voxel-wise DMN state-specific activity changes, obtained in the HMM inferred with 8 states (top) and 12 states (bottom).
Brain voxels where the state-specific enhancement in the oscillatory amplitude was reduced in the AD relative to CH group are shown in yellow color for the wide
band (4–30 Hz) in the left panel, the alpha band (8–12 Hz) in the central panel, and the beta band (15–30 Hz) in the right panel.
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Fig. A.2. Group differences in temporal characteristics of the states inferred in the HMM with 8 states on the left and 12 states on the right. Boxplots illustrate value
distributions (as described in Fig. 6) for fractional occupancy (top), fractional count (middle), and mean lifetime (bottom) for six salient states (labeled in the
bottom), inferred in each model. Abbreviations are the same as in Fig. 2.
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Appendix B. Group-specific HMM analyses with 10 states

We confirmed that the spatial topographies of the core states, observed in the combined HMM, could be replicated in the group-specific HMMs.

Fig. B.1. Maps of six salient states, which were inferred in the HMMs applied separately to the CH and AD group datasets. Maps of state-specific increases (in yellow/
red/brown colors) and decreases (in blue color) in oscillatory amplitudes in the CH group are shown in the left panel and in the AD group in the right panel. Each map
shows partial correlations between the state time-course and the oscillatory (4–30 Hz) amplitude envelopes in individual brain voxels. Abbreviations are the same as
in Fig. 2.

Appendix C. Real vs. stationary simulated data

Rich dynamics of the living brain could be described by diverse mathematical models. For instance, an alternative to an HMM with a relatively
simple observation model of multiple states (Baker et al., 2014) may be a multivariate autoregressive model (MVAR) that can depict brain activity by
a single state with a considerably more complex observation model. To evaluate the utility of the HMM in investigating the brain function, we
compared the HMM between the real and surrogate data. In 100 simulations, we applied HMMs with 10 states to surrogate multivariate time-series
characterized by stationary covariance and spectral properties that, across the entire time-series length, were matched to these of the real data.
Because each of these simulated time-series exhibited activity that was largely as rich as the real data, it was expected that the HMMs with relatively
simple state observation models would parse the data into distinct states. However, if the HMM states inferred in the real data reflect physiologically-
driven, functional brain dynamics, it would be unlikely to detect comparable patterns in the surrogate datasets that were stationary by design.

A detailed description of the simulation algorithm can be found in (Laumann et al., 2017). Briefly, random normal deviates of the same di-
mensionality as the real dataset were multiplied in the spectral domain by the average power spectrum obtained from the full-length real dataset.
These time-series were then projected onto the eigenvectors derived from the covariance matrix of the real multivariate time-courses. Thus, the
resulting surrogate time-series were matched to the real data in the covariance structure and mean spectral content (cf. left vs. right panels in Fig.
C.1), but being stationary by construction, could serve as a null against which to assess the nonstationary spatiotemporal architecture of the real
dataset. In 50 of these simulations, the real data included the 38 ROI time-courses of the MEG-based activity estimates concatenated across all study
participants. In the other 50 simulations, the real data were concatenated across the CH participants.

A sample MATLAB code for creating surrogate time-series can be downloaded from http://www.nil.wustl.edu/petersenschlaggar/Resources.html.
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Comparisons of the HMM state inferences between the real and simulated data illustrate the value of this mathematical model in describing large-
scale network behavior in the human brain. As is evident in Fig. C.2, the parameters of the HMM states inferred in each of the surrogate datasets
lacked robust profiles characteristic of the real data.

Fig. C.1. The full-length real and simulated multivariate datasets were matched in covariance and spectra. Shown are covariance matrices (top) and average power
spectra (bottom) for the real CH dataset (left) and a corresponding simulated dataset (right).

Fig. C.2. Temporal characteristics of 10 HMM states inferred in the simulated datasets compared to those in the real datasets. In each simulated multivariate dataset,
fractional occupancy (A), fractional count (B), and mean lifetime (C) were computed for each state, for the sets of data points corresponding to the data of each CH
participant. State-to-state transition probabilities (D) were also computed for the data-point sets corresponding to the data of each CH participant. We then
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determined values of these parameters corresponding to the 1st, 25th, 75th, and 99th percentiles in each simulated dataset. Boxplots show distributions of these
values (as described in Fig. 6) across 50 datasets simulated based on the all-participant real dataset (in black) and 50 datasets simulated based on the CH-participant
real dataset (in red). Corresponding parameter values in the all-participant real dataset (black solid circles) and in the CH-participant real dataset (red triangles) are
shown for comparison. Inserts enlarge selective boxplots. The mean lifetimes of the HMM states were shorter in the real than simulated data (p < 0.05, corrected),
and the within-participant variance in the other three temporal parameters between the HMM states was higher in the real than simulated data (p < 0.05,
corrected).

Appendix D. Relevance of long timescale state sequence structure

The ultra-slow (~0.1 Hz) electrophysiological oscillations, detectable in the electrocorticography data in human participants as well as the local
field potentials or neuronal calcium signals in the animal recordings (the data types with high spatiotemporal resolution), have been previously
shown to exhibit both spatial and temporal correspondence to the spontaneous fMRI BOLD signal fluctuations (He et al., 2008; Matsui et al., 2016;
Pan et al., 2013). Therefore, it was suggested that endogenous depolarizations of cortical apical dendrites, thought to underlie such ultra-slow
potentials, might directly elicit changes in the BOLD signal (He et al., 2008). Additionally, the phase of the ultra-slow EEG potentials in human
participants has been found to predict changes in the power of the higher-frequency (1–40 Hz) EEG oscillations, as well as the cognitive performance
(e.g., detection of weak stimuli) (Monto et al., 2008). It is possible that by enhancing the cortical excitability, the dendritic depolarizations increase
the probability of the transiently synchronized neuronal discharges, thus facilitating the processing of stimuli. Recent recordings of neuronal calcium
signals in the mouse suggested how such interdependency between the ultra-slow and fast processes may be structured. The transient spatial patterns
of synchronized activity might be embedded into the phase of global ultra-slow waves of spontaneous activity propagating across large-scale cortical
networks (Matsui et al., 2016).

We hypothesized that the occurrence rates of the fast HMM states in human participants would be modulated by the intrinsic ultra-slow fluc-
tuations in cortical excitability, which may be synchronized within the large-scale networks. In each network, the rate of coordinated fast changes in
the oscillatory (4–30 Hz) amplitude would be expected to increase selectively during the negative shifts of the ultra-slow potentials, corresponding to
the dendritic depolarizations. Fig. D.1 displays the maps of temporal concordance between the spontaneous ultra-slow electrophysiological fluc-
tuations and the occurrence rates of HMM states in CH participants. The time-course for the occurrence rate fluctuations for each HMM state was
quantified as changes in the proportion of time spent in the state within 5-s-long sliding windows (half a cycle length in 0.1 Hz oscillation). Shown
are partial correlations (absolute values) between the ultra-slow potentials in each cortical voxel and the occurrence rates of each of the seven salient
HMM states, inferred in the primary 10-state HMM (these coefficients were significantly higher than those in the control analysis with equalized state
lifetimes, cf. Van de Ville et al., 2010). The spatial patterns of the ultra-slow/fast coupling in each map overlap the nodes of the DMN or other large-
scale neural networks, and for the large part, are similar to the corresponding maps of the state-specific oscillatory (4–30 Hz) amplitude modulations
(cf. Fig. 3). This selective spatial pattern has emerged even though the long-scale time-courses of the occurrence rates were temporally correlated
between the HMM states (Fig. D.2), indicating that there was a slight but consistent shift in the phase of long timescale fluctuations between the
large-scale neural networks. Only in the case of the highest positive correlation between the SMN and DMN time-courses, the spatial selectivity is less
evident. The spatiotemporal coupling between the intrinsic ultra-slow potentials and the long timescale structure of the fast HMM states is in
agreement with the possibility that dendritic depolarizations are a common underlying factor linking the HMM states and the spontaneous fMRI
BOLD coactiviations.

There is also evidence that the fast timescale variance in the neural activity may modulate the BOLD response. Simultaneous fMRI and neuronal
calcium imaging in the mouse have demonstrated that transient synchronizations in the functional networks (phase-locked to the ultra-slow activity)
evoke spatially similar BOLD activity patterns and are necessary to sustain such spatial BOLD structure (Matsui et al., 2016). Furthermore, the neural
processes in different high-frequency bands (e.g., alpha, beta, gamma), captured in the local field potentials in the monkey, have been found to
correlate with distinct properties of the simultaneously acquired BOLD signal (Magri et al., 2012). Because fast changes in neural synchrony were
shown to exhibit self-similar dynamics spanning the scales from a few milliseconds to several seconds, it has been argued that equivalent neural
processes may be observed through different temporal filters by the fast electrophysiological and the slow fMRI recordings (Bellay et al., 2015; Hahn
et al., 2017; Van de Ville et al., 2010). This scale-free property could explain the spatial correspondence between the short timescale abnormalities
found in AD in the present investigation and the slower effects in the prior fMRI studies, both lines of research localizing the functional deficits in AD
to the DMN. We confirmed that the transient activity abnormalities in AD in the regions overlapping the DMN were unlikely a mere consequence of
the disrupted long timescale scheduling, related to the ultra-slow parameters of cortical excitability. Fig. D.3 illustrates, for each state, the patterns of
short-scale abnormalities detected selectively during the time-intervals exhibiting an increased state occurrence rate (identified based on the slow
time-courses of the occurrence rate fluctuations: values> 50th percentile). During such time-windows of presumed high local cortical excitability,
the DMN state in AD, relative to that in CH, showed bilateral reductions in the 4–30 Hz neural oscillations in the temporal and parietal cortices, as
well as disruptions in the naturally irregular temporal patterns of visits to the state.

Application of the HMM to the source-localized MEG data infers short-range regularities, but also does not preclude modeling the state time-
courses containing data-driven long-range dependencies. It is possible that such long timescale scheduling of the transient network states yields
patterns corresponding to network synchronizations measurable by fMRI. Whether the fast processes that we found abnormal in AD have a cor-
responding signature in the fMRI modality is a question that could be addressed in future research, for instance, by directly linking between the
electrophysiological and fMRI modalities via series of simultaneous EEG/fMRI and EEG/MEG recordings.
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Fig. D.1. Voxel-wise maps of temporal coupling between the ultra-slow (< 0.1 Hz) electrophysiological oscillations and the long timescale structure of seven salient
HMM states in the CH group. Long timescale fluctuations in the rate of occurrence of each HMM state over time were quantified as changes in the proportion of time
spent in the state within 5-sec-long (half-cycle length in 0.1 Hz oscillation) sliding windows. Each map shows the absolute values of partial correlations between the
long timescale state time-course and the ultra-slow electrophysiological fluctuations in individual brain voxels. These effects were significantly lower in the control
analysis with equalized state lifetimes (p < 0.05, corrected; note, Van de Ville et al., 2010 showed that equalizing state durations removed long-range dependencies
in the electrophysiological data). Abbreviations are the same as in Fig. 2.
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Fig. D.3. Results selectively within the time-intervals exhibiting increased recurrence rates of individual HMM states. A. Maps of group differences in the voxel-wise
activity increase specific to the transient DMN state visits during the time-intervals when the DMN-state rate of occurrence was high. Brain voxels where the state-
specific enhancement in the oscillatory amplitude was reduced in the AD relative to CH group are shown in yellow color. B. Group differences in temporal
characteristics of the inferred fast states. Boxplots illustrate value distributions (as described in Fig. 6) of mean lifetime (top), standard deviation of lifetimes (middle),
and standard deviation of inter-state intervals (bottom) for seven salient states (labeled in the bottom). Abbreviations are the same as in Fig. 2.
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Appendix E. Transitional states (primary HMM with 10 states)

Fig. E.1. Maps of state-specific increases (in yellow/red/brown colors) and decreases (in blue color) in oscillatory amplitudes during three least salient (transitional)
network states inferred by the HMM. Each map shows partial correlations between the state time-course and the oscillatory amplitude envelopes in the a priori ROIs.
Maps in the CH group are shown in the left panel and in the AD group in the right panel. Abbreviations are the same as in Fig. 2.
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